New Insight Into the Soft Anatomy and Shell Microstructures of Early Cambrian 2 Orthothecids (Hyolitha) 3 4 Luoyang Li1,2, Christian B

Total Page:16

File Type:pdf, Size:1020Kb

New Insight Into the Soft Anatomy and Shell Microstructures of Early Cambrian 2 Orthothecids (Hyolitha) 3 4 Luoyang Li1,2, Christian B 1 New insight into the soft anatomy and shell microstructures of early Cambrian 2 orthothecids (Hyolitha) 3 4 Luoyang Li1,2, Christian B. Skovsted1,2, Hao Yun2, Marissa J. Betts2,3, Xingliang 5 Zhang2, 6 7 1Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, SE- 8 104 05 Stockholm, Sweden. 9 2State Key Laboratory of Continental Dynamics, Shaanxi Key laboratory of Early 10 Life and Environments, Department of Geology, Northwest University, Xi’an 710069, 11 PR China. 12 3Palaeoscience Research Centre, School of Environmental and Rural Science, 13 University of New England, Armidale, NSW, Australia, 2351 14 E-mail for correspondence: [email protected] 15 16 Abstract 17 Hyoliths (hyolithids and orthothecids) were one of the most successful early 18 biomineralizing lophotrochozoans, and were a key component of the Cambrian 19 evolutionary fauna. However, the morphology, skeletogenesis and anatomy of earliest 20 members of this enigmatic clade, as well as its relationship with other 21 lophotrochozoan phyla remain highly contentious. Here we present a new orthothecid, 22 Longxiantheca mira gen. et sp. nov. preserved as part of the secondarily phosphatized 23 Small Shelly Fossil assemblage from the lower Cambrian Xinji Formation of North 24 China. Longxiantheca mira retains some ancestral traits of the clade with an 25 undifferentiated disc-shaped operculum and a simple conical conch with a two- 26 layered microstructure of aragonitic fibrous bundles. The operculum interior exhibits 27 impressions of soft tissues, including muscle attachment scars, mantle epithelial cells 28 and a central kidney-shaped platform in association with its feeding organ. Our study 29 reveals that the muscular system and tentaculate feeding apparatus in orthothecids 30 appear to be similar to that in hyolithids, suggesting a consistent anatomical 31 configuration among the total group of hyoliths. The new finding of shell secreting 32 cells demonstrates a mantle regulating mode of growth for the operculum. Taking all 33 these data into considerations, especially on the basis of shell microstructures, we 34 argue that hyoliths were an extinct sister group of molluscs. 35 36 Keywords: Cambrian, orthothecid, soft anatomy, shell microstructure 37 38 Introduction 39 The evolutionary emergence of metazoans during the Ediacaran–Cambrian transition, 40 the so called ‘Cambrian explosion’, led to the origination not only of most modern 41 animal phyla, but also some extinct groups with peculiar Baupläne [1,2]. Hyoliths are 42 such an enigmatic group of conical shelled animals, which thrived through Cambrian 43 to Ordovician times, and then declined until their demise at the end of Permian [3]. 44 They possess a deep conical conch and a lid-like operculum, and are commonly 1 45 divided into two morphologically distinct subgroups (Orders): the Hyolithida Sysoev, 46 1957 [4] and the Orthothecida Marek, 1966 [5]. Hyolithids are characterized by a 47 ventral projecting shelf (ligula) at the aperture of the conch, a differentiated 48 operculum separated into cardinal and conical shield, and an additional pair of curved 49 lateral spines, named helens [6,7]. Orthothecids lack helens and ligula, but their 50 conchs generally display a high variability in transverse profile, e.g. they can have 51 circular, ovoid, kidney-shaped and trapezoid cross-sections [8]. Orthothecids are 52 widely considered to be sediment-feeders, while hyolithids are thought to have 53 developed a filter feeding lifestyle [9]. 