Darwin's Barnacle
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evolutionary History of Inversions in the Direction of Architecture-Driven
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.09.085712; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Evolutionary history of inversions in the direction of architecture- driven mutational pressures in crustacean mitochondrial genomes Dong Zhang1,2, Hong Zou1, Jin Zhang3, Gui-Tang Wang1,2*, Ivan Jakovlić3* 1 Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China. 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Bio-Transduction Lab, Wuhan 430075, China * Corresponding authors Short title: Evolutionary history of ORI events in crustaceans Abbreviations: CR: control region, RO: replication of origin, ROI: inversion of the replication of origin, D-I skew: double-inverted skew, LBA: long-branch attraction bioRxiv preprint doi: https://doi.org/10.1101/2020.05.09.085712; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Inversions of the origin of replication (ORI) of mitochondrial genomes produce asymmetrical mutational pressures that can cause artefactual clustering in phylogenetic analyses. It is therefore an absolute prerequisite for all molecular evolution studies that use mitochondrial data to account for ORI events in the evolutionary history of their dataset. -
Cumulative Effects of Multiple Stressors: an Invasive Oyster and Nutrient Enrichment Reduce Subsequent Invasive Barnacle Recruitment
Journal of Experimental Marine Biology and Ecology 486 (2017) 322–327 Contents lists available at ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Cumulative effects of multiple stressors: An invasive oyster and nutrient enrichment reduce subsequent invasive barnacle recruitment Siobhan R. Vye a,b,⁎,1,MarkC.Emmersona,b,c,JaimieT.A.Dicka,b,c, Nessa E. O'Connor a,b,c a School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK b Queen's University Marine Laboratory, 12-13 The Strand, Portaferry, Co. Down, Northern Ireland BT22 1PF, UK c Institute for Global Food Security, Queen's University Belfast, 18-30 Malone Road, Belfast BT9 5BN, UK article info abstract Article history: Studies identifying interactions between biological invasions and other stressors have generally focussed on Received 12 February 2016 quantifying their cumulative effects on mature species assemblages. In benthic systems, however, early life his- Received in revised form 21 June 2016 tory processes are key determinants of assemblage structure and functioning. This study tested whether the pres- Accepted 24 October 2016 ence of an invasive species affected early life history processes of two common barnacle species and whether this Available online xxxx was affected by a second common stressor, nutrient enrichment. The results of a field experiment identified and characterised the effects of an invasive oyster, Crassostrea gigas, on the early life history processes of the two bar- Keywords: Multiple stressors nacle species under ambient and enriched nutrient conditions. In the presence C. gigas, the invasive barnacle Crassostrea gigas Austrominius modestus, had a lower recruitment rate, however, there was no effect of the presence of C. -
Effect of Removal of Organic Material on Stable Isotope Ratios in Skeletal Carbonate from Taxonomic Groups with Complex Mineralogies
Received: 19 May 2020 Revised: 16 July 2020 Accepted: 17 July 2020 DOI: 10.1002/rcm.8901 RESEARCH ARTICLE Effect of removal of organic material on stable isotope ratios in skeletal carbonate from taxonomic groups with complex mineralogies Marcus M. Key Jr1 | Abigail M. Smith2 | Niomi J. Phillips1 | Jeffrey S. Forrester3 1Department of Earth Sciences, P.O. Box 1773, Dickinson College, Carlisle, PA, Rationale: Stable oxygen and carbon isotope ratios are one of the most accurate 17013-2896, USA ways of determining environmental changes in the past, which are used to predict 2Department of Marine Science, University of Otago, P.O. Box 56, Dunedin, 9054, future environmental change. Biogenic carbonates from marine organisms are the New Zealand most common source of samples for stable isotope analysis. Before they are 3 Department of Mathematics and Computer analyzed by mass spectrometry, any organic material is traditionally removed by one Science, P.O. Box 1773, Dickinson College, Carlisle, PA, 17013-2896, USA of three common pretreatment methods: roasting, bleaching, or with hydrogen peroxide at various strengths and durations. Correspondence 18 13 Marcus M. Key, Jr, Department of Earth Methods: This study compares δ O and δ C values in a control with no Sciences, P.O. Box 1773, Dickinson College, pretreatment with those from five different pretreatment methods using Carlisle, PA 17013-2896, USA. Email: [email protected] conventional acid digestion mass spectrometry. The objectives are to: assess the impact of the most common pretreatment methods on δ18O and δ13C values from Funding information Atlantic Richfield Foundation Research Award (1) taxonomically underrepresented groups in previous studies, and (2) those that of Dickinson College; Research and precipitate a wide range of biomineralogies, in the debate of whether to pretreat or Development Committee of Dickinson College not to pretreat. -
