How Constraints Affect the Hunter's Decision to Shoot a Deer

Total Page:16

File Type:pdf, Size:1020Kb

How Constraints Affect the Hunter's Decision to Shoot a Deer How constraints affect the hunter’s decision to shoot a deer Florian K. Diekerta,b,1, Andries Richtera,c, Inger Maren Rivruda, and Atle Mysteruda aCentre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway; bDepartment of Economics, Heidelberg University, 69115 Heidelberg, Germany; and cEnvironmental Economics and Natural Resources Group, Sub-Department of Economics, Wageningen University, 6700 EW Wageningen, The Netherlands Edited by William C. Clark, Harvard University, Cambridge, MA, and approved October 12, 2016 (received for review May 13, 2016) Hunting is the predominant way of controlling many wildlife pop- team members or factors such as time and quota constraints. ulations devoid of large carnivores. It subjects animals to mortal- The economic literature has looked at hunting mainly from a val- ity rates that far exceed natural rates and that differ markedly uation perspective (e.g., ref. 10), centered around land-use con- in which age, sex, or size classes are removed relative to those flicts (11) or addressing the trade-off between meat and trophy of natural predators. To explain the emerging selection pattern hunting (12). So far, these studies have cast their analysis in the we develop behavioral microfoundations for a hunting model, framework of harvesting models. emphasizing in particular the constraints given by the formal and But hunting is not like harvesting; it is characterized by an informal norms, rules, and regulations that govern the hunter’s individual and nonrecurring encounter between man and animal. choice. We show how a shorter remaining season, competition Thus, we develop a model that focuses on the individual decision among hunters, lower sighting probabilities, and higher costs all to shoot or not shoot a given animal. By framing hunting as an lead to lower reservation values, i.e., an increased likelihood of optimal stopping problem we show how social constraints shape shooting a particular animal. Using a unique dataset on seen the emerging selection pressure: The way the hunt is organized, and shot deer from Norway, we test and confirm the theoreti- the length and timing of a dedicated hunting season, and the cost cal predictions in a recreational and meat-motivated hunting sys- of shooting animals all affect the hunter’s incentives and con- tem. To achieve sustainability, future wildlife management should strain his or her choice set. SCIENCE account for this predictable selection pressure. We exploit a unique dataset on red deer hunting incidents SUSTAINABILITY to confront our theory with data. Our panel covers 256 loca- hunting selection j optimal stopping j hunter behavior j social dilemma tions in Norway between 1999 and 2010 (Fig. 1), where not only the number and type of hunted animal were recorded, but also which animals have been seen, but not shot. These lthough natural large predators are now recolonizing many data allow us to directly construct the conditional probabil- Aindustrialized countries (1), their functional roles are still ity of shooting an animal. Matching these data with meteo- limited and most wildlife populations in Europe are mainly con- rological information on precipitation, temperature, and the trolled by hunting (2). Hunting is the predominant cause of adult moon phase, we can exploit 181,989 choice situations. We show mortality for 80–90% of the individual animals in deer popula- that indeed the likelihood of shooting a given animal is higher tions (3). Despite this high hunting pressure, populations have the shorter the remaining harvest season is, the more hunters grown and expanded their range, often resulting in overabun- that participate in a given trip, and the lower the sighting dance (4). Part of this increase is due to hunter selectivity having probability is. distorted the natural sex and age distribution (5). The reluc- tance to shoot females with offspring facilitates rapid population growth, but skewing sex ratio also affects evolutionary processes. Significance In some ungulate populations with heavy trophy hunting, there is concern that selective removal of specific phenotypic traits Wildlife populations in Europe and North America are regu- leads to evolution even over short timespans of a few tens of lated through hunting, as natural predators are still scarce. generations (6). There is hence an urgent need to inform poli- Therefore, wildlife is a social–ecological system with delicate cies on how to manage wildlife in a way that does not endanger feedbacks between the social and ecological subsystems. Both the health of the supporting ecosystem or the resilience of the for population control and for evolution and because of cul- hunted population. To better understand how overall hunting