E Cient Computation of Option Price Sensitivities Using Homogeneity

Total Page:16

File Type:pdf, Size:1020Kb

E Cient Computation of Option Price Sensitivities Using Homogeneity Ecient Computation of Option Price Sensitivities Using Homogeneity and other Tricks Oliver Rei Weierstra-Institute for Applied Analysis and Sto chastics Mohrenstrasse 39 10117 Berlin GERMANY [email protected] Uwe Wystup Commerzbank Treasury and Financial Pro ducts Neue Mainzer Strasse 32{36 60261 Frankfurt am Main GERMANY [email protected] http://www.mathfinance.de Preliminary version, January 25, 1999 Abstract No front-oce software can survive without providing derivatives of options prices with resp ect to underlying market or mo del parameters, the so called Greeks. We present a list of common Greeks and exploit homogeneity prop erties of nancial markets to derive relationships b etween Greeks out of which many are mo del- indep endent. We apply our results to Europ ean style options, rainbow options, path-dep endent options as well as options priced in Heston's sto chastic volatility mo del and show shortcuts to avoid exorbitant and time-consuming computations of derivatives whicheven strong symb olic calculators fail to pro duce. partially aliated to Delft University,by supp ort of NWO Netherlands 1 2 Rei, O. and Wystup, U. 1 Intro duction Based on homogeneity of time and price level of a nancial pro duct we can derive relations for the options sensitivities, the so-called \Greeks". The basic market mo del we use is the Black-Scholes mo del with sto cks paying a continuous dividend yield and a riskless cash b ond. This mo del supp orts the homogeneity prop erties which are valid in general, but its structure is so simple, that we can concentrate on the essential statements of this pap er. We will also discuss how to extend out work to more general market mo dels. We list the commonly used Greeks and their notations. We do not claim this list to b e complete, b ecause one can always de ne more derivatives of the option price function. First of all we analyze the homogeneity of a nancial market, consisting of one sto ck and one cash b ond. The techniques we present are easily expanded to the higher dimensional case as we show later on. In addition we lo ok at the Greeks of Europ ean options in the Black-Scholes mo del. Essentially it turns out, that one only needs to knowtwo Greeks in order to calculate all the other Greeks without di erentiating. Another interesting example is a Europ ean derivative security dep ending on two assets. For such rainbow options the analysis of the risk due to changing correlation of the two assets is very imp ortant. We will showhow this risk is related to simultaneous changes of the two underlying securities. There are several applications of these homogeneity relations. 1. It helps saving time in computing derivatives. 2. It pro duces a robust implementation compared to Greeks via di erence quo- tients. 3. It allows to check the quality and consistency of Greeks pro duced by nite- di erence-, tree- or Monte Carlo metho ds. 4. It admits a computation of Greeks for Monte Carlo based values. 5. It shows relationships b etween Greeks whichwouldn't b e noticed merely by lo oking at di erence quotients. Option Price Sensitivities 3 1.1 Notation S sto ck price or sto ck price pro cess B cash b ond, usually with risk free interest rate r r risk free interest rate q dividend yield continuously paid volatility of one sto ck, or volatility matrix of several sto cks correlation in the two-asset market mo del t date of evaluation \to day" T date of maturity = T t maturity of an option x sto ck price at time t f payo function v x;t;::: value of an option k strike of an option l level of an option v partial derivation of v with resp ect to x and analogous x The standard normal distribution and density functions are de ned by 2 1 1 t 2 p 1 e nt = 2 Z x N x = nt dt 2 1 2 2 1 x 2xy + y p n x; y ; = exp 3 2 2 2 21 2 1 Z Z x y N x; y ; = n u; v ; du dv 4 2 2 1 1 See http://www.MathFinance.de/frontoce.html for a source co de to compute N . 