General Mutation Databases: Analysis and Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Multivariate Meta-Analysis of Differential Principal Components Underlying Human Primed and Naive-Like Pluripotent States
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.20.347666; this version posted October 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. October 20, 2020 To: bioRxiv Multivariate Meta-Analysis of Differential Principal Components underlying Human Primed and Naive-like Pluripotent States Kory R. Johnson1*, Barbara S. Mallon2, Yang C. Fann1, and Kevin G. Chen2*, 1Intramural IT and Bioinformatics Program, 2NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA Keywords: human pluripotent stem cells; naive pluripotency, meta-analysis, principal component analysis, t-SNE, consensus clustering *Correspondence to: Dr. Kory R. Johnson ([email protected]) Dr. Kevin G. Chen ([email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.20.347666; this version posted October 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. ABSTRACT The ground or naive pluripotent state of human pluripotent stem cells (hPSCs), which was initially established in mouse embryonic stem cells (mESCs), is an emerging and tentative concept. To verify this important concept in hPSCs, we performed a multivariate meta-analysis of major hPSC datasets via the combined analytic powers of percentile normalization, principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), and SC3 consensus clustering. -
1 Supporting Information for a Microrna Network Regulates
Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia. -
DTL/CDT2 Is Essential for Both CDT1 Regulation and the Early G2/M Checkpoint
Downloaded from genesdev.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press DTL/CDT2 is essential for both CDT1 regulation and the early G2/M checkpoint Christopher L. Sansam, Jennifer L. Shepard, Kevin Lai, Alessandra Ianari, Paul S. Danielian, Adam Amsterdam, Nancy Hopkins, and Jacqueline A. Lees1 Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Checkpoint genes maintain genomic stability by arresting cells after DNA damage. Many of these genes also control cell cycle events in unperturbed cells. By conducting a screen for checkpoint genes in zebrafish, we found that dtl/cdt2 is an essential component of the early, radiation-induced G2/M checkpoint. We subsequently found that dtl/cdt2 is required for normal cell cycle control, primarily to prevent rereplication. Both the checkpoint and replication roles are conserved in human DTL. Our data indicate that the rereplication reflects a requirement for DTL in regulating CDT1, a protein required for prereplication complex formation. CDT1 is degraded in S phase to prevent rereplication, and following DNA damage to prevent origin firing. We show that DTL associates with the CUL4–DDB1 E3 ubiquitin ligase and is required for CDT1 down-regulation in unperturbed cells and following DNA damage. The cell cycle defects of Dtl-deficient zebrafish are suppressed by reducing Cdt1 levels. In contrast, the early G2/M checkpoint defect appears to be Cdt1-independent. Thus, DTL promotes genomic stability through two distinct mechanisms. First, it is an essential component of the CUL4–DDB1 complex that controls CDT1 levels, thereby preventing rereplication. Second, it is required for the early G2/M checkpoint. -
Anti-P21 Antibody [SPM306] (ARG56160)
Product datasheet [email protected] ARG56160 Package: 50 μg anti-p21 antibody [SPM306] Store at: -20°C Summary Product Description Mouse Monoclonal antibody [SPM306] recognizes p21 Tested Reactivity Hu Species Does Not React With Ms, Rat Tested Application IHC-P, WB Host Mouse Clonality Monoclonal Clone SPM306 Isotype IgG2a, kappa Target Name p21 Species Human Immunogen Human recombinant p21 protein. Conjugation Un-conjugated Alternate Names Melanoma differentiation-associated protein 6; WAF1; CIP1; CDKN1; CAP20; MDA-6; SDI1; CDK- interacting protein 1; P21; p21CIP1; p21; Cyclin-dependent kinase inhibitor 1 Application Instructions Application table Application Dilution IHC-P 2 - 5 µg/ml WB 1 - 2 µg/ml Application Note IHC-P: Antigen retrieval: Boil tissue sections in 10 mM Citrate buffer (pH 6.0) for 10-20 min, followed by cooling at RT for 20 min. * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Properties Form Liquid Purification Purification with Protein G. Buffer PBS, 0.05% Sodium azide and 0.1 mg/ml BSA. Preservative 0.05% Sodium azide Stabilizer 0.1 mg/ml BSA Concentration 0.2 mg/ml Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated www.arigobio.com 1/3 freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. -