University of Cape Town
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Taxonomy, Systematics and Biogeography of South African Cirripedia (Thoracica) Aiden Biccard Town A thesis submitted in fulfilment of the degreeCape of Master of Science in the Department of Zoology, Faculty of Science, University of Cape Town Supervisor Prof. Charles L. Griffiths University 1 Town “and whatever the man called every livingCape creature, that was its name.” - Genesis 2:19 of University 2 Plagiarism declaration This dissertation documents the results of original research carried out at the Marine Biology Research Centre, Zoology Department, University of Cape Town. This work has not been submitted for a degree at any other university and any assistance I received is fully acknowledged. The following paper is included in Appendix B for consideration by the examiner. As a supervisor of the project undertaken by T. O. Whitehead, I participated in all of the field work and laboratory work involved for the identification of specimens and played a role in the conceptualisation of the project. Figure 1 was compiled by me. Town Whitehead, T. O., Biccard, A. and Griffiths, C. L., 2011. South African pelagic goose barnacles (Cirripedia, Thoracica): substratum preferences and influences of plastic debris on abundance and distribution. Crustaceana, 84(5-6): 635-649. -
Ecology of the New Zealand Rocky Shore Community
Ecology of the New Zealand Rocky Shore Community A Resource for NCEA Level 2 Biology Darren Smith Ecology of the New Zealand Rocky Shore Community: A Resource for NCEA Level 2 Biology Author: Darren Smith Publisher: New Zealand Marine Studies Centre Address: 185 Hatchery Road, Portobello, Dunedin 9014 ISBN: 978-0-473-23177-4 (PDF) ISBN: 978-0-473-23176-7 (Softcover) January 2013 FOREWORD The New Zealand Marine Studies Centre launched a nationwide citizen science project in Seaweek 2013. Anyone can take part in this project which aims to monitor biodiversity and changes in the New Zealand seashore over time. There are two ways of taking part in the project 1. Marine Metre Squared is a simple way for individuals, families, schools and community groups to monitor the shore. 2. Seashore Survey is aimed at secondary school students to tie in with NCEA standards. This resource book is intended to assist teachers of NCEA Level 2 biology to carry out studies of the New Zealand rocky shore. Darren Smith developed this resource when he was on the Endeavour Teacher Fellowship, New Zealand Science, Mathematics and Technology Teacher Fellowship Scheme 2012. This scheme was funded by the Ministry of Science and Innovation and administered by the Royal Society of New Zealand. Darren Smith was hosted by the New Zealand Marine Studies Centre, Department of Marine Science, University of Otago. For further resources and information about the Marine Metre Squared project go to mm2.net.nz We welcome your comments and suggestions. Please email [email protected] or phone 03 479 5826. -
Elminius Modestus Global Invasive
FULL ACCOUNT FOR: Elminius modestus Elminius modestus System: Marine_terrestrial Kingdom Phylum Class Order Family Animalia Arthropoda Maxillopoda Sessilia Balanidae Common name Australian barnacle (English), New Zealand barnacle (English), Firepladet rur (Danish), Nieuw-Zeelandse zeepok (Dutch), Australseepocke (German), Sterretje (Dutch), Australische Seepocke (German), Kruisridderpok (Dutch) Synonym Austrominius modestus Similar species Summary Elminius modestus has spread successfully throughout the Western Europe coastal areas, since its introduction to the southeast coast of the Uk most probably on the hull of ships from New Zealand and /or Australia between 1940 and 1943. There are several factors that aid Elminius success as an invader. Elminius larval stages are eurythermal and euryhaline, enabling them to survive in a wide range of habitat types. E. modestus is a highly fecund species and has a short generation time. It is highly tolerant of changes in tempertaure and salinity. E. modestus compete with native barnacle species for space. It has been observed that the successful range expansion of the barnacle could be facilitated by a changing climate with warmer seas and tempertaures. view this species on IUCN Red List General Impacts Elminius modestus competes for space with the native barnacle Balanus balanoides along the coasts of Western Europe where it has spread widely (Crisp & Chipperfield 1948; Crisp 1958; Nehring, 2005; Barnes & Barnes 1960). Witte et al (2010) report that Austrominius modestus (=Elminius modestus) which was first reported on the Island of Sylt (North Sea) in 1955 and remained rare, has overtaken native barnacles Semibalanus balanoides and Balanus crenatus in abundance when surveyed in the summer of 2007. The authors suggest that this exponential increase in population numbers could be due to mild winters and warm summers over a period.\n Pathway Crisp (1958) noted two types of dispersal natural or 'marginal' dispersal at an average of 20-30 kms per year and long distance or 'remote' dispersal on the hull of a boat or ship. -