tural values, it is essential to understand how many and pressure maps to population dynamics and potential for evolu- which animals are removed from the population. However, tion, we need to understand selectivity. the question of how the social context influences the individ- In Norway, the population size, distribution, and resulting ual hunter’s decision to shoot or not to shoot an animal has hunting quota for red deer (Cervus elaphus) have increased dra- not been addressed. We apply insights from economic search matically. The west coast holds the majority of the population, theory to explain how hunter selection is shaped by social with more than 75% of the red deer being harvested in the coun- constraints. We provide convincing evidence, using a unique ties Møre and Romsdal, Sogn and Fjordane, and Hordaland dataset from deer hunting, that selectivity declines with more (Fig. 1). Red deer is the second most valuable hunted species hunters competing and a shorter remaining season. in terms of meat value (after moose, Alces alces), and there is an increasing interest for trophy hunting. Author contributions: F.K.D. designed research; F.K.D., A.R., and I.M.R. performed In the ecological literature, selectivity by hunters has been research; F.K.D., A.R., and I.M.R. analyzed data; and F.K.D., A.R., I.M.R., and A.M. wrote the paper. treated as a static property, focusing mostly on the extreme case of trophy hunting (7, 8). However, only a small proportion of The authors declare no conflict of interest. hunting is for trophies; most hunting is for recreation, meat, This article is a PNAS Direct Submission. or population regulation (9). Most hunters have quotas limit- Freely available online through the PNAS open access option. ing their choices, and they may have limited time to fill their 1To whom correspondence should be addressed. Email: [email protected]. quota (5). There has been no study addressing how the deci- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. sion to shoot a sighted animal depends on competition among 1073/pnas.1607685113/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1607685113 PNAS Early Edition j 1 of 6 Downloaded by guest on September 25, 2021 The hunter incurs a fixed cost ci per period (representing, e.g., his or her opportunity cost of labor, access fees to the hunting area, etc., measured in terms of utility), regardless of whether an animal is actually shot or not. Each period, the hunter observes one animal whose value is ex ante a random variable X . Clearly, the hunter goes hunting only if E[X ] > ci . The optimal policy in the basic setup is characterized by a “reservation value” that equals the expected benefit from follow- ing the optimal rule. Eq. 1 describes the “optimal shooting rule,” where ξi is the reservation value: shoot animal if x ≥ ξi [1] do not shoot animal if x < ξi : The reservation value ξi thus defines the selection pressure exerted by this hunter i: All animals whose trait value is at or above the threshold are subject to being hunted, whereas all ani- mals with a lower trait value are safe from being shot. The expected net return from policy Eq. 1 is given by E[maxfξi ; X g] − ci and the reservation value can be expressed R ξi R 1 as ξi = ξi dFi (x) + xdFi (x) − ci , which implies 0 ξi Fig. 1. Map of Western Norway to indicate our study area. The graph shows R 1 ci = (x − ξi )dFi (x): [2] the numbers of shot animals in Norway. ξi Eq. 2 has an intuitive interpretation: The individual thresh- Theoretical Results old value ξi is chosen so that the marginal cost incurred by We develop a behavioral model to predict how constraints on not shooting in the current period and awaiting another period hunter decisions affect selectivity. The centerpieces of a model just equals the expected marginal return from one more obser- that describes the hunting decision are (i) that one shot can vation. The right-hand side of Eq. 2 defines a function Hi kill at most one animal, (ii) that the animal the hunter actually that maps a given trait value x into the utility gain that the observes is essentially an independent and identically distributed hunter i can expect by waiting for the next observation. That is, H (x) ≡ R 1(y − x)dF (y) draw from the population, and (iii) that the hunter is constrained i x i . on how many animals can be shot. The function Hi is convex and strictly decreasing, and it sat- The first feature distinguishes hunting from harvesting, where isfies limx!1Hi (x) = 0 and limx!0Hi (x) = E[X ]. This result many animals are removed from the population in one instant implies that whether a hunter chooses to shoot an animal (there are, for example, thousands of fish in a trawl net). The depends not only on characteristics of the animal (given by the second feature relates to the fact that animals move and that the trait value x), but also on characteristics of the hunter.