Review of the Molecular Genetics of Basal Cell Carcinoma; Inherited Susceptibility, Somatic Mutations, and Targeted Therapeutics
cancers Review Review of the Molecular Genetics of Basal Cell Carcinoma; Inherited Susceptibility, Somatic Mutations, and Targeted Therapeutics James M. Kilgour , Justin L. Jia and Kavita Y. Sarin * Department of Dermatology, Stanford University School of Medcine, Stanford, CA 94305, USA; [email protected] (J.M.K.); [email protected] (J.L.J.) * Correspondence: [email protected] Simple Summary: Basal cell carcinoma is the most common human cancer worldwide. The molec- ular basis of BCC involves an interplay of inherited genetic susceptibility and somatic mutations, commonly induced by exposure to UV radiation. In this review, we outline the currently known germline and somatic mutations implicated in the pathogenesis of BCC with particular attention paid toward affected molecular pathways. We also discuss polymorphisms and associated phenotypic traits in addition to active areas of BCC research. We finally provide a brief overview of existing non-surgical treatments and emerging targeted therapeutics for BCC such as Hedgehog pathway inhibitors, immune modulators, and histone deacetylase inhibitors. Abstract: Basal cell carcinoma (BCC) is a significant public health concern, with more than 3 million cases occurring each year in the United States, and with an increasing incidence. The molecular basis of BCC is complex, involving an interplay of inherited genetic susceptibility, including single Citation: Kilgour, J.M.; Jia, J.L.; Sarin, nucleotide polymorphisms and genetic syndromes, and sporadic somatic mutations, often induced K.Y. Review of the Molecular Genetics of Basal Cell Carcinoma; by carcinogenic exposure to UV radiation. This review outlines the currently known germline and Inherited Susceptibility, Somatic somatic mutations implicated in the pathogenesis of BCC, including the key molecular pathways Mutations, and Targeted affected by these mutations, which drive oncogenesis. -
Identification of Isobutyryl-Coa Dehydrogenase and Its Deficiency
Molecular Genetics and Metabolism 77 (2002) 68–79 www.academicpress.com Identification of isobutyryl-CoA dehydrogenase and its deficiency in humans Tien V. Nguyen,a Brage S. Andresen,b,c Thomas J. Corydon,b Sandro Ghisla,d Nasser Abd-El Razik,d Al-Walid A. Mohsen,a Stephen D. Cederbaum,e Diane S. Roe,f Charles R. Roe,f Nicolas J. Lench,g and Jerry Vockleya,* a Department of Medical Genetics, Mayo Clinic, Rochester, MN 55905, USA b Institute for Human Genetics, Aarhus University, Aarhus, Denmark c Research Unit for Molecular Medicine, Skejby Sygehus and Aarhus University, Aarhus, Denmark d Faculty of Biology, University of Konstanz, Konstanz, Germany e Department of Pediatrics, UCLA Medical Center, Los Angeles, CA, USA f Institute of Metabolic Disease, Baylor University, Dallas, TX, USA g Molecular Medicine Unit, University of Leeds, St. JamesÕ University Hospital, Leeds, UK Received 19 July 2002; received in revised form 31 July 2002; accepted 1 August 2002 Abstract The acyl-CoA dehydrogenases (ACDs) are a family of related enzymes that catalyze the a,b-dehydrogenation of acyl-CoA esters. Two homologues active in branched chain amino acid metabolism have previously been identified. We have used expression in Escherichia coli to produce a previously uncharacterized ACD-like sequence (ACAD8) and define its substrate specificity. Purified À1 À1 recombinant enzyme had a kcat=Km of 0.8, 0.23, and 0.04 (lM s ) with isobutyryl-CoA, (S) 2-methylbutyryl-CoA, and n-propionyl- CoA, respectively, as substrates. Thus, this enzyme is an isobutyryl-CoA dehydrogenase. A single patient has previously been described whose fibroblasts exhibit a specific deficit in the oxidation of valine. -
The Evolution of Ancestral and Species-Specific Adaptations in Snowfinches at the Qinghai–Tibet Plateau
The evolution of ancestral and species-specific adaptations in snowfinches at the Qinghai–Tibet Plateau Yanhua Qua,1,2, Chunhai Chenb,1, Xiumin Chena,1, Yan Haoa,c,1, Huishang Shea,c, Mengxia Wanga,c, Per G. P. Ericsond, Haiyan Lina, Tianlong Caia, Gang Songa, Chenxi Jiaa, Chunyan Chena, Hailin Zhangb, Jiang Lib, Liping Liangb, Tianyu Wub, Jinyang Zhaob, Qiang Gaob, Guojie Zhange,f,g,h, Weiwei Zhaia,g, Chi Zhangb,2, Yong E. Zhanga,c,g,i,2, and Fumin Leia,c,g,2 aKey Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China; bBGI Genomics, BGI-Shenzhen, 518084 Shenzhen, China; cCollege of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, China; dDepartment of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden; eBGI-Shenzhen, 