Introduction to Biology. Lecture 18

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Biology. Lecture 18 Introduction to Biology. Lecture 18 Alexey Shipunov Minot State University October 17, 2014 Shipunov (MSU) BIOL 111 October 17, 2014 1 / 33 Outline 1 Where we are? Cells, tissues, kingdoms and viruses 2 Cambrian period Life in Cambrian Cambrian explosion of skeletal fauna Shipunov (MSU) BIOL 111 October 17, 2014 2 / 33 Outline 1 Where we are? Cells, tissues, kingdoms and viruses 2 Cambrian period Life in Cambrian Cambrian explosion of skeletal fauna Shipunov (MSU) BIOL 111 October 17, 2014 2 / 33 Where we are? Cells, tissues, kingdoms and viruses Where we are? Cells, tissues, kingdoms and viruses Shipunov (MSU) BIOL 111 October 17, 2014 3 / 33 Where we are? Cells, tissues, kingdoms and viruses Cells, tissues, kingdoms and viruses Vegetabilia Animalia tissues Protista nucleus Viri Monera cell Shipunov (MSU) BIOL 111 October 17, 2014 4 / 33 Cambrian period Life in Cambrian Cambrian period Life in Cambrian Shipunov (MSU) BIOL 111 October 17, 2014 5 / 33 Cambrian period Life in Cambrian Timescale of Phanerozoic eon, Paleozoic era Phanerozoic eon Paleozoic era Cambrian period: 541 Mya Ordovician period: 485 Mya Silurian period: 443 Mya Devonian period: 419 Mya Carboniferous period: 358 Mya Permian period: 299–252 Mya Shipunov (MSU) BIOL 111 October 17, 2014 6 / 33 Cambrian period Life in Cambrian Cambrian map Shipunov (MSU) BIOL 111 October 17, 2014 7 / 33 Cambrian period Life in Cambrian Cambrian climate Gradually changed from colder to warmer Polar ice caps were most probably present Shipunov (MSU) BIOL 111 October 17, 2014 8 / 33 Cambrian period Life in Cambrian Main Cambrian biotas Burgess shale (505 Mya) Orsten fauna (498 Mya) Theses fossils were kept in Lagerstaettes—exceptionally well preserves clay deposits This excellent preservation could be consequence of the rarity of Cambrian destroyers Shipunov (MSU) BIOL 111 October 17, 2014 9 / 33 Cambrian period Life in Cambrian Burgess shale Shipunov (MSU) BIOL 111 October 17, 2014 10 / 33 Cambrian period Life in Cambrian Orsten fauna Shipunov (MSU) BIOL 111 October 17, 2014 11 / 33 Cambrian period Cambrian explosion of skeletal fauna Cambrian period Cambrian explosion of skeletal fauna Shipunov (MSU) BIOL 111 October 17, 2014 12 / 33 Cambrian period Cambrian explosion of skeletal fauna Life in Cambrian This is the picture of famous Czech artist Zdenek Burian Shipunov (MSU) BIOL 111 October 17, 2014 13 / 33 Cambrian period Cambrian explosion of skeletal fauna Archaeocyaths (most probably sponges) Most probably, Archaeocyaths were sponges Shipunov (MSU) BIOL 111 October 17, 2014 14 / 33 Cambrian period Cambrian explosion of skeletal fauna Cnidaria Tabulate coral Shipunov (MSU) BIOL 111 October 17, 2014 15 / 33 Cambrian period Cambrian explosion of skeletal fauna Lobopod worms This is Aysheaia Our Hallucugenia is also a lobopod worm! Shipunov (MSU) BIOL 111 October 17, 2014 16 / 33 Cambrian period Cambrian explosion of skeletal fauna Stem Arthropods Shipunov (MSU) BIOL 111 October 17, 2014 17 / 33 Cambrian period Cambrian explosion of skeletal fauna Stem and crown groups Shipunov (MSU) BIOL 111 October 17, 2014 18 / 33 Cambrian period Cambrian explosion of skeletal fauna Mollusks: naked Odontogriphus – stem naked mollusk Shipunov (MSU) BIOL 111 October 17, 2014 19 / 33 Cambrian period Cambrian explosion of skeletal fauna ... and shelled Helcionellid shell-bearing mollusk from Greenland Shipunov (MSU) BIOL 111 October 17, 2014 20 / 33 Cambrian period Cambrian explosion of skeletal fauna Brachiopods Shipunov (MSU) BIOL 111 October 17, 2014 21 / 33 Cambrian period Cambrian explosion of skeletal fauna Brachiopods are not mollusks! Brachiopoda (left) are completely different internally from bivalve mollusks (right) Shipunov (MSU) BIOL 111 October 17, 2014 22 / 33 Cambrian period Cambrian explosion of skeletal fauna Echinoderms Sea lily Gogia from Nevada Shipunov (MSU) BIOL 111 October 17, 2014 23 / 33 Cambrian period Cambrian explosion of skeletal fauna Soft-bodied chordates Pikaia from Burgess shale Shipunov (MSU) BIOL 111 October 17, 2014 24 / 33 Cambrian period Cambrian explosion of skeletal fauna First fish-like animals: craniate Haikouichthys Shipunov (MSU) BIOL 111 October 17, 2014 25 / 33 Cambrian period Cambrian explosion of skeletal fauna Algae Yuknessia is a fossil green alga from Utah Shipunov (MSU) BIOL 111 October 17, 2014 26 / 33 Cambrian period Cambrian explosion of skeletal fauna Fungi Tappania fungus was known even before Cambrian Shipunov (MSU) BIOL 111 October 17, 2014 27 / 33 Cambrian period Cambrian explosion of skeletal fauna Problematics: Aldanophyton Terrestrial plant? Or alga? Shipunov (MSU) BIOL 111 October 17, 2014 28 / 33 Cambrian period Cambrian explosion of skeletal fauna Problematics: conodonts Conodonts are just teeth of unknown animal, it is still not clear what was it. Jawless fish? Shipunov (MSU) BIOL 111 October 17, 2014 29 / 33 Cambrian period Cambrian explosion of skeletal fauna Problematics: hyoliths Haplophrentis, mollusk? Or separate branch on the tree of life? Shipunov (MSU) BIOL 111 October 17, 2014 30 / 33 Cambrian period Cambrian explosion of skeletal fauna Problematics: vetulicolians Ancestors of both echinoderms and chordates? Shipunov (MSU) BIOL 111 October 17, 2014 31 / 33 Cambrian period Cambrian explosion of skeletal fauna Summary Introns, linear DNA molecules and telomere/telomerase system differ eukaryotes from most prokaryotes Cambrian period started with massive appearance of skeletal fauna: “Cambrian explosion” Shipunov (MSU) BIOL 111 October 17, 2014 32 / 33 Cambrian period Cambrian explosion of skeletal fauna For Further Reading Introns. http://en.wikipedia.org/wiki/Intron Cambrian explosion. http://en.wikipedia.org/wiki/Cambrian_explosion Shipunov (MSU) BIOL 111 October 17, 2014 33 / 33.