Recommended publications
  • VKM Rapport CWD Fase 2
    VKM Report 2017:9 CWD in Norway – a state of emergency for the future of cervids (Phase II) Opinion of the Panel on Biological Hazards of the Norwegian Scientific Committee for Food Safety Report from the Norwegian Scientific Committee for Food Safety (VKM) 2017:9 CWD in Norway – a state of emergency for the future of cervids (Phase II) Opinion of the Panel on Biological Hazards of the Norwegian Scientific Committee for Food Safety 29.03.2017 ISBN: 978-82-8259-266-6 Norwegian Scientific Committee for Food Safety (VKM) Po 4404 Nydalen N – 0403 Oslo Norway Phone: +47 21 62 28 00 Email: [email protected] www.vkm.no www.english.vkm.no Suggested citation: VKM. (2017) CWD in Norway – a state of emergency for the future of cervids (Phase II). Opinion of the panel on Biological Hazards, ISBN: 978-82-8259-266-6, Oslo, Norway. VKM Report 2017:9 Title CWD in Norway – a state of emergency for the future of cervids (Phase II) Authors preparing the draft opinion Helge Hansen, Georg Kapperud, Atle Mysterud, Erling J. Solberg, Olav Strand, Michael Tranulis, Bjørnar Ytrehus, Maria Gulbrandsen Asmyhr (VKM), Danica Grahek-Ogden (VKM) Assessed and approved The opinion has been assessed and approved by Panel on Biological Hazards. Members of the panel are: Yngvild Wasteson (Chair), Karl Eckner, Georg Kapperud, Jørgen Lassen, Judith Narvhus, Truls Nesbakken, Lucy Robertson, Jan Thomas Rosnes, Olaug Taran Skjerdal, Eystein Skjerve, Line Vold Acknowledgments The Norwegian Scientific Committee for Food Safety (Vitenskapskomiteen for mattrygghet, VKM) has appointed a working group consisting of both VKM members and external experts to answer the request from the Norwegian Food Safety Authority/Norwegian Environment Agency.
    [Show full text]
  • Long-Term Changes in Northern Large-Herbivore Communities Reveal Differential the Whole Region Between 1949 and 2015
    RESEARCH ARTICLE Long-term changes in northern large- herbivore communities reveal differential rewilding rates in space and time 1 1 1 James D. M. SpeedID *, Gunnar Austrheim , Anders Lorentzen Kolstad , Erling J. Solberg2 1 Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway, 2 Norwegian Institute for Nature Research (NINA), Trondheim, Norway * [email protected] a1111111111 a1111111111 a1111111111 a1111111111 Abstract a1111111111 Herbivores have important impacts on ecological and ecosystem dynamics. Population den- sity and species composition are both important determinants of these impacts. Large herbi- vore communities are shifting in many parts of the world driven by changes in livestock management and exploitation of wild populations. In this study, we analyse changes in large OPEN ACCESS herbivore community structure over 66 years in Norway, with a focus on the contribution of Citation: Speed JDM, Austrheim G, Kolstad AL, wildlife and livestock. We calculate metabolic biomass of all large-herbivore species across Solberg EJ (2019) Long-term changes in northern large-herbivore communities reveal differential the whole region between 1949 and 2015. Temporal and spatial patterns in herbivore com- rewilding rates in space and time. PLoS ONE 14(5): munity change are investigated and we test hypotheses that changes in wildlife biomass are e0217166. https://doi.org/10.1371/journal. driven by competition with livestock. We find that total herbivore biomass decreased from pone.0217166 1949 to a minimum in 1969 due to decreases in livestock biomass. Increasing wild herbivore Editor: Emmanuel Serrano, Universitat Autonoma populations lead to an increase in total herbivore biomass by 2009.