54 In recent years, studies on hyoliths have mainly been focused on solving a 55 longstanding controversy regarding the biological affinity of the clade. It is generally 56 accepted that hyoliths belong to lophotrochozoans, yet a precise phylogenetic position 57 remains highly contentious. Three main hypotheses have been promoted historically: 58 1) the clade might represent an extinct group within the Mollusca [3,12], 2) constitute 59 their own phylum [13], or 3) have a close relationship with sipunculid worms (peanut 60 worms) [14]. The proposed relationship of hyoliths with sipunculans has been more or 61 less abandoned, and the most popular molluscan affinities of hyoliths have also been 62 strongly challenged by several sensational discoveries of preserved soft tissues in 63 hyolith animals from Burgess Shale-type Konservat-Lagerstätten. New data from the 64 Burgess Shale and the Spence Shale in North America have revealed a tentaculate 65 feeding apparatus in the hyolithid Haplophrentis [15], and a supposedly coelomate, 66 pedicle-like apical attachment organ was reported in the orthothecid Pedunculotheca 67 from the Chengjiang Lagerstätte of South China [16]. These observations seemingly 68 point to a lophophorate (large group encompassing brachiopods, phoronids and 69 bryozoans) affinity for hyoliths, specifically, a phylogenetic position close to 70 brachiopods [17, 18]. However, Liu et al., [19] has pointed out that the hyolith 71 tentaculate feeding organ may not be homologous with the lophophore of 72 lophophorates, and that the interpreted ‘pedicle’ very likely represents a partially 73 crushed portion of the shell. Additionally, study of hyolith shell microstructures 74 provides crucial evidence that hyoliths produce their biomineralized skeletons in a 75 strikingly similar way to molluscs, which tends to support a close relationship 76 between hyoliths and molluscs [20]. 77 The unusual character combination of a tentaculate feeding organ and typical 78 mollusc-like shell microstructures is center to the debate on hyolith affinity and 79 relationships. However, preservation of soft tissues vs. hard skeletons are usually 80 biased by different taphonomic pathways. The Burgess Shale-type preservation 81 involves the conservation of animal soft parts, preserved in extraordinary anatomical 82 detail [XXX], while delicate phosphatization processes in Small Shelly Fossil 83 assemblages can replicate very fine microstructural details of primary skeletons 84 [XXX]. In addition, question remains regarding the ancestral characters of the clade, 85 especially with respect to the orthothecid linage. Hyolithids and orthothecids are 86 phylogenetically closely related. A number of Cambrian hyolith taxa possess 87 morphological traits of the two orders, possibly representing an intermediate form 88 derived from orthothecids and leading to hyolithids [XXXX], or they indicated an 2 89 ancestral state of hyoliths and through time evolved into the two well-differentiated 90 linages [XX]. 91 Here, we present a new orthothecid Longxiantheca mira gen. et. sp. nov. from 92 the lower Cambrian Xinji Formation of North China. The new material, collected as 93 part of secondarily phosphatized Small Shelly Fossil (SSF) assemblages, exquisitely 94 preserves not only primary aragonitic shell microstructures in the external wall of the 95 conch, but also information of soft tissues on the internal surface of the operculum. 96 This study provides important new data regarding the morphology, skeletogenesis and 97 soft anatomy, particularly the musculature, feeding apparatus and mantle system, of 98 early orthothecids. Taking all these evidence together, especially data of hyolith shell 99 microstructures from North China, we aim to contribute a clearer understanding on 100 hyolith affinity and its relationship with other lophotrochozoan groups. 