518083 Shenzhen, China; fState Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223 Kunming, China; gCenter for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223 Kunming, China; hSection for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark; and iChinese Institute for Brain Research, 102206 Beijing, China Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved February 24, 2021 (received for review June 16, 2020) Species in a shared environment tend to evolve similar adapta- one of the few avian clades that have experienced an “in situ” tions under the influence of their phylogenetic context. Using radiation in extreme high-elevation environments, i.e., higher snowfinches, a monophyletic group of passerine birds (Passer- than 3,500 m above sea level (m a.s.l.) (17, 18). -
A Molecular Classification of Human Mesenchymal Stromal Cells Florian Rohart1, Elizabeth Mason1, Nicholas Matigian1, Rowland
bioRxiv preprint doi: https://doi.org/10.1101/024414; this version posted August 11, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Rohart'et'al,'The'MSC'Signature' 1' 1' A Molecular Classification of Human Mesenchymal Stromal Cells 2' Florian Rohart1, Elizabeth Mason1, Nicholas Matigian1, Rowland Mosbergen1, 3' Othmar Korn1, Tyrone Chen1, Suzanne Butcher1, Jatin Patel2, Kerry Atkinson2, 4' Kiarash Khosrotehrani2,3, Nicholas M Fisk2,4, Kim-Anh Lê Cao3 and Christine A 5' Wells1,5* 6' 1 Australian Institute for Bioengineering and Nanotechnology, The University of 7' Queensland, Brisbane, QLD Australia 4072 8' 2 The University of Queensland Centre for Clinical Research, Herston, Brisbane, 9' Queensland, Australia, 4029 10' 3 The University of Queensland Diamantina Institute, Translational Research 11' Institute, Woolloongabba, Brisbane QLD Australia, 4102 12' 4 Centre for Advanced Prenatal Care, Royal Brisbane & Women’s Hospital, Herston, 13' Brisbane, Queensland, Australia, 4029 14' 5 Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary & 15' Life Sciences, The University of Glasgow, Scotland, UK G12 8TA 16' *Correspondence to: Christine Wells, [email protected] 17' bioRxiv preprint doi: https://doi.org/10.1101/024414; this version posted August 11, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. -
Datasheet: VPA00465 Product Details
Datasheet: VPA00465 Description: RABBIT ANTI DTL Specificity: DTL Format: Purified Product Type: PrecisionAb™ Polyclonal Isotype: Polyclonal IgG Quantity: 100 µl Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 1/1000 PrecisionAb antibodies have been extensively validated for the western blot application. The antibody has been validated at the suggested dilution. Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Further optimization may be required dependant on sample type. Target Species Human Species Cross Reacts with: Mouse Reactivity N.B. Antibody reactivity and working conditions may vary between species. Product Form Purified IgG - liquid Preparation Rabbit polyclonal antibody purified by affinity chromatography Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide (NaN3) Stabilisers 2% Sucrose Immunogen Synthetic peptide directed towards the N terminal region of human DTL External Database Links UniProt: Q9NZJ0 Related reagents Entrez Gene: 51514 DTL Related reagents Synonyms CDT2, CDW1, DCAF2, L2DTL, RAMP Page 1 of 2 Specificity Rabbit anti Human DTL antibody recognizes DTL also known as Denticleless protein homolog, DDB1 and CUL4 associated factor 2, retinoic acid-regulated nuclear matrix-associated protein or Lethal(2) denticleless protein homolog. Rabbit anti Human DTL antibody detects a band of 79 kDa. -
View a Copy of This Licence, Visit
Jägers and Roelink BMC Molecular and Cell Biology (2021) 22:22 BMC Molecular and https://doi.org/10.1186/s12860-021-00359-5 Cell Biology RESEARCH ARTICLE Open Access Association of Sonic Hedgehog with the extracellular matrix requires its zinc- coordination center Carina Jägers and Henk Roelink* Abstract Background: Sonic Hedgehog (Shh) has a catalytic cleft characteristic for zinc metallopeptidases and has significant sequence similarities with some bacterial peptidoglycan metallopeptidases defining a subgroup within the M15A family that, besides having the characteristic zinc coordination motif, can bind two calcium ions. Extracellular matrix (ECM) components in animals include heparan-sulfate proteoglycans, which are analogs of bacterial peptidoglycan and are involved in the extracellular distribution of Shh. Results: We found that the zinc-coordination center of Shh is required for its association to the ECM as well as for non-cell autonomous