2 4 Rei, O. and Wystup, U. 1.2 The Greeks Delta v x Gamma v xx Theta v t Rho v in the one-sto ck mo del r Rhor v in the two-sto ck mo del r r Rho q v q q Vega v Kappa v correlation sensitivitytwo-sto ck mo del Greeks, not so commonly used: x Leverage v sometimes , sometimes called \gearing" x v 0 Vomma v Sp eed v xxx Charm v x Color v xx F Forward Delta v F dl q Driftless Delta e Dual Theta Dual v T k Strike Delta v k k Strike Gamma v kk l Level Delta v l l Level Gamma v ll 1 two-sto ck mo del Beta 12 2 2 Fundamental Prop erties 2.1 Homogeneity of Time In most cases the price of the option is not a function of b oth the current time t and the maturity time T , but rather only a function of the time to maturity = T t implying the relations =v = v = v = D ual 5 t T This relationship extends naturally to the situation of options dep ending on several intermediate times such as comp ound or Bermuda options. 2.2 Scale-Invariance of Time Wemaywant to measure time in units other than years in which case interest rates and volatilities, which are normally quoted on an annual basis, must b e changed according to the following rules for all a>0. ! a Option Price Sensitivities 5 r ! ar q ! aq p a 6 ! The option's value must b e invariant under this rescaling, i.e., p ;ar;aq; v x; ; r;q;;:::=v x; a;::: 7 a We di erentiate this equation with resp ect to a and obtain for a =1 1 ; 8 0= + r + q + q 2 a general relation b etween the Greeks theta, rho, rhoq and vega. It extends naturally to the case of multiple assets and multiple intermediate dates. 2.3 Scale Invariance of Prices The general idea is that value of securities may b e measured in a di erent unit, just likevalues of Europ ean sto cks are now measured in Euro instead of in-currencies. Option contracts usually dep end on strikes and barrier levels. Rescaling can have di erent e ects on the value of the option. Essentially wemay consider the following typ es of homogeneity classes. Let v x; k b e the value function of an option, where x is the sp ot or a vector of sp ots and k the strike or barrier or a vector of strikes or barriers. Let a b e a p ositive real numb er. De nition 1 homogeneity classes We cal l a value function k -homogeneous of degree n if for al l a n v ax; ak = a v x; k : 9 The value function of a Europ ean call or put option with strike K is then K - homogeneous of degree 1, a p ower call with strike K and cap C is b oth K - homogeneous of degree 2 and C -homogeneous of degree 0, a double barrier call with strike K and barriers B =L; H isK -homogeneous of degree 1 and B - homogeneous of degree 0. We will call an option strike-de ned, if there is just one strike k and the value function is k -homogeneous of degree 1 and level-de ned if there is just one level l and the value function is l -homogeneous of degree 0, e.g. a digital cash call. 2.3.1 Strike-Delta and Strike-Gamma For a strike-de ned value function wehave for all a; b > 0 abv x; k = v abx; abk : 10 6 Rei, O. and Wystup, U. We di erentiate with resp ect to a and get for a =1 bv x; k = bxv bx; bk + bk v bx; bk : 11 x k Wenow di erentiate with resp ect to b get for b =1 v x; k = xv + xv x + xv k + kv + kv x + kv k 12 x xx xk k kx kk 2 k 2 k = x+ x + 2xk v + k + k : 13 xk If weevaluate equation 11 at b =1 we get k v = x+ k : 14 We di erentiate this equation with resp ect to k and obtain k k k = xv + + k ; 15 kx 2 k kxv = k : 16 kx Together with equation 13 we conclude 2 2 k x =k : 17 2.3.2 Level-Delta and Level-Gamma For a level-de ned value function wehave for all a; b > 0 v x; l = v abx; abl : 18 We di erentiate with resp ect to a and get at a =1 0 = v bx; bl bx + v bx; bl bl : 19 x l If we set b =1 we get the relation l x + l =0: 20 Nowwe di erentiate equation 19 with resp ect to b and get at b =1 2 2 0 = v x +2v xl + v l : 21 xx xl ll One the other hand we can di erentiate the relation b etween delta and level-delta with resp ect to l and get l l v x + l + = 0: 22 xl Together with equation 21 we conclude 2 2 l l x +x= l + l : 23 Option Price Sensitivities 7 3 Europ ean Options in the Black-Scholes Mo del In this section we analyze the Europ ean claim in the Black-Scholes mo del dS = S [r q dt + dW ]: 24 t t t This situation has a simple structure which allows us to obtain even more relations for the Greeks.
