<<

Chapter 6

Price and Greeks of Standard Options

In the last section we have seen that in the Black-Scholes model the theoretical fair value of some european with payoff H = H(ST ) is given by the one dimensional integral

Z √ 2 2 −rT σ T x+(r− σ )T  − x dx FV = e H S e 2 e 2 √ (6.1) BS 0 2π R The case of a call and a is of particular interest and because of their importance, we write down the corresponding formulae into this separate chapter. Before we do that, let us introduce the option sensitivities, the “greeks”:

Definition 6.1: Let H = H({St}0≤t≤T ) be the payoff of some (possibly path dependent) option and let

FV t = FV (St, σ, r, t) (6.2) denote the time t theoretical fair value of H (evaluated with respect to some asset price model, not necessarily the Black-Scholes model). Here St is the asset price at time t, σ denotes the and r denotes the interest rates. Then the following abbreviations has been become standard in the derivatives community (listed with decreasing importance):

δ := ∂F Vt () (6.3) ∂St ∂F Vt vega := ∂σ (vega) (6.4) ∂F Vt ρ := ∂r () (6.5) ∂F Vt θ := ∂t () (6.6) 2 ∂ FVt γ := 2 () (6.7) ∂St

Now let us summarize the formulae for call and put options:

39 40 Chapter 6

Theorem 6.1: Consider a call and a put option with strike K and maturity T ,

Hcall = max{ ST − K, 0 } (6.8)

Hput = max{ K − ST , 0 } (6.9)

BS BS and let FVcall,t and FVput,t denote their time t theoretical fair values in the Black-Scholes model. Let

Z x 2 − y dy N(x) := e 2 √ (6.10) 2π −∞ denote the cumulative normal distribution function and define the quantities

2 St σ log K + (r ± 2 )(T − t) d± := √ (6.11) σ T − t √ such that d+ − d− = σ T − t. Then there are the following formulae:

Fair Value:

BS −r(T −t) FVcall,t = StN(d+) − Ke N(d−) (6.12) BS −r(T −t) FVput,t = −StN(−d+) + Ke N(−d−) (6.13)

Delta:

δcall = N(d+) (6.14)

δput = −N(−d+) (6.15)

Vega: √ 0 vegacall = StN (d+) T − t (6.16)

vegaput = vegacall (6.17)

Rho:

−r(T −t) ρcall = K(T − t)e N(d−) (6.18) −r(T −t) ρput = −K(T − t)e N(−d−) (6.19)

Theta:

σ 0 −r(T −t) θcall = −St √ N (d+) − rKe N(d−) (6.20) 2 T − t σ 0 −r(T −t) θput = −St √ N (−d+) + rKe N(−d−) (6.21) 2 T − t Chapter 6 41

Gamma:

0 N (d+) γcall = √ (6.22) σ T − tSt γput = γcall (6.23)

Proof: In the Black-Scholes model, the time t theoretical fair value of some european option with maturity T ≥ t and payoff H = H(ST ) is given by

Z √ 2 2 BS −r(T −t) σ T −t x+(r− σ )(T −t) − x dx FV = e H S e 2 e 2 √ (6.24) t t 2π R Let us abbreviate

τ := T − t (6.25) √ a := σ τ (6.26) b := (r − σ2/2)τ (6.27)

and define x0 as the solution of the equation

√ 2 σ T −tx+(r− σ )(T −t) ax+b ! Ste 2 = Ste = K (6.28)

That is,

1 b x0 = a log(K/St) − a (6.29) Then

Z 2 BS −rτ a x+b − x dx FV = e H S e e 2 √ call,t call t 2π R Z 2 −rτ  a x+b − x dx = e max S e − K, 0 e 2 √ t 2π R Z ∞ 2 −rτ a x+b  − x dx = e S e − K e 2 √ t 2π x0 2 Z ∞ Z ∞ 2 −rτ b+ a − 1 (x−a)2 dx −rτ − x dx = e S e 2 e 2 √ − e K e 2 √ t 2π 2π x0 x0 2 −rτ b+ a −rτ = e St e 2 N(−x0 + a) − e KN(−x0)

−r(T −t) = St N(d+) − e KN(d−) (6.30) since

log(S /K)+(r−σ2/2)τ 1 b t √ −x0 = a log(St/K) + a = σ τ = d− 42 Chapter 6 √ and −x0 + a = d− + σ τ = d+. Furthermore √ −rτ + b + a2/2 = −rτ + (r − σ2/2)τ + (σ τ)2/2 = 0 which results in the last line of (6.30). The proof for the put fair value is similar. In particular, since N(d) + N(−d) = 1 we get from (6.12,6.13) BS BS −r(T −t) FV call,t − FV put,t = St − e K (6.31) This relation is called ‘call-put parity’. Delta: To compute the delta we use the third line of (6.30) instead of the last one. We get

 Z ∞ 2  ∂ −rτ ax+b − x dx δ (S , t) = e (S e − K) e 2 √ call t t 2π ∂St x0 ∞ x2 Z x2 − 0 −rτ ax+b − dx −rτ ax0+b e 2 ∂x0 = e e e 2 √ − e (St e − K) √ 2π 2π ∂St x0 | {z } =0 = N(d+) (6.32) since the above integral is the same as the first integral in (6.30), up to the factor of St which has been differentiated away. Finally it follows from call-put parity that

δput(S, t) = N(d+) − 1 = −N(−d+) .

Vega: Again we use the third line of (6.30):

 Z ∞ 2  ∂ −rτ ax+b − x dx vega (S , t) = e (S e − K) e 2 √ call t t 2π ∂σ x0 ∞ x2 Z x2 − 0 −rτ ∂a ∂b  ax+b − dx −rτ ax0+b e 2 ∂x0 = e S x + e e 2 √ − e (S e − K) √ t ∂σ ∂σ 2π t 2π ∂σ x0 | {z } =0 2 Z ∞ 2 −rτ b+ a √ − (x−a) dx = e e 2 S ( τx − στ) e 2 √ t 2π x0 Z ∞ 2 √ − (x−a) dx = S τ (x − a) e 2 √ t 2π x0 2 2 − (x−a) ∞ − (x0−a) √  e 2  √ e 2 = St τ − √ = St τ √ 2π x0 2π 2 (−d )2 d − + − + √ e 2 √ e 2 √ 0 = St τ √ = St τ √ = St τ N (d+) (6.33) 2π 2π The vega for the put follows again from call-put parity. The remaining formulae may be looked up, for example, in the book on Quantitative Finance, Vol.1, by Paul Wilmott.