    [Show full text]
  • VYTAUTO DIDŽIOJO UNIVERSITETAS Irma Pūraitė
    VYTAUTO DIDŽIOJO UNIVERSITETAS GAMTOS MOKSL Ų FAKULTETAS BIOLOGIJOS KATEDRA Irma P ūrait ė ELNINI Ų GENETIN Ė ĮVAIROV Ė BEI J Ų PERNEŠAMŲ ERKI Ų UŽSIKR ĖTIMAS BORRELIA BURGDORFERI S.L. IR ANAPLASMA PHAGOCYTOPHILUM Magistro baigiamasis darbas Molekulin ės biologijos ir biotechnologijos studij ų programa, 62401B107 Biologijos studij ų kryptis Vadovas prof. Algimantas Paulauskas (parašas) (data) Apginta prof. habil. dr. Gintautas Kamuntavi čius (parašas) (data) KAUNAS, 2010 Darbas atliktas: 2008 – 2010 m. Vytauto Didžiojo universitete, Biologijos katedroje, Kaune, Lietuvoje ir 2009.07.01 – 2009.09.30 LLP Erasmus student ų praktikos metu, Telemark University College, Department of Environmental and Health Studies, Bø i Telemark, Norvegijoje. Recenzentas: dr. J.Radzijevskaja, fiziniai mokslai, biochemija. Darbas ginamas: viešame magistr ų darb ų gynimo komisijos pos ėdyje 2010 met ų birželio 3d. Vytauto Didžiojo universitete, Biologijos katedroje, 801 auditorijoje, 10 val. Adresas: Vileikos g. 8, LT-44404 Kaunas, Lietuva. Protokolo Nr. Darbo vykdytojas: I.P ūrait ė Mokslinis vadovas: prof. A.Paulauskas Biologijos katedra, ved ėjas: prof. A.Paulauskas 2 TURINYS SANTRAUKA .................................................................................................................................. 4 SUMMARY ...................................................................................................................................... 5 ĮVADAS ...........................................................................................................................................
    [Show full text]
  • Senescence in Natural Populations of Animals
    Edinburgh Research Explorer Senescence in natural populations of animals Citation for published version: Nussey, DH, Froy, H, Lemaitre, J-F, Gaillard, J-M & Austad, SN 2013, 'Senescence in natural populations of animals: Widespread evidence and its implications for bio-gerontology', Ageing Research Reviews, vol. 12, no. 1, pp. 214-225. https://doi.org/10.1016/j.arr.2012.07.004 Digital Object Identifier (DOI): 10.1016/j.arr.2012.07.004 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Ageing Research Reviews General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 24. Sep. 2021 Ageing Research Reviews 12 (2013) 214–225 Contents lists available at SciVerse ScienceDirect Ageing Research Reviews j ournal homepage: www.elsevier.com/locate/arr Review Senescence in natural populations of animals: Widespread evidence and its implications for bio-gerontology a,b,∗ a c c d Daniel H. Nussey , Hannah Froy , Jean-Franc¸ ois Lemaitre , Jean-Michel Gaillard , Steve N.
    [Show full text]
  • Sequence of Wild Deer in Great Britain and Mainland Europe Amy L
    Variation in the prion protein gene (PRNP) sequence of wild deer in Great Britain and mainland Europe Amy L. Robinson, Helen Williamson, Mariella E. Güere, Helene Tharaldsen, Karis Baker, Stephanie L. Smith, Sílvia Pérez-Espona, Jarmila Krojerová-Prokešová, Josephine M. Pemberton, Wilfred Goldmann, et al. To cite this version: Amy L. Robinson, Helen Williamson, Mariella E. Güere, Helene Tharaldsen, Karis Baker, et al.. Variation in the prion protein gene (PRNP) sequence of wild deer in Great Britain and mainland Europe. Veterinary Research, BioMed Central, 2019, 50 (1), pp.59. 10.1186/s13567-019-0675-6. hal-02263499 HAL Id: hal-02263499 https://hal.archives-ouvertes.fr/hal-02263499 Submitted on 5 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Robinson et al. Vet Res (2019) 50:59 https://doi.org/10.1186/s13567-019-0675-6 RESEARCH ARTICLE Open Access Variation in the prion protein gene (PRNP) sequence of wild deer in Great Britain and mainland Europe Amy L. Robinson1* , Helen Williamson1, Mariella E. Güere2, Helene Tharaldsen2, Karis Baker3, Stephanie L. Smith4, Sílvia Pérez‑Espona1,4, Jarmila Krojerová‑Prokešová5,6, Josephine M. Pemberton7, Wilfred Goldmann1 and Fiona Houston1 Abstract Susceptibility to prion diseases is largely determined by the sequence of the prion protein gene (PRNP), which encodes the prion protein (PrP).