Recommended publications
  • University of Illinois at Urbana-Champaign Department of Mathematics
    University of Illinois at Urbana-Champaign Department of Mathematics ASRM 410 Investments and Financial Markets Fall 2018 Chapter 5 Option Greeks and Risk Management by Alfred Chong Learning Objectives: 5.1 Option Greeks: Black-Scholes valuation formula at time t, observed values, model inputs, option characteristics, option Greeks, partial derivatives, sensitivity, change infinitesimally, Delta, Gamma, theta, Vega, rho, Psi, option Greek of portfolio, absolute change, option elasticity, percentage change, option elasticity of portfolio. 5.2 Applications of Option Greeks: risk management via hedging, immunization, adverse market changes, delta-neutrality, delta-hedging, local, re-balance, from- time-to-time, holding profit, delta-hedging, first order, prudent, delta-gamma- hedging, gamma-neutrality, option value approximation, observed values change inevitably, Taylor series expansion, second order approximation, delta-gamma- theta approximation, delta approximation, delta-gamma approximation. Further Exercises: SOA Advanced Derivatives Samples Question 9. 1 5.1 Option Greeks 5.1.1 Consider a continuous-time setting t ≥ 0. Assume that the Black-Scholes framework holds as in 4.2.2{4.2.4. 5.1.2 The time-0 Black-Scholes European call and put option valuation formula in 4.2.9 and 4.2.10 can be generalized to those at time t: −δ(T −t) −r(T −t) C (t; S; δ; r; σ; K; T ) = Se N (d1) − Ke N (d2) P = Ft;T N (d1) − PVt;T (K) N (d2); −r(T −t) −δ(T −t) P (t; S; δ; r; σ; K; T ) = Ke N (−d2) − Se N (−d1) P = PVt;T (K) N (−d2) − Ft;T N (−d1) ; where d1 and d2 are given by S 1 2 ln K + r − δ + 2 σ (T − t) d1 = p ; σ T − t S 1 2 p ln K + r − δ − 2 σ (T − t) d2 = p = d1 − σ T − t: σ T − t 5.1.3 The option value V is a function of observed values, t and S, model inputs, δ, r, and σ, as well as option characteristics, K and T .
    [Show full text]
  • Ice Crude Oil
    ICE CRUDE OIL Intercontinental Exchange® (ICE®) became a center for global petroleum risk management and trading with its acquisition of the International Petroleum Exchange® (IPE®) in June 2001, which is today known as ICE Futures Europe®. IPE was established in 1980 in response to the immense volatility that resulted from the oil price shocks of the 1970s. As IPE’s short-term physical markets evolved and the need to hedge emerged, the exchange offered its first contract, Gas Oil futures. In June 1988, the exchange successfully launched the Brent Crude futures contract. Today, ICE’s FSA-regulated energy futures exchange conducts nearly half the world’s trade in crude oil futures. Along with the benchmark Brent crude oil, West Texas Intermediate (WTI) crude oil and gasoil futures contracts, ICE Futures Europe also offers a full range of futures and options contracts on emissions, U.K. natural gas, U.K power and coal. THE BRENT CRUDE MARKET Brent has served as a leading global benchmark for Atlantic Oseberg-Ekofisk family of North Sea crude oils, each of which Basin crude oils in general, and low-sulfur (“sweet”) crude has a separate delivery point. Many of the crude oils traded oils in particular, since the commercialization of the U.K. and as a basis to Brent actually are traded as a basis to Dated Norwegian sectors of the North Sea in the 1970s. These crude Brent, a cargo loading within the next 10-21 days (23 days on oils include most grades produced from Nigeria and Angola, a Friday). In a circular turn, the active cash swap market for as well as U.S.
    [Show full text]
  • Yuichi Katsura
    P&TcrvvCJ Efficient ValtmVmm-and Hedging of Structured Credit Products Yuichi Katsura A thesis submitted for the degree of Doctor of Philosophy of the University of London May 2005 Centre for Quantitative Finance Imperial College London nit~ýl. ABSTRACT Structured credit derivatives such as synthetic collateralized debt obligations (CDO) have been the principal growth engine in the fixed income market over the last few years. Val- uation and risk management of structured credit products by meads of Monte Carlo sim- ulations tend to suffer from numerical instability and heavy computational time. After a brief description of single name credit derivatives that underlie structured credit deriva- tives, the factor model is introduced as the portfolio credit derivatives pricing tool. This thesis then describes the rapid pricing and hedging of portfolio credit derivatives using the analytical approximation model and semi-analytical models under several specifications of factor models. When a full correlation structure is assumed or the pricing of exotic structure credit products with non-linear pay-offs is involved, the semi-analytical tractability is lost and we have to resort to the time-consuming Monte Carlo method. As a Monte Carlo variance reduction technique we extend the importance sampling method introduced to credit risk modelling by Joshi [2004] to the general n-factor problem. The large homogeneouspool model is also applied to the method of control variates as a new variance reduction tech- niques for pricing structured credit products. The combination of both methods is examined and it turns out to be the optimal choice. We also show how sensitivities of a CDO tranche can be computed efficiently by semi-analytical and Monte Carlo framework.
