Internal Dynamics of the Radio Halo Cluster Abell 2744
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Galaxy Clusters: Waking Perseus
PUBLISHED: 2 JUNE 2017 | VOLUME: 1 | ARTICLE NUMBER: 164 news & views GALAXY CLUSTERS Waking Perseus The Perseus cluster contains over 1,000 a Kelvin–Helmholtz instability, which galaxies packed into a region ~3,500 kpc propagates in the wave direction and in extent. It is inevitable that such close- causes the dark area indicated in the packed galaxies will interact, and the image. This dark ‘bay-like’ feature is Chandra X-ray Observatory has observed approximately the size of the Milky Way, the beautiful result of that interaction and may be the result of a cold front in (pictured). This is no snapshot — the cluster gas: an interface where the Chandra observed the galaxy cluster temperature drops dramatically on scales for over 16 days in order to capture this much smaller than the mean free path. image. Stephen Walker and colleagues An advantage of this comparison of have retrieved the archival data and observations and simulations is that processed it to enhance the edges of (unmeasurable) physical quantities the surface brightness distribution. This can be estimated. In this case, the bay analysis, reported last year (Sanders et al., 50 kpc feature only appears in this form when Mon. Not. R. Astron. Soc. 460, 1898–1911; the ratio of the thermal pressure to the ROYAL ASTRONOMICAL SOCIETY ASTRONOMICAL ROYAL 2016), highlighted two features in the magnetic pressure is ~200, and this X-ray emission that are discussed by determination in turn allows the authors Walker et al. (Mon. Not. R. Astron. Soc. pattern seen in the image could have been to obtain an order-of-magnitude estimate 468, 2506–2516; 2017): the swirling wave generated by a passing galaxy cluster about of the magnetic field. -
Arxiv:1811.05004V2 [Astro-Ph.GA] 19 Dec 2018 2 the Atmospheric Cooling
Noname manuscript No. (will be inserted by the editor) Hot Atmospheres, Cold Gas, AGN Feedback and the Evolution of Early Type Galaxies: a Topical Perspective N. Werner · B. R. McNamara · E. Churazov · E. Scannapieco Received: date / Accepted: date Abstract Most galaxies comparable to or larger than the mass of the Milky Way host hot, X-ray emitting atmospheres, and many such galaxies are radio sources. Hot atmospheres and radio jets and lobes are the ingredients of radio- mechanical active galactic nucleus (AGN) feedback. While a consensus has emerged that such feedback suppresses cooling of hot cluster atmospheres, less attention has been paid to massive galaxies where similar mechanisms are at play. Observation indicates that the atmospheres of elliptical and S0 galaxies were accreted externally during the process of galaxy assembly and augmented significantly by stellar mass loss. Their atmospheres have entropy and cooling time profiles that are remarkably similar to those of central cluster galaxies. About half display filamentary or disky nebulae of cool and cold gas, much of which has likely cooled from the hot atmospheres. We review the observational and theoretical perspectives on thermal instabilities in galactic atmospheres and the evidence that AGN heating is able to roughly balance N. Werner MTA-E¨otv¨osUniversity Lend¨uletHot Universe and Astrophysics Research Group, P´azm´any P´eters´et´any 1/A, Budapest, 1117, Hungary Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk Univer- sity, Kotl´aˇrsk´a2, Brno, 611 37, Czech Republic School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan E-mail: [email protected] B. -
INVESTIGATING ACTIVE GALACTIC NUCLEI with LOW FREQUENCY RADIO OBSERVATIONS By
INVESTIGATING ACTIVE GALACTIC NUCLEI WITH LOW FREQUENCY RADIO OBSERVATIONS by MATTHEW LAZELL A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Physics & Astronomy College of Engineering and Physical Sciences The University of Birmingham March 2015 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Low frequency radio astronomy allows us to look at some of the fainter and older synchrotron emission from the relativistic plasma associated with active galactic nuclei in galaxies and clusters. In this thesis, we use the Giant Metrewave Radio Telescope to explore the impact that active galactic nuclei have on their surroundings. We present deep, high quality, 150–610 MHz radio observations for a sample of fifteen predominantly cool-core galaxy clusters. We in- vestigate a selection of these in detail, uncovering interesting radio features and using our multi-frequency data to derive various radio properties. For well-known clusters such as MS0735, our low noise images enable us to see in improved detail the radio lobes working against the intracluster medium, whilst deriving the energies and timescales of this event. -
Small-Scale Structure Is It a Valid Motivation?