    [Show full text]
  • Advances in Population Ecology and Species Interactions in Mammals
    Journal of Mammalogy, 100(3):965–1007, 2019 DOI:10.1093/jmammal/gyz017 Advances in population ecology and species interactions in mammals Downloaded from https://academic.oup.com/jmammal/article-abstract/100/3/965/5498024 by University of California, Davis user on 24 May 2019 Douglas A. Kelt,* Edward J. Heske, Xavier Lambin, Madan K. Oli, John L. Orrock, Arpat Ozgul, Jonathan N. Pauli, Laura R. Prugh, Rahel Sollmann, and Stefan Sommer Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, CA 95616, USA (DAK, RS) Museum of Southwestern Biology, University of New Mexico, MSC03-2020, Albuquerque, NM 97131, USA (EJH) School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom (XL) Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA (MKO) Department of Integrative Biology, University of Wisconsin, Madison, WI 73706, USA (JLO) Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, CH-8057, Switzerland (AO, SS) Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI 53706, USA (JNP) School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA (LRP) * Correspondent: [email protected] The study of mammals has promoted the development and testing of many ideas in contemporary ecology. Here we address recent developments in foraging and habitat selection, source–sink dynamics, competition (both within and between species), population cycles, predation (including apparent competition), mutualism, and biological invasions. Because mammals are appealing to the public, ecological insight gleaned from the study of mammals has disproportionate potential in educating the public about ecological principles and their application to wise management.
    [Show full text]
  • Appendix: List of Some Scienti Fi C and English Vernacular Names
    Appendix: List of Some Scienti fi c and English Vernacular Names Abelmoschus esculentus (okra) Acacia spp. (acacia) Acanthocephala (thorny-headed worm) Acanthopleura granulata (West Indian fuzzy chiton) Acarina (mite, tick) Acer spp. (maple) Acrocladium cuspidatum (bryophyte, moss; now known as Calliergonella cuspidata ) Actinopterygii (ray- fi nned fi sh) Aedes aegypti (mosquito, vector for yellow fever) Aedes africanus (mosquito, vector for yellow fever) Aegopinella spp. (terrestrial gastropod) Agavaceae (agave, lechuguilla, yucca) Agave lechuguilla (agave, lechuguilla) Agave sisalana (sisal hemp) Aglenus brunneus (beetle) Agnatha (hag fi sh, lamprey) Alces alces (elk [Europe]; moose [N. America]) Alligatoridae (alligator) Allium cepa (onion) Alnus spp. (alder) Amanita caesarea (Basidiomycota fungus, Caesar’s mushroom) Amanita muscaria ( fl y agaric) Amaranthaceae (pigweed) Amaranthus spp. (amaranth, pigweed) Amphibia (amphibian, salamander, frog) Amoeba spp. (protist) Ananas comosus (pineapple) Ancylostoma duodenale (nematode, hookworm) Anisus spp. (aquatic gastropod) Annelida (segmented worm, earthworm, leech) E.J. Reitz and M. Shackley, Environmental Archaeology, Manuals in Archaeological 483 Method, Theory and Technique, DOI 10.1007/978-1-4614-3339-2 © Springer Science+Business Media, LLC 2012 484 Appendix: List of Some Scientific and English Vernacular Names Anomura (hermit crab) Anopheles spp. (mosquito, vector for malaria) Antheraea spp. (silkmoth, wild) Anthocerotophyta (hornwort) Anthozoa (sea anemone, coral) Antilocapra americana
    [Show full text]
  • Reconstructing the History of a Fragmented and Heavily Exploited
    Rosvold et al. BMC Evolutionary Biology 2012, 12:191 http://www.biomedcentral.com/1471-2148/12/191 RESEARCH ARTICLE Open Access Reconstructing the history of a fragmented and heavily exploited red deer population using ancient and contemporary DNA Jørgen Rosvold1*, Knut H Røed2, Anne Karin Hufthammer3, Reidar Andersen4 and Hans K Stenøien1 Abstract Background: Red deer (Cervus elaphus) have been an important human resource for millennia, experiencing intensive human influence through habitat alterations, hunting and translocation of animals. In this study we investigate a time series of ancient and contemporary DNA from Norwegian red deer spanning about 7,000 years. Our main aim was to investigate how increasing agricultural land use, hunting pressure and possibly human mediated translocation of animals have affected the genetic diversity on a long-term scale. Results: We obtained mtDNA (D-loop) sequences from 73 ancient specimens. These show higher genetic diversity in ancient compared to extant samples, with the highest diversity preceding the onset of agricultural intensification in the Early Iron Age. Using standard diversity indices, Bayesian skyline plot and approximate Bayesian computation, we detected a population reduction which was more prolonged than, but not as severe as, historic documents indicate. There are signs of substantial changes in haplotype frequencies primarily due to loss of haplotypes through genetic drift. There is no indication of human mediated translocations into the Norwegian population. All the Norwegian sequences show a western European origin, from which the Norwegian lineage diverged approximately 15,000 years ago. Conclusions: Our results provide direct insight into the effects of increasing habitat fragmentation and human hunting pressure on genetic diversity and structure of red deer populations.