Recommended publications
  • Terreneuvian Orthothecid (Hyolitha) Digestive Tracts from Northern Montagne Noire, France; Taphonomic, Ontogenetic and Phylogenetic Implications
    Terreneuvian Orthothecid (Hyolitha) Digestive Tracts from Northern Montagne Noire, France; Taphonomic, Ontogenetic and Phylogenetic Implications Le´a Devaere1*,Se´bastien Clausen1, J. Javier A´ lvaro2, John S. Peel3, Daniel Vachard1 1 UMR 8217 Ge´osyste`mes CNRS – Universite´ Lille 1Villeneuve d’Ascq, France, 2 Centro de Astrobiologı´a, Instituto Nacional de Te´cnica Aeroespacial, Consejo Superior de Investigaciones Cientı´ficas, Torrejo´n de Ardoz, Spain, 3 Department of Earth Sciences (Palaeobiology), Uppsala University, Uppsala, Sweden Abstract More than 285 specimens of Conotheca subcurvata with three-dimensionally preserved digestive tracts were recovered from the Terreneuvian (early Cambrian) Heraultia Limestone of the northern Montagne Noire, southern France. They represent one of the oldest occurrences of such preserved guts. The newly discovered operculum of some complete specimens provides additional data allowing emendation of the species diagnosis. Infestation of the U-shaped digestive tracts by smooth uniseriate, branching to anastomosing filaments along with isolated botryoidal coccoids attests to their early, microbially mediated phosphatisation. Apart from taphonomic deformation, C. subcurvata exhibits three different configurations of the digestive tract: (1) anal tube and gut parallel, straight to slightly undulating; (2) anal tube straight and loosely folded gut; and (3) anal tube straight and gut straight with local zigzag folds. The arrangement of the digestive tracts and its correlation with the mean apertural diameter of the specimens are interpreted as ontogenetically dependent. The simple U-shaped gut, usually considered as characteristic of the Hyolithida, developed in earlier stages of C. subcurvata, whereas the more complex orthothecid type-3 only appears in largest specimens. This growth pattern suggests a distinct phylogenetic relationship between these two hyolith orders through heterochronic processes.
    [Show full text]
  • The Early Paleozoic World: Cambrian Period (544-459 MY)
    The Early Paleozoic World: Cambrian Period (544-459 MY) Jarðsaga 1 -Saga Lífs og Lands – Ólafur Ingólfsson The Cambrian Period: Precambrian Super- continent has broken up and life explodes... • Sea level rose throughout the Cambrian – very widespread deposition of marine sediments • Rodina Supercontinent broken up • Skeletal animals appear in the fossil record • Predation becomes a way-of-life • Trilobates appear on the scene, and develop rapidly • A major diversification of large animals • Trilobate mass extinctions towards the end of the period Cambrian key-sites Cambrian sediments occur on all Earths continents Cambrian was named by the 19th-century English geologist Adam Sedgwick, who first studied the great sequence of rocks characteristic of the period near Cambria, Wales. Early Cambrian continental configuration Rodina had broken up by early Cambrian, and Laurentia, Siberia and Baltica were separated from “Proto-Gondwana” Early Cambrian climate Early Cambrian climate was warm, but not too hot, and there is no evidence of any glacial ice at the poles. Transgression of sea onto continental cratons! http://www.scotese.com/ What caused the Cambrian transgression? What can cause globally rising sea-levels? 1. A decrease in ocean basin volume due to: • Formation of new mid-ocean ridges • Increased area of continents (rifting) • Accumulation of sediments on the sea-floor 2. An increase in water volume by melting of glaciers on land What can cause regionally/locally rising sea-levels? 1. Subsidence of land along a passive continental margin 2. Local/regional glacio-isostatic loading The vidence for a global Cambrian transgression 1. Wide-spread marine sediments on all cratons 2.