101 102 Geological setting, material and methods 103 Precambrian–Cambrian strata along the southern margin of the North China Platform 104 include (in ascending order) the Luoquan, Dongpo, Xinji and Zhushadong formations 105 [21]. A disconformity occurs at the upper boundary of the Ediacaran Dongpo 106 Formation or Luoquan Diamictite, and the succeeding Xinji Formation yields the 107 oldest record of Cambrian deposits in North China, equivalent to upper Stage 3 or 108 lower Stage 4 [XXX]. The Xinji Formation is mainly composed of siliciclastic 109 sediments intercalated with carbonate intervals, and is conformably overlain by the 110 massive dolostones of the Zhushadong Formation (Fig. 1). Carbonates in the Xinji 111 Formation yield an abundant and diverse assemblage of SSF, including sponge 112 spicules, chancelloriids, brachiopods, hyoliths, micromolluscs, trilobites and 113 echinoderm ossicles, as well as other problematic fossils of uncertain biological 114 affinities and function [22–24]. Rock samples were collected and treated with 115 buffered, 10% acetic acid to retrieve acid-resistant microfossils. More than 140 116 specimens have been selected and studied from the acid-resistant residues. Specimens 117 were mounted, sputter-coated with gold for examination with a FEI Quanta 400 FEG 118 scanning electron microscope (SEM) and Zeiss Xradia 520 Versa Micro-CT at the 119 Northwest University as well as a Hitachi S4300 SEM at the Swedish Museum of 120 Natural History. Microfossils described below are deposited at the Early Life Institute 121 (ELI), Northwest University, Xian, China. 122 123 Results 124 Systematic paleontology 125 Class HYOLITHA Marek, 1963 126 Order ORTHOTHECIDA Marek, 1966 127 Genus Longxiantheca Li in Li et al. gen. nov. 128 129 Etymology. Genus name Longxiantheca referring to the Longxian County where the 130 fossils were recovered; Species name mira meaning wonderful. 131 Type species. Longxiantheca mira Li in Li et al. sp. nov. 132 Diagnosis. Conch smooth, straight to slightly curved, with circular cross-section, low 3 133 angle of divergence; Apertural margin planar and initial shell septate; Shell
Recommended publications
  • Early Sponge Evolution: a Review and Phylogenetic Framework
    Available online at www.sciencedirect.com ScienceDirect Palaeoworld 27 (2018) 1–29 Review Early sponge evolution: A review and phylogenetic framework a,b,∗ a Joseph P. Botting , Lucy A. Muir a Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China b Department of Natural Sciences, Amgueddfa Cymru — National Museum Wales, Cathays Park, Cardiff CF10 3LP, UK Received 27 January 2017; received in revised form 12 May 2017; accepted 5 July 2017 Available online 13 July 2017 Abstract Sponges are one of the critical groups in understanding the early evolution of animals. Traditional views of these relationships are currently being challenged by molecular data, but the debate has so far made little use of recent palaeontological advances that provide an independent perspective on deep sponge evolution. This review summarises the available information, particularly where the fossil record reveals extinct character combinations that directly impinge on our understanding of high-level relationships and evolutionary origins. An evolutionary outline is proposed that includes the major early fossil groups, combining the fossil record with molecular phylogenetics. The key points are as follows. (1) Crown-group sponge classes are difficult to recognise in the fossil record, with the exception of demosponges, the origins of which are now becoming clear. (2) Hexactine spicules were present in the stem lineages of Hexactinellida, Demospongiae, Silicea and probably also Calcarea and Porifera; this spicule type is not diagnostic of hexactinellids in the fossil record. (3) Reticulosans form the stem lineage of Silicea, and probably also Porifera. (4) At least some early-branching groups possessed biminerallic spicules of silica (with axial filament) combined with an outer layer of calcite secreted within an organic sheath.