    [Show full text]
  • RT Options Scanner Guide
    RT Options Scanner Introduction Our RT Options Scanner allows you to search in real-time through all publicly traded US equities and indexes options (more than 170,000 options contracts total) for trading opportunities involving strategies like: - Naked or Covered Write Protective Purchase, etc. - Any complex multi-leg option strategy – to find the “missing leg” - Calendar Spreads Search is performed against our Options Database that is updated in real-time and driven by HyperFeed’s Ticker-Plant and our Implied Volatility Calculation Engine. We offer both 20-minute delayed and real-time modes. Unlike other search engines using real-time quotes data only our system takes advantage of individual contracts Implied Volatilities calculated in real-time using our high-performance Volatility Engine. The Scanner is universal, that is, it is not confined to any special type of option strategy. Rather, it allows determining the option you need in the following terms: – Cost – Moneyness – Expiry – Liquidity – Risk The Scanner offers Basic and Advanced Search Interfaces. Basic interface can be used to find options contracts satisfying, for example, such requirements: “I need expensive Calls for Covered Call Write Strategy. They should expire soon and be slightly out of the money. Do not care much as far as liquidity, but do not like to bear high risk.” This can be done in five seconds - set the search filters to: Cost -> Dear Moneyness -> OTM Expiry -> Short term Liquidity -> Any Risk -> Moderate and press the “Search” button. It is that easy. In fact, if your request is exactly as above, you can just press the “Search” button - these values are the default filtering criteria.
    [Show full text]
  • Real Rainbow Options in Commodity Applications Valuing Multi-Factor Output Options Under Uncertainty
    Real Rainbow Options in Commodity Applications Valuing Multi-Factor Output Options under Uncertainty A Thesis submitted to the University of Manchester for the Degree of Doctor of Business Administration in the Faculty of Humanities 2010 Jörg Dockendorf Manchester Business School Contents LIST OF TABLES ....................................................................................................... 4 LIST OF FIGURES ..................................................................................................... 4 ABSTRACT .................................................................................................................. 5 DECLARATION .......................................................................................................... 6 COPYRIGHT STATEMENT ..................................................................................... 7 ACKNOWLEDGEMENTS ......................................................................................... 8 1 INTRODUCTION ................................................................................................ 9 1.1 Research Objectives and Questions ............................................................. 11 1.2 Contributions to Knowledge ........................................................................ 12 1.3 Thesis Overview........................................................................................... 13 2 REVIEW OF RAINBOW OPTIONS AND THE COMMODITY CONTEXT .................................................................................................................
    [Show full text]
  • The Promise and Peril of Real Options
    1 The Promise and Peril of Real Options Aswath Damodaran Stern School of Business 44 West Fourth Street New York, NY 10012 [email protected] 2 Abstract In recent years, practitioners and academics have made the argument that traditional discounted cash flow models do a poor job of capturing the value of the options embedded in many corporate actions. They have noted that these options need to be not only considered explicitly and valued, but also that the value of these options can be substantial. In fact, many investments and acquisitions that would not be justifiable otherwise will be value enhancing, if the options embedded in them are considered. In this paper, we examine the merits of this argument. While it is certainly true that there are options embedded in many actions, we consider the conditions that have to be met for these options to have value. We also develop a series of applied examples, where we attempt to value these options and consider the effect on investment, financing and valuation decisions. 3 In finance, the discounted cash flow model operates as the basic framework for most analysis. In investment analysis, for instance, the conventional view is that the net present value of a project is the measure of the value that it will add to the firm taking it. Thus, investing in a positive (negative) net present value project will increase (decrease) value. In capital structure decisions, a financing mix that minimizes the cost of capital, without impairing operating cash flows, increases firm value and is therefore viewed as the optimal mix.