Small-scale Structure Is it a valid motivation? Jakub Scholtz IPPP (Durham) Small Scale Structure Problems <—> All the reasons why “CDM is not it” How did we get here? We are gravitationally sensitive to something sourcing T • <latexit sha1_base64="055AcnSYYRkGsBe2aYAe7vH1peg=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jFCXphdwuxkNhkyM7vMQwhL/sKLB0W8+jfe/BsnyR40saChqOqmuyvOONPG97+9tfWNza3t0k55d2//4LBydNzWqVWEtkjKU9WNsaacSdoyzHDazRTFIua0E4/vZn7niSrNUtk0k4xGAg8lSxjBxkmPzX4eChtKO+1Xqn7NnwOtkqAgVSjQ6Fe+wkFKrKDSEI617gV+ZqIcK8MIp9NyaDXNMBnjIe05KrGgOsrnF0/RuVMGKEmVK2nQXP09kWOh9UTErlNgM9LL3kz8z+tZk9xEOZOZNVSSxaLEcmRSNHsfDZiixPCJI5go5m5FZIQVJsaFVHYhBMsvr5L2ZS3wa8HDVbV+W8RRglM4gwsI4BrqcA8NaAEBCc/wCm+e9l68d+9j0brmFTMn8Afe5w/beZEG</latexit> µ⌫ —> we are fairly certain that DM exists. • An exception is MOND, which has issues of its own. However, the MOND community has been instrumental in pointing out some of the discrepancies with CDM. • But how do we verify the picture? —> NBODY simulations (disclaimer: I have never run a serious body simulation) 2WalterDehnen,JustinI.Read:N-body SimulationsN-body simulations of gravitational dynamics have reached over 106 particles [6], while collisionless calculations can now reach more than 109 particles [7–10]. This disparity reflects the difference in complexity of these rather dissimilar N-body problems. The significant increase in N in the last decade was driven by the usage of parallel computers. In this review, we discuss the state-of-the art software algo- Takerithms N and dark hardware matter improvements -
The Dynamical State of the Coma Cluster with XMM-Newton?
A&A 400, 811–821 (2003) Astronomy DOI: 10.1051/0004-6361:20021911 & c ESO 2003 Astrophysics The dynamical state of the Coma cluster with XMM-Newton? D. M. Neumann1,D.H.Lumb2,G.W.Pratt1, and U. G. Briel3 1 CEA/DSM/DAPNIA Saclay, Service d’Astrophysique, L’Orme des Merisiers, Bˆat. 709, 91191 Gif-sur-Yvette, France 2 Science Payloads Technology Division, Research and Science Support Dept., ESTEC, Postbus 299 Keplerlaan 1, 2200AG Noordwijk, The Netherlands 3 Max-Planck Institut f¨ur extraterrestrische Physik, Giessenbachstr., 85740 Garching, Germany Received 19 June 2002 / Accepted 13 December 2002 Abstract. We present in this paper a substructure and spectroimaging study of the Coma cluster of galaxies based on XMM- Newton data. XMM-Newton performed a mosaic of observations of Coma to ensure a large coverage of the cluster. We add the different pointings together and fit elliptical beta-models to the data. We subtract the cluster models from the data and look for residuals, which can be interpreted as substructure. We find several significant structures: the well-known subgroup connected to NGC 4839 in the South-West of the cluster, and another substructure located between NGC 4839 and the centre of the Coma cluster. Constructing a hardness ratio image, which can be used as a temperature map, we see that in front of this new structure the temperature is significantly increased (higher or equal 10 keV). We interpret this temperature enhancement as the result of heating as this structure falls onto the Coma cluster. We furthermore reconfirm the filament-like structure South-East of the cluster centre. -
Hst Frontier Fields Preliminary Map Modeling
HST FRONTIER FIELDS PRELIMINARY MAP MODELING CATs Team (Clusters As Telescopes) Johan Richard (CRAL Lyon), Benjamin Clement (University of Arizona), Mathilde Jauzac (University of KwaZulu-Natal), Eric Jullo (LAM Marseille), Marceau Limousin (LAM, Marseille), Harald Ebeling (IfA, Hawaii), Priyamvada Natarajan (Yale University), Jean-Paul Kneib (EPFL Lausanne) & Eiichi Egami (University of Arizona). RECONSTRUCTION METHODOLOGY Producing a magnification map involves solving the lens equation for light rays originating from distant sources and deflected by the massive foreground cluster. This is ultimately an inversion problem for which several sets of codes and approaches have been developed independently (see recent review by Kneib & Natarajan 2010). Our collaboration uses LENSTOOL1, an algorithm developed collectively by us over the years. LENSTOOL is a hybrid code that combines observational strong- and weak-lensing data to constrain the cluster mass model. The total mass distribution of clusters is assumed to consist of several smooth, large-scale potentials that are modeled either in a parametric form or non-parametrically, along with contributions from many (typically N > 50) individual cluster galaxies that are modeled using physically motivated parametric forms. For lensing clusters a multi-scale approach is optimal, in as much as the constraints resulting from this inversion exercise are derived from a range of scales. Further details of the methodology are outlined in Jullo & Kneib (2009) and have been extended to the weak-lensing regime (Jauzac et al. 2012). At present, the prevailing modeling approach is to assign a small-scale dark-matter clump to each major cluster galaxy and a large-scale dark-matter clump to prominent concentrations of cluster galaxies (Natarajan & Kneib 1997). -