signaling. Association with the ECM requires the presence of at least 0.1 μM zinc and is prevented by mutations affecting critical conserved catalytical residues. Consistent with the presence of a conserved calcium binding domain, we find that extracellular calcium inhibits ECM association of Shh. Conclusions: Our results indicate that the putative intrinsic peptidase activity of Shh is required for non-cell autonomous signaling, possibly by enzymatically altering ECM characteristics. Keywords: Shh signaling, Zinc metallopeptidases, Extracellular matrix, BacHh Background rejected by demonstrating that mutation of a critical The Hedgehog (Hh) gene was first identified in the residue involved in catalysis (E177) did not impair the Drosophila melanogaster screen performed by Christiane ability of Shh to activate the Hh response [4], and conse- Nüsslein-Volhard and Eric Wieshaus in the late 1970s quently the zinc coordination center of Shh is often re- [1]. -
Atlas Journal
Atlas of Genetics and Cytogenetics in Oncology and Haematology Home Genes Leukemias Solid Tumours Cancer-Prone Deep Insight Portal Teaching X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA Atlas Journal Atlas Journal versus Atlas Database: the accumulation of the issues of the Journal constitutes the body of the Database/Text-Book. TABLE OF CONTENTS Volume 12, Number 6, Nov-Dec 2008 Previous Issue / Next Issue Genes BCL8 (B-cell CLL/lymphoma 8) (15q11). Silvia Rasi, Gianluca Gaidano. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 781-784. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/BCL8ID781ch15q11.html CDC25A (Cell division cycle 25A) (3p21). Dipankar Ray, Hiroaki Kiyokawa. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 785-791. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/CDC25AID40004ch3p21.html CDC73 (cell division cycle 73, Paf1/RNA polymerase II complex component, homolog (S. cerevisiae)) (1q31.2). Leslie Farber, Bin Tean Teh. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 792-797. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/CDC73D181ch1q31.html EIF3C (eukaryotic translation initiation factor 3, subunit C) (16p11.2). Daniel R Scoles. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 798-802. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/EIF3CID44187ch16p11.html ELAC2 (elaC homolog 2 (E. coli)) (17p11.2). Yang Chen, Sean Tavtigian, Donna Shattuck. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 803-806. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/ELAC2ID40437ch17p11.html FOXM1 (forkhead box M1) (12p13). Jamila Laoukili, Monica Alvarez Fernandez, René H Medema. -
A Widespread Peroxiredoxin-Like Domain Present in Tumor Suppression
Pawłowski et al. BMC Genomics 2010, 11:590 http://www.biomedcentral.com/1471-2164/11/590 RESEARCH ARTICLE Open Access A widespread peroxiredoxin-like domain present in tumor suppression- and progression-implicated proteins Krzysztof Pawłowski2,4*, Anna Muszewska1, Anna Lenart2, Teresa Szczepińska2, Adam Godzik3, Marcin Grynberg1* Abstract Background: Peroxide turnover and signalling are involved in many biological phenomena relevant to human diseases. Yet, all the players and mechanisms involved in peroxide perception are not known. Elucidating very remote evolutionary relationships between proteins is an approach that allows the discovery of novel protein functions. Here, we start with three human proteins, SRPX, SRPX2 and CCDC80, involved in tumor suppression and progression, which possess a conserved region of similarity. Structure and function prediction allowed the definition of P-DUDES, a phylogenetically widespread, possibly ancient protein structural domain, common to vertebrates and many bacterial species. Results: We show, using bioinformatics approaches, that the P-DUDES domain, surprisingly, adopts the thioredoxin-like (Thx-like) fold. A tentative, more detailed prediction of function is made, namely, that of a 2-Cys peroxiredoxin. Incidentally, consistent overexpression of all three human P-DUDES genes in two public glioblastoma microarray gene expression datasets was discovered. This finding is discussed in the context of the tumor suppressor role that has been ascribed to P-DUDES proteins in several studies. Majority of non-redundant P- DUDES proteins are found in marine metagenome, and among the bacterial species possessing this domain a trend for a higher proportion of aquatic species is observed. Conclusions: The new protein structural domain, now with a broad enzymatic function predicted, may become a drug target once its detailed molecular mechanism of action is understood in detail.