Event-Symmetric Space-Time 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ESI NEWS Volume 5, Issue 2, Autumn 2010
The Erwin Schrödinger International Boltzmanngasse 9/2 Institute for Mathematical Physics A-1090 Vienna, Austria ESI NEWS Volume 5, Issue 2, Autumn 2010 Editorial nized by A. Rebhan (Vienna), S. Husa Contents (Univ. Illes Balears, Spain) and K. Land- Klaus Schmidt steiner (IFT Madrid, Spain) and ran for Editorial1 three months from August – October 2010. This programme studied quantum chromo- Stefan Hollands: Correlators in de- dynamics (QCD), the theory of the strong Sitter spacetime and the ‘heat As many readers of nuclear interactions and focussed on the death’ of the Universe3 this newsletter will theory behind some of the expected – and know already, the year some unexpected – properties of the state Letters in Support of the ESI 10 2010 was ‘interesting’ of matter in heavy-ion collisions at the News from the ESI Community 19 for the ESI. Relativistic Heavy Ion Collider (RHIC) at Scientifically, the the Brookhaven National Laboratory in the Current and Future Activities of second half of this USA, for example. Two workshops were the ESI 22 year continued very well. The programme part of this programme, one on AdS holog- raphy and the quark-gluon plasma, and one Erwin Schrödinger Lectures 24 Matter and radiation, organized by V.Bach (Mainz), J. Fröhlich (ETH Zürich) und J. on Hot matter. More than 100 participants Senior Research Fellows’ Lecture Yngvason (Vienna) ended on July 31. Its visited the ESI for various periods of time Courses 2011 24 subject matter was the quantum mechanical during this activity. description of non-relativistic matter, with The last thematic programme in 2010 Lectures on physical and math- about 50 participating scientists. -
2005 CERN–CLAF School of High-Energy Physics
CERN–2006–015 19 December 2006 ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH 2005 CERN–CLAF School of High-Energy Physics Malargüe, Argentina 27 February–12 March 2005 Proceedings Editors: N. Ellis M.T. Dova GENEVA 2006 CERN–290 copies printed–December 2006 Abstract The CERN–CLAF School of High-Energy Physics is intended to give young physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on field theory and the Standard Model, quantum chromodynamics, CP violation and flavour physics, as well as reports on cosmic rays, the Pierre Auger Project, instrumentation, and trigger and data-acquisition systems. iii Preface The third in the new series of Latin American Schools of High-Energy Physics took place in Malargüe, lo- cated in the south-east of the Province of Mendoza in Argentina, from 27 February to 12 March 2005. It was organized jointly by CERN and CLAF (Centro Latino Americano de Física), and with the strong support of CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas). Fifty-four students coming from eleven different countries attended the School. While most of the students stayed in Hotel Rio Grande, a few students and the Staff stayed at Microtel situated close by. However, all the participants ate their meals to- gether at Hotel Rio Grande. According to the tradition of the School the students shared twin rooms mixing nationalities and in particular Europeans together with Latin Americans. María Teresa Dova from La Plata University was the local director for the School. -
Real Time Density Functional Simulations of Quantum Scale
Real Time Density Functional Simulations of Quantum Scale Conductance by Jeremy Scott Evans B.A., Franklin & Marshall College (2003) Submitted to the Department of Chemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2009 c Massachusetts Institute of Technology 2009. All rights reserved. Author............................................... ............... Department of Chemistry February 2, 2009 Certified by........................................... ............... Troy Van Voorhis Associate Professor of Chemistry Thesis Supervisor Accepted by........................................... .............. Robert W. Field Chairman, Department Committee on Graduate Theses This doctoral thesis has been examined by a Committee of the Depart- ment of Chemistry as follows: Professor Robert J. Silbey.............................. ............. Chairman, Thesis Committee Class of 1942 Professor of Chemistry Professor Troy Van Voorhis............................... ........... Thesis Supervisor Associate Professor of Chemistry Professor Jianshu Cao................................. .............. Member, Thesis Committee Associate Professor of Chemistry 2 Real Time Density Functional Simulations of Quantum Scale Conductance by Jeremy Scott Evans Submitted to the Department of Chemistry on February 2, 2009, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract We study electronic conductance through single molecules by subjecting -
Online Particle Physics Information