    [Show full text]
  • Options Trading Strategies: Complete Guide to Getting Started and Making Money with Stock Options
    Options Trading Strategies Complete Guide to Getting Started and Making Money with Stock Options Scott J. Danes Dylanna Publishing Copyright © 2014 by Scott J. Danes All rights reserved. This book or any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of the publisher except for the use of brief quotations in a book review. Dylanna Publishing First edition: 2014 Disclaimer This book is for informational purposes only. The views expressed are those of the author alone, and should not be taken as expert, legal, or medical advice. The reader is responsible for his or her own actions. Every attempt has been made to verify the accuracy of the information in this publication. However, neither the author nor the publisher assumes any responsibility for errors, omissions, or contrary interpretation of the material contained herein. Neither the author or the publisher assumes any responsibility or liability whatsoever on the behalf of the reader or purchaser of this material. Contents Introduction Options 101 What Are Options? Buying and Selling Options Advantages of Options Trading Leverage Risk Limitation—Hedging Disadvantages of Options Trading Levels of Risk Intrinsic Value Time Decay Taxes Types and Styles of Options Call Options Put Options Using Call and Put Options to Make a Profit Styles of Options American Options European Options Exotic Options LEAPS Index Options Option Prices and Valuation In-The-Money (ITM) At-The-Money (ATM) Out-of-The-Money (OTM) Intrinsic Value versus
    [Show full text]
  • Option Greeks Demystified
    Webinar Presentation Option Greeks Demystified Presented by Trading Strategy Desk 1 Fidelity Brokerage Services, Member NYSE, SIPC, 900 Salem Street, Smithfield, RI 02917. © 2016 FMR LLC. All rights reserved. 764207.1.0 Disclosures Options trading entails significant risk and is not appropriate for all investors. Certain complex options strategies carry additional risk. Before trading options, please read Characteristics and Risks of Standardized Options, and call 800-544- 5115 to be approved for options trading. Supporting documentation for any claims, if applicable, will be furnished upon request. Examples in this presentation do not include transaction costs (commissions, margin interest, fees) or tax implications, but they should be considered prior to entering into any transactions. The information in this presentation, including examples using actual securities and price data, is strictly for illustrative and educational purposes only and is not to be construed as an endorsement, recommendation. Active Trader Pro PlatformsSM is available to customers trading 36 times or more in a rolling 12-month period; customers who trade 120 times or more have access to Recognia anticipated events and Elliott Wave analysis. Greeks are mathematical calculations used to determine the effect of various factors on options. Goal of this webinar Demystify what Options Greeks are and explain how they are used in plain English. What we will cover: What the Greeks are What the Greeks tell us How the Greeks can help with planning option trades How the Greeks can help with managing option trades The Greeks What the Greeks are: • Delta • Gamma • Vega • Theta • Rho But what do they mean? Greeks What do they tell me? In simplest terms, Greeks give traders a theoretical way to judge their exposure to various options pricing inputs.
    [Show full text]
  • White Paper Volatility: Instruments and Strategies
    White Paper Volatility: Instruments and Strategies Clemens H. Glaffig Panathea Capital Partners GmbH & Co. KG, Freiburg, Germany July 30, 2019 This paper is for informational purposes only and is not intended to constitute an offer, advice, or recommendation in any way. Panathea assumes no responsibility for the content or completeness of the information contained in this document. Table of Contents 0. Introduction ......................................................................................................................................... 1 1. Ihe VIX Index .................................................................................................................................... 2 1.1 General Comments and Performance ......................................................................................... 2 What Does it mean to have a VIX of 20% .......................................................................... 2 A nerdy side note ................................................................................................................. 2 1.2 The Calculation of the VIX Index ............................................................................................. 4 1.3 Mathematical formalism: How to derive the VIX valuation formula ...................................... 5 1.4 VIX Futures .............................................................................................................................. 6 The Pricing of VIX Futures ................................................................................................