    [Show full text]
  • Evolutionary Patterns of Trilobites Across the End Ordovician Mass Extinction
    Evolutionary Patterns of Trilobites Across the End Ordovician Mass Extinction by Curtis R. Congreve B.S., University of Rochester, 2006 M.S., University of Kansas, 2008 Submitted to the Department of Geology and the Faculty of the Graduate School of The University of Kansas in partial fulfillment on the requirements for the degree of Doctor of Philosophy 2012 Advisory Committee: ______________________________ Bruce Lieberman, Chair ______________________________ Paul Selden ______________________________ David Fowle ______________________________ Ed Wiley ______________________________ Xingong Li Defense Date: December 12, 2012 ii The Dissertation Committee for Curtis R. Congreve certifies that this is the approved Version of the following thesis: Evolutionary Patterns of Trilobites Across the End Ordovician Mass Extinction Advisory Committee: ______________________________ Bruce Lieberman, Chair ______________________________ Paul Selden ______________________________ David Fowle ______________________________ Ed Wiley ______________________________ Xingong Li Accepted: April 18, 2013 iii Abstract: The end Ordovician mass extinction is the second largest extinction event in the history or life and it is classically interpreted as being caused by a sudden and unstable icehouse during otherwise greenhouse conditions. The extinction occurred in two pulses, with a brief rise of a recovery fauna (Hirnantia fauna) between pulses. The extinction patterns of trilobites are studied in this thesis in order to better understand selectivity of the
    [Show full text]
  • Church 18.Pdf (1.785Mb)
    Paleontological Contributions Number 18 Efficient Ornamentation in Ordovician Anthaspidellid Sponges Stephen B. Church August 9, 2017 Lawrence, Kansas, USA ISSN 1946-0279 (online) paleo.ku.edu/contributions Ridge-and-trough ornamented outer-wall fragment of the Ordovician anthaspidellid sponge Rugocoelia eganensis Johns, 1994. Paleontological Contributions August 9, 2017 Number 18 EFFICIENT ORNAMENTATION IN ORDOVICIAN ANTHASPIDELLID SPONGES Stephen B. Church Department of Geological Sciences, Brigham Young University, Provo, Utah 84602-3300, [email protected] ABSTRACT Lithistid orchoclad sponges within the family Anthaspidellidae Ulrich in Miller, 1889 include several genera that added ornate features to their outer-wall surfaces during Early Ordovician sponge radiation. Ornamented anthaspidellid sponges commonly constructed annulated or irregularly to regularly spaced transverse ridge-and-trough features on their outer-wall surfaces without proportionately increasing the size of their internal wall or gastral surfaces. This efficient technique of modi- fying only the sponge’s outer surface without enlarging its entire skeletal frame conserved the sponge’s constructional energy while increasing outer-wall surface-to-fluid exposure for greater intake of nutrient bearing currents. Sponges with widely spaced ridge-and-trough ornament dimensions predominated in high-energy settings. Widely spaced ridges and troughs may have given the sponge hydrodynamic benefits in high wave force settings. Ornamented sponges with narrowly spaced ridge-and- trough dimensions are found in high energy paleoenvironments but also occupied moderate to low-energy settings, where their surface-to-fluid exposure per unit area exceeded that of sponges with widely spaced surface ornamentations. Keywords: lithistid sponges, Ordovician radiation, morphological variation, theoretical morphology INTRODUCTION assumed by most anthaspidellids.
    [Show full text]
  • 001-012 Primeras Páginas
    PUBLICACIONES DEL INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA Serie: CUADERNOS DEL MUSEO GEOMINERO. Nº 9 ADVANCES IN TRILOBITE RESEARCH ADVANCES IN TRILOBITE RESEARCH IN ADVANCES ADVANCES IN TRILOBITE RESEARCH IN ADVANCES planeta tierra Editors: I. Rábano, R. Gozalo and Ciencias de la Tierra para la Sociedad D. García-Bellido 9 788478 407590 MINISTERIO MINISTERIO DE CIENCIA DE CIENCIA E INNOVACIÓN E INNOVACIÓN ADVANCES IN TRILOBITE RESEARCH Editors: I. Rábano, R. Gozalo and D. García-Bellido Instituto Geológico y Minero de España Madrid, 2008 Serie: CUADERNOS DEL MUSEO GEOMINERO, Nº 9 INTERNATIONAL TRILOBITE CONFERENCE (4. 2008. Toledo) Advances in trilobite research: Fourth International Trilobite Conference, Toledo, June,16-24, 2008 / I. Rábano, R. Gozalo and D. García-Bellido, eds.- Madrid: Instituto Geológico y Minero de España, 2008. 448 pgs; ils; 24 cm .- (Cuadernos del Museo Geominero; 9) ISBN 978-84-7840-759-0 1. Fauna trilobites. 2. Congreso. I. Instituto Geológico y Minero de España, ed. II. Rábano,I., ed. III Gozalo, R., ed. IV. García-Bellido, D., ed. 562 All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system now known or to be invented, without permission in writing from the publisher. References to this volume: It is suggested that either of the following alternatives should be used for future bibliographic references to the whole or part of this volume: Rábano, I., Gozalo, R. and García-Bellido, D. (eds.) 2008. Advances in trilobite research. Cuadernos del Museo Geominero, 9.