1 Online Particle Physics Information Online Particle Physics Information 1 Introduction . 1 2 Particle Data Group (PDG) resources . 2 3 Particle Physics Information Platforms . 2 4 Literature Databases . 3 5 Particle Physics Journals and Conference Proceedings Series . 4 6 Conference Databases . 4 7 Research Institutions . 4 8 People........................................... 4 9 Experiments . 5 10 Jobs............................................ 5 11 Software Packages and Repositories . 6 11.1 Particle Physics Software . 6 11.2 Astrophysics Software . 7 11.3 Web Apps . 8 11.4 Mobile Apps . 8 12 Data repositories . 8 12.1 Particle Physics . 8 12.2 Astrophysics . 9 12.3 General Physics . 10 13 Data preservation activities . 10 13.1 Particle Physics . 10 13.2 Astrophysics . 11 14 Particle Physics Education and Outreach Sites . 11 14.1 Science Educators’ Networks . 11 14.2 Physics Courses . 12 14.3 Masterclasses . 12 14.4 General Sites . 13 14.5 General Physics Activities . 13 14.6 Particle Physics Activities . 13 14.7 Lab Education Offices . 15 14.8 Educational Programs of Experiments . 17 14.9 News . 18 14.10 Art in Physics . 19 14.11 Blogs and Twitter . 19 Revised August 2019 by M. Moskovic (CERN). 1 Introduction The collection of online information resources in particle physics and related areas presented in this chapter is of necessity incomplete. An expanded and regularly updated online version can be found at: http://library.cern/particle_physics_information Suggestions for additions and updates are very welcome.1 1Please send comments and corrections to [email protected] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update 6th December, 2019 11:48am 2 Online Particle Physics Information 2 Particle Data Group (PDG) resources • Review of Particle Physics (RPP): A comprehensive report on the fields of particle physics and related areas of cosmology and astrophysics, including both review articles and a compilation/evaluation of data on particle properties. -
The Struggle for Quantum Theory 47 5.1Aliensignals
Fundamental Forces of Nature The Story of Gauge Fields This page intentionally left blank Fundamental Forces of Nature The Story of Gauge Fields Kerson Huang Massachusetts Institute of Technology, USA World Scientific N E W J E R S E Y • L O N D O N • S I N G A P O R E • B E I J I N G • S H A N G H A I • H O N G K O N G • TA I P E I • C H E N N A I Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. FUNDAMENTAL FORCES OF NATURE The Story of Gauge Fields Copyright © 2007 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN-13 978-981-270-644-7 ISBN-10 981-270-644-5 ISBN-13 978-981-270-645-4 (pbk) ISBN-10 981-270-645-3 (pbk) Printed in Singapore. -
January 2007 Volume 16, No
January 2007 Volume 16, No. 1 APS NEWS www.aps.org/publications/apsnews Highlights Wireless Non-Radiative Energy Transfer A PUBLICATION OF THE AMERICAN PHYSICAL SOCIETY • WWW.APS.ORG/PUBLICATIONS/APSNEWS Page 6 Particle Physicists Meet Halfway Jacksonville Hosts 2007 April Meeting The 2007 APS April Meeting will cists, a high school teachers’ day, a and registration information, be held April 14-17 in sunny students lunch with the experts, and are available online at Jacksonville, Florida. The scientific the presentation of several APS prizes http://www.aps.org/meetings/april/ program, which focuses on astro- and awards in a special ceremonial index.cfm. The abstract submission physics, particle physics, nuclear session. A public lecture, on the deadline is January 12; post-dead- physics, and related fields, will con- physics of NASCAR, will be given line abstracts received by February 5 sist of three plenary sessions, approx- by Diandra Leslie-Pelecky of the will be assigned as poster presenta- imately 75 invited sessions, more University of Nebraska. tions. Early registration closes on than 100 contributed sessions, and Further details of the program, February 23. poster sessions. Among the invited sessions will April Meeting Plenary Talks be a special Nobel Prize session at Saturday, April 14 Laboratory which both of this year’s laureates, • String Theory, Branes, and if John Mather and George Smoot, will • First Results from Gravity You Wish, the Anthropic speak. Probe B, Francis Everitt, Stanford University Principle, Shamit Kachru, APS units represented at the meet- Stanford University ing include the Divisions of • Two-Dimensional Electron Photo by Kay Kinoshita Astrophysics, Nuclear Physics, Systems, Allan MacDonald, Tuesday, April 17 Particles and Fields, Physics of University of Texas at Austin • The 21-cm Background: A The APS Division of Particles and Fields held a joint meeting with their colleagues Beams, Plasma Physics, and • New Measurement of the Probe of Reionization and the from the Japanese Physical Society in Honolulu. -
Leo P. Kadanoff (1937–2015): an Appreciation RETROSPECTIVE