16Th HEAD Meeting Session Table of Contents
16th HEAD Meeting Sun Valley, Idaho – August, 2017 Meeting Abstracts Session Table of Contents 99 – Public Talk - Revealing the Hidden, High Energy Sun, 204 – Mid-Career Prize Talk - X-ray Winds from Black Rachel Osten Holes, Jon Miller 100 – Solar/Stellar Compact I 205 – ISM & Galaxies 101 – AGN in Dwarf Galaxies 206 – First Results from NICER: X-ray Astrophysics from 102 – High-Energy and Multiwavelength Polarimetry: the International Space Station Current Status and New Frontiers 300 – Black Holes Across the Mass Spectrum 103 – Missions & Instruments Poster Session 301 – The Future of Spectral-Timing of Compact Objects 104 – First Results from NICER: X-ray Astrophysics from 302 – Synergies with the Millihertz Gravitational Wave the International Space Station Poster Session Universe 105 – Galaxy Clusters and Cosmology Poster Session 303 – Dissertation Prize Talk - Stellar Death by Black 106 – AGN Poster Session Hole: How Tidal Disruption Events Unveil the High 107 – ISM & Galaxies Poster Session Energy Universe, Eric Coughlin 108 – Stellar Compact Poster Session 304 – Missions & Instruments 109 – Black Holes, Neutron Stars and ULX Sources Poster 305 – SNR/GRB/Gravitational Waves Session 306 – Cosmic Ray Feedback: From Supernova Remnants 110 – Supernovae and Particle Acceleration Poster Session to Galaxy Clusters 111 – Electromagnetic & Gravitational Transients Poster 307 – Diagnosing Astrophysics of Collisional Plasmas - A Session Joint HEAD/LAD Session 112 – Physics of Hot Plasmas Poster Session 400 – Solar/Stellar Compact II 113 -
Size and Scale Attendance Quiz II
Size and Scale Attendance Quiz II Are you here today? Here! (a) yes (b) no (c) are we still here? Today’s Topics • “How do we know?” exercise • Size and Scale • What is the Universe made of? • How big are these things? • How do they compare to each other? • How can we organize objects to make sense of them? What is the Universe made of? Stars • Stars make up the vast majority of the visible mass of the Universe • A star is a large, glowing ball of gas that generates heat and light through nuclear fusion • Our Sun is a star Planets • According to the IAU, a planet is an object that 1. orbits a star 2. has sufficient self-gravity to make it round 3. has a mass below the minimum mass to trigger nuclear fusion 4. has cleared the neighborhood around its orbit • A dwarf planet (such as Pluto) fulfills all these definitions except 4 • Planets shine by reflected light • Planets may be rocky, icy, or gaseous in composition. Moons, Asteroids, and Comets • Moons (or satellites) are objects that orbit a planet • An asteroid is a relatively small and rocky object that orbits a star • A comet is a relatively small and icy object that orbits a star Solar (Star) System • A solar (star) system consists of a star and all the material that orbits it, including its planets and their moons Star Clusters • Most stars are found in clusters; there are two main types • Open clusters consist of a few thousand stars and are young (1-10 million years old) • Globular clusters are denser collections of 10s-100s of thousand stars, and are older (10-14 billion years -
MASS and LIGHT of ABELL 370: a STRONG and WEAK LENSING ANALYSIS ABSTRACT We Present a New Gravitational Lens Model of the Hubble
Draft version October 15, 2018 Preprint typeset using LATEX style emulateapj v. 01/23/15 MASS AND LIGHT OF ABELL 370: A STRONG AND WEAK LENSING ANALYSIS V. Strait1, M. Bradacˇ1, A. Hoag1, K.-H. Huang1, T. Treu2, X. Wang2,4, R. Amorin6,7, M. Castellano5, A. Fontana5, B.-C. Lemaux1, E. Merlin5, K.B. Schmidt3, T. Schrabback8, A. Tomczack1, M. Trenti9,10, and B. Vulcani9,11 1Physics Department, University of California, Davis, CA 95616, USA 2Department of Physics and Astronomy, UCLA, Los Angeles, CA, 90095-1547, USA 3Leibniz-Institut f¨urAstrophysik Postdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany 4Department of Physics, University of California, Santa Barbara, CA, 93106-9530, USA 5INAF - Osservatorio Astronomico di Roma Via Frascati 33 - 00040 Monte Porzio Catone, 00040 Rome, Italy 6Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, CB3 0HE, Cambridge, UK 7Kavli Institute for Cosmology, University of Cambridge, Madingley Rd., CB3 0HA, Cambridge, UK 8Argelander-Institut f¨urAstronomie, Auf dem H¨ugel71, D-53121 Bonn, Germany 9School of Physics, University of Melbourne, Parkville, Victoria, Australia 10ARC Centre of Excellence fot All Sky Astrophysics in 3 Dimensions (ASTRO 3D) and 11INAF - Astronomical Observatory of Padora, 35122 Padova, Italy Draft version October 15, 2018 ABSTRACT We present a new gravitational lens model of the Hubble Frontier Fields cluster Abell 370 (z = 0:375) using imaging and spectroscopy from Hubble Space Telescope and ground-based spectroscopy. We combine constraints from a catalog of 909 weakly lensed galaxies and 39 multiply-imaged sources comprised of 114 multiple images, including a system of multiply-imaged candidates at z = 7:84 ± 0:02, to obtain a best-fit mass distribution using the cluster lens modeling code Strong and Weak Lensing United. -