    [Show full text]
  • Cambrian Trilobite Ovatoryctocara Granulata Tchernysheva, 1962 and Its Biostratigraphic Significance
    Available online at www.sciencedirect.com Progress in Natural Science 19 (2009) 213–221 www.elsevier.com/locate/pnsc Cambrian trilobite Ovatoryctocara granulata Tchernysheva, 1962 and its biostratigraphic significance Jinliang Yuan a,*, Yuanlong Zhao b, Jin Peng b, Xuejian Zhu a, Jih-pai Lin c a Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, East Beijing Road 39, Nanjing 210008, China b College of Resource and Environment Science, Guizhou University, Guiyang 550003, China c School of Earth Sciences, Ohio State University, Columbus, OH 43210, USA Received 28 March 2008; received in revised form 27 May 2008; accepted 14 August 2008 Abstract The genus Ovatoryctocara Tchernysheva, 1962, and its key species Ovatoryctocara granulata Tchernysheva, 1962, are revised. Ovatoryctocara granulata occurs near the base of the Ovatoryctocara Zone and ranges up into the lower portion of the Kounamkites Zone in the Siberian Platform. O. granulata also appears in southeastern Guizhou, South China, but O. granulata in northern Greenland may represent an indefinite species. Specimens of Ovatoryctocara from Newfoundland cannot be identified to species level. Specimens includ- ing two cranidia and three pygidia from the lower part of the Aoxi Formation at Yaxi Village, Shizhu Town, eastern Tongren, north- eastern Guizhou, were previously assigned to O. granulata, which is now reassigned as a new species O. yaxiensis sp. nov. It bears the following main features: glabella club-shaped, slightly expanded medially, with four pairs of lateral furrows, of which S1–S3 are trian- gular pits, S4 is shallow, connecting with axial furrow; shorter palpebral lobe situated a little anterior to the midway of facial suture across the fixigenae, longer posterolateral area (exsag.); semielliptical pygidium consisting of seven axial rings with a terminal piece and with eight pairs of marginal tips giving a sawtooth-like shape of the lateral margins in dorsal view.
    [Show full text]
  • Lee-Riding-2018.Pdf
    Earth-Science Reviews 181 (2018) 98–121 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Marine oxygenation, lithistid sponges, and the early history of Paleozoic T skeletal reefs ⁎ Jeong-Hyun Leea, , Robert Ridingb a Department of Geology and Earth Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea b Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA ARTICLE INFO ABSTRACT Keywords: Microbial carbonates were major components of early Paleozoic reefs until coral-stromatoporoid-bryozoan reefs Cambrian appeared in the mid-Ordovician. Microbial reefs were augmented by archaeocyath sponges for ~15 Myr in the Reef gap early Cambrian, by lithistid sponges for the remaining ~25 Myr of the Cambrian, and then by lithistid, calathiid Dysoxia and pulchrilaminid sponges for the first ~25 Myr of the Ordovician. The factors responsible for mid–late Hypoxia Cambrian microbial-lithistid sponge reef dominance remain unclear. Although oxygen increase appears to have Lithistid sponge-microbial reef significantly contributed to the early Cambrian ‘Explosion’ of marine animal life, it was followed by a prolonged period dominated by ‘greenhouse’ conditions, as sea-level rose and CO2 increased. The mid–late Cambrian was unusually warm, and these elevated temperatures can be expected to have lowered oxygen solubility, and to have promoted widespread thermal stratification resulting in marine dysoxia and hypoxia. Greenhouse condi- tions would also have stimulated carbonate platform development, locally further limiting shallow-water cir- culation. Low marine oxygenation has been linked to episodic extinctions of phytoplankton, trilobites and other metazoans during the mid–late Cambrian.