RETROSPECTIVE Leo P. Kadanoff (1937–2015): An appreciation RETROSPECTIVE Susan N. Coppersmitha,1 Leo P. Kadanoff, who died on October 26, 2015, models depended greatly on devoted his scientific life to trying to elucidate how small changes in the ingre- much of the world can be understood using mathe- dients put into the models. matical models. Historically, physics has addressed this Leo recognized that this sen- problem by searching for fundamental laws that com- sitivity of the results on the pletely specify the right ingredients to put into a theo- details of the models that he retical model. For example, the standard model of constructed made it difficult to particle physics provides a specification of the proper- make robust predictions, and ties of elementary particles and their interactions. after several years he returned Inprinciple,thestandardmodelcouldbeusedto to physics research (6). Over describe macroscopic physical systems. However, the succeeding decades, Leo because of the enormous number of elementary investigated a broad variety of particles in any macroscopic amount of matter, imple- complex systems, with a particu- menting such a calculation is not feasible. Leo was the lar focus on identifying phenom- first to understand clearly that the behavior of systems ena with universal features. He on different length scales can be understood using excelled at bringing people to- different effective theories, and that the effective gether to perform interdisciplin- theories that describe macroscopic phenomena should ary investigations incorporating be derivable by a suitable mathematical procedure theory, experiment, and compu- from the microscopics (1, 2). K. G. Wilson succeeded in tation, and thought deeply about constructing a complete mathematical formulation of the role of computation in scien- Leo P. -
Nehmen Wir An, Die Kuh Ist Eine Kugel... «
dtv Lawrence M. Krauss »Nehmen wir an, die Kuh ist eine Kugel ...« Nur keine Angst Vor Physik Nicht nur Faust wollte wissen, »was die Welt im Innersten zusammenhält.« Dabei muß man kein Physiker sein, um das moderne Weltbild der Physik – von Galilei Bis Stephen Hawking – zu verstehen. Lawrence M. Krauss zeigt uns, wie spannend und unterhaltsam die Beschäftigung mit der Physik sein kann. Deutscher Taschenbuch Verlag »Nehmen wir an, die Kuh ist eine Kugel...« Ziemlich abwegig, mag mancher denken. Aber wie sinnvoll solche radikalen Ver- einfachungen sein können, zeigt Lawrence M. Krauss an vielen anschaulichen und vergnüglichen Beispielen. Wer wissen will, »was die Welt im Innersten zusammenhält«, sieht nach der Lektüre dieses Buches klarer, denn man muß kein Physiker sein, um das moderne Weltbild der Physik - von Galilei bis Stephen Hawking - zu verstehen. «Mit der Selbstverständlichkeit eines Hausherrn führt Krauss seine Leser durch das Gedankengebäude der theoretischen Physik: von der Relativitätstheorie über die Quantendynamik hin zu einer Theorie >über alles<. Weil er dabei so originell und unkonventionell vorgeht wie sein Lehrer Richard Feynman, ist die Lektüre das reine Vergnügen.« (Physikalische Blätter, Weinheim) Lawrence M. Krauss, geboren 1954 in New York, ist Professor für Physik und Astronomie und Leiter des Instituts für Physik an der Case Western Reserve University in Cleveland. Er lieferte bedeutende Beiträge über die Vorgänge bei explodierenden Sternen bis hin zum Ursprung und der Natur des Stoffes, aus dem das Universum ist. Zahlreiche Veröffentlichungen. Lawrence M. Krauss »Nehmen wir an, die Kuh ist eine Kugel... « Nur keine Angst vor Physik Mit 39 Schwarzweißabbildungen Aus dem Amerikanischen von Wolfram Knapp Deutscher Taschenbuch Verlag Ungekürzte Ausgabe August 1998 Deutscher Taschenbuch Verlag GmbH & Co. -
Chicago Physics One
CHICAGO PHYSICS ONE 3:25 P.M. December 02, 1942 “All of us... knew that with the advent of the chain reaction, the world would never be the same again.” former UChicago physicist Samuel K. Allison Physics at the University of Chicago has a remarkable history. From Albert Michelson, appointed by our first president William Rainey Harper as the founding head of the physics department and subsequently the first American to win a Nobel Prize in the sciences, through the mid-20th century work led by Enrico Fermi, and onto the extraordinary work being done in the department today, the department has been a constant source of imagination, discovery, and scientific transformation. In both its research and its education at all levels, the Department of Physics instantiates the highest aspirations and values of the University of Chicago. Robert J. Zimmer President, University of Chicago Welcome to the inaugural issue of Chicago Physics! We are proud to present the first issue of Chicago Physics – an annual newsletter that we hope will keep you connected with the Department of Physics at the University of Chicago. This newsletter will introduce to you some of our students, postdocs and staff as well as new members of our faculty. We will share with you good news about successes and recognition and also convey the sad news about the passing of members of our community. You will learn about the ongoing research activities in the Department and about events that took place in the previous year. We hope that you will become involved in the upcoming events that will be announced. -
CHICAGO PHYSICS 3 Quantum Worlds