    [Show full text]
  • 1 Rrh: Middle Cambrian Coprolites Lrh: J. Kimmig And
    RRH: MIDDLE CAMBRIAN COPROLITES LRH: J. KIMMIG AND B.R. PRATT Research Article DOI: http://dx.doi.org/10.2110/palo.2017.038 COPROLITES IN THE RAVENS THROAT RIVER LAGERSTÄTTE OF NORTHWESTERN CANADA: IMPLICATIONS FOR THE MIDDLE CAMBRIAN FOOD WEB 1 2 JULIEN KIMMIG AND BRIAN R. PRATT 1Biodiversity Institute, University of Kansas, Lawrence, Kansas 66045, USA 2Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada e-mail: [email protected] ABSTRACT: The Rockslide Formation (middle Cambrian, Drumian, Bolaspidella Zone) of the Mackenzie Mountains, northwestern Canada, hosts the Ravens Throat River Lagerstätte, which consists of two, 1-m thick intervals of greenish, thinly laminated, locally burrowed, slightly calcareous mudstone yielding a low-diversity and low-abundance fauna of bivalved arthropods, ‘worms’, hyoliths, and trilobites. Also present are flattened, circular, black carbonaceous objects averaging 15 mm in diameter, interpreted as coprolites preserved in either dorsal or ventral view. Many consist of aggregates of ovate carbonaceous flakes 0.5–2 mm long, which are probably compacted fecal pellets. Two-thirds contain a variably disarticulated pair of arthropod valves, and many also contain coiled to fragmented, corrugated ‘worm’ cuticle, either alone or together with valves. A few contain an enrolled agnostoid. In rare cases a ptychoparioid cranidium, agnostoid shield, bradoriid valve, or hyolith conch or operculum is present; these are taken to be due to capture and ingestion of bioclasts from the adjacent seafloor. Many of the coprolites are associated with semi-circular spreiten produced by movement of the worm-like predator while it occupied a vertical burrow. Its identity is unknown but it clearly exhibited prey selectivity.
    [Show full text]
  • Chapter 5. Paleozoic Invertebrate Paleontology of Grand Canyon National Park
    Chapter 5. Paleozoic Invertebrate Paleontology of Grand Canyon National Park By Linda Sue Lassiter1, Justin S. Tweet2, Frederick A. Sundberg3, John R. Foster4, and P. J. Bergman5 1Northern Arizona University Department of Biological Sciences Flagstaff, Arizona 2National Park Service 9149 79th Street S. Cottage Grove, Minnesota 55016 3Museum of Northern Arizona Research Associate Flagstaff, Arizona 4Utah Field House of Natural History State Park Museum Vernal, Utah 5Northern Arizona University Flagstaff, Arizona Introduction As impressive as the Grand Canyon is to any observer from the rim, the river, or even from space, these cliffs and slopes are much more than an array of colors above the serpentine majesty of the Colorado River. The erosive forces of the Colorado River and feeder streams took millions of years to carve more than 290 million years of Paleozoic Era rocks. These exposures of Paleozoic Era sediments constitute 85% of the almost 5,000 km2 (1,903 mi2) of the Grand Canyon National Park (GRCA) and reveal important chronologic information on marine paleoecologies of the past. This expanse of both spatial and temporal coverage is unrivaled anywhere else on our planet. While many visitors stand on the rim and peer down into the abyss of the carved canyon depths, few realize that they are also staring at the history of life from almost 520 million years ago (Ma) where the Paleozoic rocks cover the great unconformity (Karlstrom et al. 2018) to 270 Ma at the top (Sorauf and Billingsley 1991). The Paleozoic rocks visible from the South Rim Visitors Center, are mostly from marine and some fluvial sediment deposits (Figure 5-1).
    [Show full text]
  • A New Phyllopod Bed-Like Assemblage from the Burgess Shale of the Canadian Rockies
    ARTICLE Received 30 Dec 2013 | Accepted 7 Jan 2014 | Published 11 Feb 2014 DOI: 10.1038/ncomms4210 A new phyllopod bed-like assemblage from the Burgess Shale of the Canadian Rockies Jean-Bernard Caron1,2,3, Robert R. Gaines4,Ce´dric Aria1,2, M. Gabriela Ma´ngano5 & Michael Streng6 Burgess Shale-type fossil assemblages provide the best evidence of the ‘Cambrian explosion’. Here we report the discovery of an extraordinary new soft-bodied fauna from the Burgess Shale. Despite its proximity (ca. 40 km) to Walcott’s original locality, the Marble Canyon fossil assemblage is distinct, and offers new insights into the initial diversification of metazoans, their early morphological disparity, and the geographic ranges and longevity of many Cambrian taxa. The arthropod-dominated assemblage is remarkable for its high density and diversity of soft-bodied fossils, as well as for its large proportion of new species (22% of total diversity) and for the preservation of hitherto unreported anatomical features, including in the chordate Metaspriggina and the arthropod Mollisonia. The presence of the stem arthropods Misszhouia and Primicaris, previously known only from the early Cambrian of China, suggests that the palaeogeographic ranges and longevity of Burgess Shale taxa may be underestimated. 1 Department of Natural History-Palaeobiology, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario, Canada M5S 2C6. 2 Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2. 3 Department of Earth Sciences, University of Toronto, 25 Russell Street, Toronto, Ontario, Canada M5S 3B1. 4 Geology Department, Pomona College, 185 E. Sixth Street, Claremont, California 91711, USA.