    [Show full text]
  • The Great Ordovician Radiation of Marine Life: Examples from South China
    Available online at www.sciencedirect.com Progress in Natural Science 18 (2008) 1–12 Review The great Ordovician radiation of marine life: Examples from South China Renbin Zhan a,*, Jisuo Jin b, Yuandong Zhang a, Wenwei Yuan a a State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China b Department of Earth Sciences, University of Western Ontario, London Ont., Canada N6A 5B7 Received 14 March 2007; received in revised form 23 July 2007; accepted 27 July 2007 Abstract The Ordovician radiation is the earliest and most important biodiversification event in the evolution of the Paleozoic Evolutionary Fauna (PEF), when the basic framework of PEF was established. The radiation underwent a gradual, protracted process spanning more than 40 million years and was marked by several diversity maxima of the PEF. Case studies conducted on the Upper Yangtze Platform (South China Palaeoplate) showed that the Ordovician radiation was characterized by drastic increases in a- and b-diversity in various groups of organisms. During the radiation, brachiopods, trilobites, and graptolites of the PEF became more diverse to dominate over the Cambrian Evolutionary Fauna (CEF) in all marine environments. At either global or regional scales, however, the Ordovician radiation was highly heterogeneous in time and space, and the rate and pattern of radiation exhibited by different major fossil groups were also variable. Ó 2007 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved. Keywords: Ordovician radiation; Paleozoic Evolutionary Fauna; a-diversity; b-diversity; Upper Yangtze Platform 1.
    [Show full text]
  • Reinterpretation of the Enigmatic Ordovician Genus Bolboporites (Echinodermata)
    Reinterpretation of the enigmatic Ordovician genus Bolboporites (Echinodermata). Emeric Gillet, Bertrand Lefebvre, Véronique Gardien, Emilie Steimetz, Christophe Durlet, Frédéric Marin To cite this version: Emeric Gillet, Bertrand Lefebvre, Véronique Gardien, Emilie Steimetz, Christophe Durlet, et al.. Reinterpretation of the enigmatic Ordovician genus Bolboporites (Echinodermata).. Zoosymposia, Magnolia Press, 2019, 15 (1), pp.44-70. 10.11646/zoosymposia.15.1.7. hal-02333918 HAL Id: hal-02333918 https://hal.archives-ouvertes.fr/hal-02333918 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Reinterpretation of the Enigmatic Ordovician Genus Bolboporites 2 (Echinodermata) 3 4 EMERIC GILLET1, BERTRAND LEFEBVRE1,3, VERONIQUE GARDIEN1, EMILIE 5 STEIMETZ2, CHRISTOPHE DURLET2 & FREDERIC MARIN2 6 7 1 Université de Lyon, UCBL, ENSL, CNRS, UMR 5276 LGL-TPE, 2 rue Raphaël Dubois, F- 8 69622 Villeurbanne, France 9 2 Université de Bourgogne - Franche Comté, CNRS, UMR 6282 Biogéosciences, 6 boulevard 10 Gabriel, F-2100 Dijon, France 11 3 Corresponding author, E-mail: [email protected] 12 13 Abstract 14 Bolboporites is an enigmatic Ordovician cone-shaped fossil, the precise nature and systematic affinities of 15 which have been controversial over almost two centuries.