    [Show full text]
  • Cervus Elaphus) Females in North-Eastern Poland
    University of Warsaw Faculty of Biology Tomasz Borowik Factors affecting fertility of red deer (Cervus elaphus) females in north-eastern Poland Doctoral dissertation in biological sciences Discipline: biology Thesis conducted at the Mammal Research Institute Polish Academy of Sciences, Białowieża Dissertation conducted under supervision of: Prof. Dr habil. Bogumiła Jędrzejewska Mammal Research Institute, Polish Academy Sciences Warsaw – Białowieża, July 2014 Uniwersytet Warszawski Wydział Biologii Tomasz Borowik Czynniki kształtujące płodność samic jelenia (Cervus elaphus) w północno-wschodniej Polsce Rozprawa doktorska w zakresie nauk biologicznych w dyscyplinie biologii Praca wykonana w Instytucie Biologii Ssaków Polskiej Akademii Nauk w Białowieży Praca wykonana pod kierunkiem Prof. dr hab. Bogumiły Jędrzejewskiej Instytut Biologii Ssaków Polskiej Akademii Nauk Warszawa – Białowieża, lipiec 2014 Oświadczenie kierującego pracą Oświadczam, że niniejsza praca została przygotowana pod moim kierunkiem i stwierdzam, że spełnia ona warunki do przedstawienia jej w postępowaniu o nadanie stopnia doktora nauk biologicznych w zakresie nauk biologicznych w dyscyplinie biologii. Data Podpis kierującego pracą Oświadczenie autora pracy Świadom odpowiedzialności prawnej oświadczam, że niniejsza rozprawa doktorska została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowiązującymi przepisami. Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem stopnia doktora
    [Show full text]
  • Comparative Response of Rangifer Tarandus and Other Northern Ungulates Colman for Critical Review of Earlier Drafts of the Manu- Norway
    Conclusions tine studies. Nordic Council for Wildlife Research, Foetus growth rate in wild reindeer up to around age Stockholm. 1977. 27 pp. 130 days and weight 550-750 g appears not to be Lenvik, D. & Aune, I. 1988. Selection strategy in domes- influenced by the mothers body weights. Later in tic reindeer. 4. Early mortality in reindeer calves related pregnancy females in very poor condition (mean car- to maternal body weight. – Norsk Landbruksforskning 2: cass weights around 25 kg) support a foetus growth 71-76. rate which is significantly lower than among females Nissen, Ø. 1994. NM - Statpack. Norges landbruk- with mean carcass weights of 29 kg or above. Foetus shøgskole. weight variations within areas and years indicate Reimers, E. & Nordby, Ø. 1968. Relationship between that conception in two year or older females mostly age and tooth cementum layers in Norwegian reindeer. occur within two eustrous cycles. Yearling females – J. Wildl. Manage. 32: 957-961. conceive within a week later than older females Reimers, E. 1972. Growth in domestic and wild reindeer while calves apparently conceive 3-4 weeks later. in Norway. – J. Wildl. Manage. 36: 612-619. Reimers, E. 1983a. Growth rate and body size differences in Rangifer, a study of causes and effects. – Rangifer 3 (1): Acknowledgments 3-15. I am indebted to two anonymous referees and J. E. Reimers, E. 1983b. Reproduction in wild reindeer in Comparative response of Rangifer tarandus and other northern ungulates Colman for critical review of earlier drafts of the manu- Norway. – Can. J. Zool. 61: 211-217. to climatic variability script. Financial support was provided by E.