    [Show full text]
  • Paleoecology of the Greater Phyllopod Bed Community, Burgess Shale ⁎ Jean-Bernard Caron , Donald A
    Available online at www.sciencedirect.com Palaeogeography, Palaeoclimatology, Palaeoecology 258 (2008) 222–256 www.elsevier.com/locate/palaeo Paleoecology of the Greater Phyllopod Bed community, Burgess Shale ⁎ Jean-Bernard Caron , Donald A. Jackson Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5 Accepted 3 May 2007 Abstract To better understand temporal variations in species diversity and composition, ecological attributes, and environmental influences for the Middle Cambrian Burgess Shale community, we studied 50,900 fossil specimens belonging to 158 genera (mostly monospecific and non-biomineralized) representing 17 major taxonomic groups and 17 ecological categories. Fossils were collected in situ from within 26 massive siliciclastic mudstone beds of the Greater Phyllopod Bed (Walcott Quarry — Fossil Ridge). Previous taphonomic studies have demonstrated that each bed represents a single obrution event capturing a predominantly benthic community represented by census- and time-averaged assemblages, preserved within habitat. The Greater Phyllopod Bed (GPB) corresponds to an estimated depositional interval of 10 to 100 KA and thus potentially preserves community patterns in ecological and short-term evolutionary time. The community is dominated by epibenthic vagile deposit feeders and sessile suspension feeders, represented primarily by arthropods and sponges. Most species are characterized by low abundance and short stratigraphic range and usually do not recur through the section. It is likely that these are stenotopic forms (i.e., tolerant of a narrow range of habitats, or having a narrow geographical distribution). The few recurrent species tend to be numerically abundant and may represent eurytopic organisms (i.e., tolerant of a wide range of habitats, or having a wide geographical distribution).
    [Show full text]
  • THE PRINTING WOOD BLOCK COLLECTION of the GEOLOGICAL SURVEY of IRELAND by M.A
    THE GEOLOGICAL CURATOR VOLUME 7, NO. 4 CONTENTS PAPERS TRIASSIC FOOTPRINTS: THE FIRST ENGLISH FINDS by G.R. Tresise and J.D. Radley...............................................................................................................................135 THE BURGESS SHALE FOSSILS AT THE NATURAL HISTORY MUSEUM, LONDON by D. García-Bellido Capdevila .............................................................................................................................141 THE PRINTING WOOD BLOCK COLLECTION OF THE GEOLOGICAL SURVEY OF IRELAND by M.A. Parkes, P. Coffey and P. Connaughton.......................................................................................................149 LOST AND FOUND............................................................................................................................................157 GEOLOGICAL CURATORS’ GROUP - November 2000 -133- Henleys Medical has long been recognised as a leading Henleys’ products most pertinent to readers of The name in the healthcare industry and now boasts over 50 Geological Curator include: a complete range of reaseable years service and expertise in an increasingly competitive bags in varying sizes and gauges, with or without writing market. panels or overprinted to your own specification; boxes for presentation and/or display of contents, manufactured in After many years supplying only the health service, clear polystyrene and available in nine sizes with internal Henleys’ healthy stock levels and competitive pricing partitions available
    [Show full text]
  • New Insight Into the Soft Anatomy and Shell Microstructures of Early Cambrian 2 Orthothecids (Hyolitha) 3 4 Luoyang Li1,2, Christian B