    [Show full text]
  • Arthropod Pattern Theory and Cambrian Trilobites
    Bijdragen tot de Dierkunde, 64 (4) 193-213 (1995) SPB Academie Publishing bv, The Hague Arthropod pattern theory and Cambrian trilobites Frederick A. Sundberg Research Associate, Invertebrate Paleontology Section, Los Angeles County Museum of Natural History, 900 Exposition Boulevard, Los Angeles, California 90007, USA Keywords: Arthropod pattern theory, Cambrian, trilobites, segment distributions 4 Abstract ou 6). La limite thorax/pygidium se trouve généralementau niveau du node 2 (duplomères 11—13) et du node 3 (duplomères les les 18—20) pour Corynexochides et respectivement pour Pty- An analysis of duplomere (= segment) distribution within the chopariides.Cette limite se trouve dans le champ 4 (duplomères cephalon,thorax, and pygidium of Cambrian trilobites was un- 21—n) dans le cas des Olenellides et des Redlichiides. L’extrémité dertaken to determine if the Arthropod Pattern Theory (APT) du corps se trouve généralementau niveau du node 3 chez les proposed by Schram & Emerson (1991) applies to Cambrian Corynexochides, et au niveau du champ 4 chez les Olenellides, trilobites. The boundary of the cephalon/thorax occurs within les Redlichiides et les Ptychopariides. D’autre part, les épines 1 4 the predicted duplomerenode (duplomeres or 6). The bound- macropleurales, qui pourraient indiquer l’emplacement des ary between the thorax and pygidium generally occurs within gonopores ou de l’anus, sont généralementsituées au niveau des node 2 (duplomeres 11—13) and node 3 (duplomeres 18—20) for duplomères pronostiqués. La limite prothorax/opisthothorax corynexochids and ptychopariids, respectively. This boundary des Olenellides est située dans le node 3 ou près de celui-ci. Ces occurs within field 4 (duplomeres21—n) for olenellids and red- résultats indiquent que nombre et distribution des duplomères lichiids.
    [Show full text]
  • Chemostratigraphic Correlations Across the First Major Trilobite
    www.nature.com/scientificreports OPEN Chemostratigraphic correlations across the frst major trilobite extinction and faunal turnovers between Laurentia and South China Jih-Pai Lin 1*, Frederick A. Sundberg2, Ganqing Jiang3, Isabel P. Montañez4 & Thomas Wotte5 During Cambrian Stage 4 (~514 Ma) the oceans were widely populated with endemic trilobites and three major faunas can be distinguished: olenellids, redlichiids, and paradoxidids. The lower–middle Cambrian boundary in Laurentia was based on the frst major trilobite extinction event that is known as the Olenellid Biomere boundary. However, international correlation across this boundary (the Cambrian Series 2–Series 3 boundary) has been a challenge since the formal proposal of a four-series subdivision of the Cambrian System in 2005. Recently, the base of the international Cambrian Series 3 and of Stage 5 has been named as the base of the Miaolingian Series and Wuliuan Stage. This study provides detailed chemostratigraphy coupled with biostratigraphy and sequence stratigraphy across this critical boundary interval based on eight sections in North America and South China. Our results show robust isotopic evidence associated with major faunal turnovers across the Cambrian Series 2–Series 3 boundary in both Laurentia and South China. While the olenellid extinction event in Laurentia and the gradual extinction of redlichiids in South China are linked by an abrupt negative carbonate carbon excursion, the frst appearance datum of Oryctocephalus indicus is currently the best horizon to achieve correlation between the two regions. Te international correlation of the traditional lower–middle Cambrian boundary has been exceedingly difcult primarily due to apparent diachroniety of the datum species used to defne the boundary refecting the endemic faunas.