    [Show full text]
  • Straddles and Strangles to Help Manage Stock Events
    Webinar Presentation Using Straddles and Strangles to Help Manage Stock Events Presented by Trading Strategy Desk 1 Fidelity Brokerage Services LLC ("FBS"), Member NYSE, SIPC, 900 Salem Street, Smithfield, RI 02917 690099.3.0 Disclosures Options’ trading entails significant risk and is not appropriate for all investors. Certain complex options strategies carry additional risk. Before trading options, please read Characteristics and Risks of Standardized Options, and call 800-544- 5115 to be approved for options trading. Supporting documentation for any claims, if applicable, will be furnished upon request. Examples in this presentation do not include transaction costs (commissions, margin interest, fees) or tax implications, but they should be considered prior to entering into any transactions. The information in this presentation, including examples using actual securities and price data, is strictly for illustrative and educational purposes only and is not to be construed as an endorsement, or recommendation. 2 Disclosures (cont.) Greeks are mathematical calculations used to determine the effect of various factors on options. Active Trader Pro PlatformsSM is available to customers trading 36 times or more in a rolling 12-month period; customers who trade 120 times or more have access to Recognia anticipated events and Elliott Wave analysis. Technical analysis focuses on market action — specifically, volume and price. Technical analysis is only one approach to analyzing stocks. When considering which stocks to buy or sell, you should use the approach that you're most comfortable with. As with all your investments, you must make your own determination as to whether an investment in any particular security or securities is right for you based on your investment objectives, risk tolerance, and financial situation.
    [Show full text]
  • FINANCIAL RISK the GREEKS the Whole of This Presentation Is As A
    FINANCIAL RISK THE GREEKS The whole of this presentation is as a result of the collective efforts of both participants. MICHAEL AGYAPONG BOATENG Email: [email protected] MAVIS ASSIBEY-YEBOAH Email: [email protected] DECEMBER 1, 2011 Contents 1. INTRODUCTION 3 2. THE BLACK-SCHOLES MODEL 3 3. THE GREEKS 4 4. HIGHER-ORDER GREEKS 7 5. CONCLUSION 8 6. STUDY GUIDE 8 7. REFERENCES 8 2 1. INTRODUCTION The price of a single option or a position involving multiple options as the market changes is very difficult to predict. This results from the fact that price does not always move in correspondence with the price of the underlying asset. As such, it is of major interest to understand factors that contribute to the movement in price of an option, and what effect they have. Most option traders therefore turn to the Greeks which provide a means in measuring the sensitivity of an option price by quantifying the factors. The Greeks are so named because they are often denoted by Greek letters. The Greeks, as vital tools in risk management measures sensitivity of the value of the portfolio relative to a small change in a given underlying parameter. This treats accompanying risks in isolation to rebalance the portfolio accordingly so as to achieve a desirable exposure. In this project, the derivation and analysis of the Greeks will be based on the Black-Scholes model. This is because, they are easy to calculate, and are very useful for derivatives traders, especially those who seek to hedge their portfolios from adverse changes in market conditions.
    [Show full text]
  • Greece's Sovereign Debt and Economic Realism
    abcd POLICY INSIGHT No.90 June 2017 Greece’s sovereign debt and economic realism Jeremy Bulow and John Geanakoplos Stanford Business School; Yale University Introduction still-unspecified debt relief measures that would The problem make the remaining debt repayable. Meanwhile, unrest and labour strife remain high in Greece, and reek unemployment currently stands at potential foreign investors are still scared off by the 23% (Hellencic Statistical Authority 2016), uncertainty surrounding the debt. The creditors Gand has exceeded 20% for five years. have yet to receive any net payments, and all the Greek GDP is down 25% from its peak in 2009, ministers of Europe are obliged to attend to the and infrastructure investment has been almost Greek debt problem, instead of to more pressing nonexistent over the ensuing seven years. Young issues like terrorism, Brexit, Putin, Trump, and the people have been emigrating in droves, exacerbating refugee crisis. More troubling, this is just a replay what was already one of the most alarming old/ of the same exhausting scenario we have seen young ratios in the world. Capital flight has cost repeated time and again. the banks roughly half their deposits, while half their loans are non-performing. The sovereign We present our analysis of how sophisticated and debt/GDP is almost 180%; worse, the debt is owed experienced negotiators like the IMF, the Eurozone almost entirely to foreigners, and GDP is stated leadership, and by now even the Greeks, could have in what, for Greece, is an over-valued currency.1 let negotiations drag out for so many years.
    [Show full text]