    1 New insight into the soft anatomy and shell microstructures of early Cambrian 2 orthothecids (Hyolitha) 3 4 Luoyang Li1,2, Christian B. Skovsted1,2, Hao Yun2, Marissa J. Betts2,3, Xingliang 5 Zhang2, 6 7 1Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, SE- 8 104 05 Stockholm, Sweden. 9 2State Key Laboratory of Continental Dynamics, Shaanxi Key laboratory of Early 10 Life and Environments, Department of Geology, Northwest University, Xi’an 710069, 11 PR China. 12 3Palaeoscience Research Centre, School of Environmental and Rural Science, 13 University of New England, Armidale, NSW, Australia, 2351 14 E-mail for correspondence: [email protected] 15 16 Abstract 17 Hyoliths (hyolithids and orthothecids) were one of the most successful early 18 biomineralizing lophotrochozoans, and were a key component of the Cambrian 19 evolutionary fauna. However, the morphology, skeletogenesis and anatomy of earliest 20 members of this enigmatic clade, as well as its relationship with other 21 lophotrochozoan phyla remain highly contentious. Here we present a new orthothecid, 22 Longxiantheca mira gen. et sp. nov. preserved as part of the secondarily phosphatized 23 Small Shelly Fossil assemblage from the lower Cambrian Xinji Formation of North 24 China. Longxiantheca mira retains some ancestral traits of the clade with an 25 undifferentiated disc-shaped operculum and a simple conical conch with a two- 26 layered microstructure of aragonitic fibrous bundles. The operculum interior exhibits 27 impressions of soft tissues, including muscle attachment scars, mantle epithelial cells 28 and a central kidney-shaped platform in association with its feeding organ. Our study 29 reveals that the muscular system and tentaculate feeding apparatus in orthothecids 30 appear to be similar to that in hyolithids, suggesting a consistent anatomical 31 configuration among the total group of hyoliths.
    [Show full text]
  • Canada Archives Canada Published Heritage Direction Du Branch Patrimoine De I'edition
    THE BURGESS SHALE: A CAMBRIAN MIRROR FOR MODERN EVOLUTIONARY BIOLOGY by Keynyn Alexandra Ripley Brysse A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Institute for the History and Philosophy of Science and Technology University of Toronto © Copyright by Keynyn Alexandra Ripley Brysse (2008) Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-44745-1 Our file Notre reference ISBN: 978-0-494-44745-1 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation.
    [Show full text]
  • Subsurface Facies Analysis of the Cambrian
    SUBSURFACE FACIES ANALYSIS OF THE CAMBRIAN CONASAUGA FORMATION AND KERBEL FORMATION . IN EAST- CENTRAL OHIO Bharat Banjade A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2011 Committee: James E. Evans, Advisor Charles M. Onasch Jeffrey Snyder ii ABSTRACT James E. Evans, advisor This study presents a subsurface facies analysis of the Cambrian Conasauga Formation and Kerbel Formation using well core and geophysical logs. Well- 2580, drilled in Seneca County (Ohio), was used for facies analysis, and the correlation of facies was based on the gamma- ray (GR) log for three wells from adjacent counties in Ohio (Well-20154 in Erie County, Well-20233 in Huron County, and Well-20148 in Marion County). In Well-2580, the Conasauga Formation is 37- m thick and the Kerbel Formation is 23-m thick. Analysis of the core identified 18 lithofacies. Some of the lithofacies are siliciclastic rocks, including: massive, planar laminated, cross-bedded, and hummocky stratified sandstone with burrows; massive and planar- laminated siltstone; massive mudstone; heterolithic sandstone and silty mudstone with tidal rhythmites showing double mud drapes, flaser-, lenticular-, and wavy- beddings; and heterogeneous siltstone and silty mudstone with rhythmic planar- lamination. Other lithofacies are dolomitized carbonate rocks that originally were massive, oolitic, intraclastic, and fossiliferous limestones. In general, the Conasauga Formation is a mixed siliciclastic-carbonate depositional unit with abundant tidal sedimentary structures consistent with a shallow- marine depositional setting and the Kerbel Formation is a siliciclastic depositional unit consistent with a marginal-marine depositional setting.