    [Show full text]
  • WORKING PAPER SERIES Balancing Income and Cost in Red Deer
    ISSN 1503-299X WORKING PAPER SERIES No. 12/2012 Balancing income and cost in red deer management Anders Skonhoft Department of Economics, Norwegian University of Science and Technology Vebjørn Veiberg Norwegian Institute for Nature Research Asle Gauteplass Department of Economics, Norwegian University of Science and Technology Jon Olaf Olaussen Trondheim Business School Erling L. Meisingset Norwegian Institute for Agricultural and Environmental Research, Organic food and farming Division Atle Mysterud Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo Department of Economics N-7491 Trondheim, Norway www.svt.ntnu.no/iso/wp/wp.htm RH: Income and cost in red deer management Balancing income and cost in red deer management Anders Skonhoft1*, Vebjørn Veiberg 2, Asle Gauteplass1, Jon Olaf Olaussen 3, Erling L. Meisingset 4, Atle Mysterud 5 1 Department of Economics, Norwegian University of Science and Technology, NO‐7491 Dragvoll‐Trondheim, Norway. [email protected]. 2 Norwegian Institute for Nature Research, P. O. Box 5685 Sluppen, NO‐7485 Trondheim, Norway. [email protected] 3 Trondheim Business School, Jonsvannsveien 82, NO‐7050 Trondheim, Norway. [email protected] 4 Norwegian Institute for Agricultural and Environmental Research, Organic food and farming Division, NO‐6630 Tingvoll, Norway. [email protected] 5 Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, NO‐0316 Oslo, Norway. [email protected] * Corresponding author; Phone: +47‐73 59 19 39; Fax: +47‐73 59 69 54; e‐mail: [email protected] 1 Abstract This paper presents a bioeconomic analysis of a red deer population within a Norwegian institutional context.
    [Show full text]
  • VKM Rapport CWD Fase 2
    VKM Report 2017:9 CWD in Norway – a state of emergency for the future of cervids (Phase II) Opinion of the Panel on Biological Hazards of the Norwegian Scientific Committee for Food Safety Report from the Norwegian Scientific Committee for Food Safety (VKM) 2017:9 CWD in Norway – a state of emergency for the future of cervids (Phase II) Opinion of the Panel on Biological Hazards of the Norwegian Scientific Committee for Food Safety 29.03.2017 ISBN: 978-82-8259-266-6 Norwegian Scientific Committee for Food Safety (VKM) Po 4404 Nydalen N – 0403 Oslo Norway Phone: +47 21 62 28 00 Email: [email protected] www.vkm.no www.english.vkm.no Suggested citation: VKM. (2017) CWD in Norway – a state of emergency for the future of cervids (Phase II). Opinion of the panel on Biological Hazards, ISBN: 978-82-8259-266-6, Oslo, Norway. VKM Report 2017:9 Title CWD in Norway – a state of emergency for the future of cervids (Phase II) Authors preparing the draft opinion Helge Hansen, Georg Kapperud, Atle Mysterud, Erling J. Solberg, Olav Strand, Michael Tranulis, Bjørnar Ytrehus, Maria Gulbrandsen Asmyhr (VKM), Danica Grahek-Ogden (VKM) Assessed and approved The opinion has been assessed and approved by Panel on Biological Hazards. Members of the panel are: Yngvild Wasteson (Chair), Karl Eckner, Georg Kapperud, Jørgen Lassen, Judith Navhus, Truls Nesbakken, Lucy Robertson, Jan Thomas Rosnes, Olaug Taran Skjerdal, Eystein Skjerve, Line Vold Acknowledgments The Norwegian Scientific Committee for Food Safety (Vitenskapskomiteen for mattrygghet, VKM) has appointed a working group consisting of both VKM members and external experts to answer the request from the Norwegian Food Safety Authority/Norwegian Environment Agency.
    [Show full text]