CHICAGO PHYSICS 3 Quantum Worlds Welcome to the third issue of Chicago Physics! This past year has been an eventful one for our Department and we hope that you will join in our excitement. In our last issue, we highlighted our Strickland from University of Waterloo, the Department’s research on topological physics, third Maria Goeppert-Mayer Lecturer and the covering the breadth of what we do in this third female Physics Nobel Prize winner. research area from the nano to the cosmic The University has renamed the Physics scale and the unity in the concepts that drive Research Center that opened in 2018 as the us all. In the current issue, we will take you on Michelson Center for Physics in honor of a journey to the quantum world. former faculty member Albert A. Michelson, The year had several notable events. The a pioneering scientist who was the first physics faculty had a first-ever two-day retreat American to win a Nobel Prize in the sciences, in New Buffalo, MI. We discussed various and the first Physics Department chair at challenges in our department in a leisurely, the University of Chicago. The pioneering low-pressure atmosphere that allowed us work of Michelson is fundamental to the field to make progress on these challenges. This of physics and continues to support new retreat also helped us to bond!! We were discoveries more than a century later. pleased that many family members joined This year we also welcomed back our own lunch and dinner. This was immediately David Saltzberg (Ph.D., 1994) as the followed by a two-day retreat of our women annual Zachariasen lecturer who told of his and gender minority students. -
Who Got Moseley's Prize?
Chapter 4 Who Got Moseley’s Prize? Virginia Trimble1 and Vera V. Mainz*,2 1Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-4575, United States 2Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States *E-mail: [email protected]. Henry Gwyn Jeffreys Moseley (1887-1915) made prompt and very skilled use of the then new technique of X-ray scattering by crystals (Bragg scattering) to solve several problems about the periodic table and atoms. He was nominated for both the chemistry and physics Nobel Prizes by Svante Arrhenius in 1915, but was dead at Gallipoli before the committees finished their deliberations. Instead, the 1917 physics prize (announced in 1918 and presented on 6 June 1920) went to Charles Glover Barkla (1877-1944) “for discovery of the Röntgen radiation of the elements.” This, and his discovery of X-ray polarization, were done with earlier techniques that he never gave up. Moseley’s contemporaries and later historians of science have written that he would have gone on to other major achievements and a Nobel Prize if he had lived. In contrast, after about 1916, Barkla moved well outside the scientific mainstream, clinging to upgrades of his older methods, denying the significance of the Bohr atom and quantization, and continuing to report evidence for what he called the J phenomenon. This chapter addresses the lives and scientific endeavors of Moseley and Barkla, something about the context in which they worked and their connections with other scientists, contemporary, earlier, and later. © 2017 American Chemical Society Introduction Henry Moseley’s (Figure 1) academic credentials consisted of a 1910 Oxford BA with first-class honors in Mathematical Moderations and a second in Natural Sciences (physics) and the MA that followed more or less automatically a few years later. -
April 8-11, 2019 the 2019 Franklin Institute Laureates the 2019 Franklin Institute AWARDS CONVOCATION APRIL 8–11, 2019
april 8-11, 2019 The 2019 Franklin Institute Laureates The 2019 Franklin Institute AWARDS CONVOCATION APRIL 8–11, 2019 Welcome to The Franklin Institute Awards, the range of disciplines. The week culminates in a grand oldest comprehensive science and technology medaling ceremony, befitting the distinction of this awards program in the United States. Each year, the historic awards program. Institute recognizes extraordinary individuals who In this convocation book, you will find a schedule of are shaping our world through their groundbreaking these events and biographies of our 2019 laureates. achievements in science, engineering, and business. We invite you to read about each one and to attend We celebrate them as modern day exemplars of our the events to learn even more. Unless noted otherwise, namesake, Benjamin Franklin, whose impact as a all events are free and open to the public and located scientist, inventor, and statesman remains unmatched in Philadelphia, Pennsylvania. in American history. Along with our laureates, we honor Franklin’s legacy, which has inspired the We hope this year’s remarkable class of laureates Institute’s mission since its inception in 1824. sparks your curiosity as much as they have ours. We look forward to seeing you during The Franklin From shedding light on the mechanisms of human Institute Awards Week. memory to sparking a revolution in machine learning, from sounding the alarm about an environmental crisis to making manufacturing greener, from unlocking the mysteries of cancer to developing revolutionary medical technologies, and from making the world III better connected to steering an industry giant with purpose, this year’s Franklin Institute laureates each reflect Ben Franklin’s trailblazing spirit.