    [Show full text]
  • Burgess Shale: Cambrian Explosion in Full Bloom
    Bottjer_04 5/16/02 1:27 PM Page 61 4 Burgess Shale: Cambrian Explosion in Full Bloom James W. Hagadorn he middle cambrian burgess shale is one of the world’s best-known and best-studied fossil deposits. The story of Tthe discovery of its fauna is a famous part of paleontological lore. While searching in 1909 for trilobites in the Burgess Shale Formation of the Canadian Rockies, Charles Walcott discovered a remarkable “phyl- lopod crustacean” on a shale slab (Yochelson 1967). Further searching revealed a diverse suite of soft-bodied fossils that would later be described as algae, sponges, cnidarians, ctenophores, brachiopods, hyoliths, pria- pulids, annelids, onychophorans, arthropods, echinoderms, hemichor- dates, chordates, cirripeds, and a variety of problematica. Many of these fossils came from a single horizon, in a lens of shale 2 to 3 m thick, that Walcott called the Phyllopod (leaf-foot) Bed. Subsequent collecting at and near this site by research teams led by Walcott, P. E. Raymond, H. B. Whittington, and D. Collins has yielded over 75,000 soft-bodied fossils, most of which are housed at the Smithsonian Institution in Washington, D.C., and the Royal Ontario Museum (ROM) in Toronto. Although interest in the Burgess Shale fauna has waxed and waned since its discovery, its importance has inspired work on other Lagerstät- ten and helped galvanize the paleontological community’s attention on soft-bodied deposits in general. For example, work on the Burgess Shale Copyright © 2002. Columbia University Press, All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S.
    [Show full text]
  • Alberta Palaeontological Society Bulletin, Vol. 30, No. 3, September
    Palæontological Society Bulletin AlbertaVOLUME 30 • NUMBER 3 www.albertapaleo.org SEPTEMBER 2015 ALBERTA PALAEONTOLOGICAL SOCIETY OFFICERS THE SOCIETY WAS INCORPORATED IN 1986 as a non-profit President organization formed to: Cory Gross [email protected] (403) 617-2079 a. Promote the science of palaeontology through study and education. Vice-President b. Make contributions to the science by: 1) Discovery. 2) Collection. Open: To volunteer contact the President 3) Description. 4) Education of the general public. 5) Preservation Treasurer of material for study and the future. Mona Marsovsky [email protected] (403) 547-0182 c. Provide information and expertise to other collectors. Secretary d. Work with professionals at museums and universities to add to Vaclav Marsovsky (403) 547-0182 the palaeontological collections of the province (preserve Alberta’s Past-President heritage). Wayne Braunberger [email protected] (403) 278-5154 MEMBERSHIP: Any person with a sincere interest in palaeontology is DIRECTORS eligible to present their application for membership in the Society. Please Editor enclose membership dues with your request for application. Howard Allen [email protected] (403) 274-1858 Single membership $20.00 annually Membership Family or Institution $25.00 annually Howard Allen [email protected] (403) 274-1858 Programs SOCIETY MAILING ADDRESS: Harold Whittaker [email protected] (403) 286-0349 Alberta Palaeontological Society Field Trips P.O. Box 35111, Sarcee Postal Outlet Wayne Braunberger [email protected] (403) 278-5154 Calgary, AB, Canada T3E 7C7 www.albertapaleo.org COMMITTEES Fossil Collection THE BULLETIN WILL BE PUBLISHED QUARTERLY: March, June, Howard Allen [email protected] (403) 274-1858 September and December. Deadline for submissions is the 15th of the Library month prior to publication.
    [Show full text]