    [Show full text]
  • Terreneuvian Orthothecid (Hyolitha) Digestive Tracts from Northern Montagne Noire, France; Taphonomic, Ontogenetic and Phylogenetic Implications
    Terreneuvian Orthothecid (Hyolitha) Digestive Tracts from Northern Montagne Noire, France; Taphonomic, Ontogenetic and Phylogenetic Implications Le´a Devaere1*,Se´bastien Clausen1, J. Javier A´ lvaro2, John S. Peel3, Daniel Vachard1 1 UMR 8217 Ge´osyste`mes CNRS – Universite´ Lille 1Villeneuve d’Ascq, France, 2 Centro de Astrobiologı´a, Instituto Nacional de Te´cnica Aeroespacial, Consejo Superior de Investigaciones Cientı´ficas, Torrejo´n de Ardoz, Spain, 3 Department of Earth Sciences (Palaeobiology), Uppsala University, Uppsala, Sweden Abstract More than 285 specimens of Conotheca subcurvata with three-dimensionally preserved digestive tracts were recovered from the Terreneuvian (early Cambrian) Heraultia Limestone of the northern Montagne Noire, southern France. They represent one of the oldest occurrences of such preserved guts. The newly discovered operculum of some complete specimens provides additional data allowing emendation of the species diagnosis. Infestation of the U-shaped digestive tracts by smooth uniseriate, branching to anastomosing filaments along with isolated botryoidal coccoids attests to their early, microbially mediated phosphatisation. Apart from taphonomic deformation, C. subcurvata exhibits three different configurations of the digestive tract: (1) anal tube and gut parallel, straight to slightly undulating; (2) anal tube straight and loosely folded gut; and (3) anal tube straight and gut straight with local zigzag folds. The arrangement of the digestive tracts and its correlation with the mean apertural diameter of the specimens are interpreted as ontogenetically dependent. The simple U-shaped gut, usually considered as characteristic of the Hyolithida, developed in earlier stages of C. subcurvata, whereas the more complex orthothecid type-3 only appears in largest specimens. This growth pattern suggests a distinct phylogenetic relationship between these two hyolith orders through heterochronic processes.
    [Show full text]
  • Arthropod Pattern Theory and Cambrian Trilobites
    Bijdragen tot de Dierkunde, 64 (4) 193-213 (1995) SPB Academie Publishing bv, The Hague Arthropod pattern theory and Cambrian trilobites Frederick A. Sundberg Research Associate, Invertebrate Paleontology Section, Los Angeles County Museum of Natural History, 900 Exposition Boulevard, Los Angeles, California 90007, USA Keywords: Arthropod pattern theory, Cambrian, trilobites, segment distributions 4 Abstract ou 6). La limite thorax/pygidium se trouve généralementau niveau du node 2 (duplomères 11—13) et du node 3 (duplomères les les 18—20) pour Corynexochides et respectivement pour Pty- An analysis of duplomere (= segment) distribution within the chopariides.Cette limite se trouve dans le champ 4 (duplomères cephalon,thorax, and pygidium of Cambrian trilobites was un- 21—n) dans le cas des Olenellides et des Redlichiides. L’extrémité dertaken to determine if the Arthropod Pattern Theory (APT) du corps se trouve généralementau niveau du node 3 chez les proposed by Schram & Emerson (1991) applies to Cambrian Corynexochides, et au niveau du champ 4 chez les Olenellides, trilobites. The boundary of the cephalon/thorax occurs within les Redlichiides et les Ptychopariides. D’autre part, les épines 1 4 the predicted duplomerenode (duplomeres or 6). The bound- macropleurales, qui pourraient indiquer l’emplacement des ary between the thorax and pygidium generally occurs within gonopores ou de l’anus, sont généralementsituées au niveau des node 2 (duplomeres 11—13) and node 3 (duplomeres 18—20) for duplomères pronostiqués. La limite prothorax/opisthothorax corynexochids and ptychopariids, respectively. This boundary des Olenellides est située dans le node 3 ou près de celui-ci. Ces occurs within field 4 (duplomeres21—n) for olenellids and red- résultats indiquent que nombre et distribution des duplomères lichiids.
    [Show full text]