Darwin's Barnacle
Isle of Man Non Native Marine Invasive Species Alert Darwin’s Barnacle Scientific Name: Austrominius modestus Habitat: Found at all levels of the shore but is more common mid-shore and may extend to shallow sublittoral. Native to: Australasia Key ID Features: It attaches to a wide variety of substrata including rocks, stones, shells, other crustaceans and artificial structures including ships. It is more tolerant of turbidity and reduced salinity than Semibalanus balanoides and Chthamalus species and is found in estuaries as well as on open coasts where the wave exposure is not high. Elminius modestus is a small barnacle, 5-10 mm in diameter, characterised by having only 4 calcified shell plates. The body shape is low and conical with a large diamond shaped opercular aperture. In young barnacles the shell plates are smooth and the bottom margin of each has an indentation in the centre. The shell plates of older individuals have marked vertical ridges that give the barnacle an irregular, roughly circular margin. The young are opalescent greyish white in colour while the adults become drab greyish brown and eroded. Elminius modestus not only competes with endemic British species, particularly Balanus balanoides, but has colonized some sheltered and estuarine habitats not previously inhabited by them. If you see this species please record the following details: Location of species Date and time of sighting Depth of species Photographs taken ? and report to Tony Glen ([email protected]) or Philippa Tomlinson ([email protected]). . -
Barcodes of Marine Invertebrates from North Iberian Ports: Native Diversity and Resistance to Biological Invasions
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositorio Institucional Digital del IEO Marine Pollution Bulletin 112 (2016) 183–188 Contents lists available at ScienceDirect Marine Pollution Bulletin journal homepage: www.elsevier.com/locate/marpolbul Barcodes of marine invertebrates from north Iberian ports: Native diversity and resistance to biological invasions L. Miralles a, A. Ardura b, A. Arias c, Y.J. Borrell a, L. Clusa a, E. Dopico d, A. Hernandez de Rojas e, B. Lopez c, M. Muñoz-Colmenero a, A. Roca a, A.G. Valiente a, A. Zaiko f, E. Garcia-Vazquez a,⁎ a Department of Functional Biology, University of Oviedo, 33071 Oviedo, Spain b Laboratoire d'Excellence “CORAIL”, Université de Perpignan CBETM, 58 rue Paul Alduy, 66860 Perpignan Cedex, France c Department of Biology of Organisms and Systems, University of Oviedo, 33071 Oviedo, Spain d Department of Education Sciences, University of Oviedo, 33071 Oviedo, Spain e Oceanographic Institute of Spain, Avda. Príncipe de Asturias, 70 bis, 33212 Gijon, Spain f Coastal and Freshwater Group, Cawthron Institute, 98 Halifax Street East, 7010 Nelson, New Zealand article info abstract Article history: Ports are gateways for many marine organisms transported by ships worldwide, especially non-indigenous spe- Received 14 July 2016 cies (NIS). In this study carried out in North Iberian ports (Cantabrian Sea, Bay of Biscay) we have observed 38% of Received in revised form 6 August 2016 exotic macroinvertebrates. Four species, namely the barnacle Austrominius modestus, the tubeworm Ficopomatus Accepted 8 August 2016 enigmaticus, the Pacific oyster Crassostrea gigas and the pygmy mussel Xenostrobus securis, exhibited clear signs of Available online 12 August 2016 invasiveness. -
Non-Native Sessile Invertebrates in Marinas on the English Coast
Aquatic Invasions (2015) Volume 10, Issue 3: 249–264 doi: http://dx.doi.org/10.3391/ai.2015.10.3.01 Open Access © 2015 The Author(s). Journal compilation © 2015 REABIC Research Article Unheralded arrivals: non-native sessile invertebrates in marinas on the English coast John D.D. Bishop*, Christine A. Wood, Anna L.E. Yunnie and Carly A. Griffiths The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, Devon, UK E-mail: [email protected] (JDDB), [email protected] (CAW), [email protected] (ALEY), [email protected] (CAG) *Corresponding author Received: 10 December 2014 / Accepted: 6 March 2015 / Published online: 23 March 2015 Handling editor: Amy Fowler Abstract Between 2005 and 2012, 61 marinas and harbours around the English coast were surveyed to record the occurrence of non-native species (NNS) of sessile invertebrates. From these surveys, geographic distributions are described for eight species of ascidians, six bryozoans and five other species. A mean of 6.7 sessile invertebrate NNS per site (range 0–13 species) was recorded. At the 43 sites on the English Channel coast, the mean was 7.8 NNS per site, and all of the ten English sites that had ≥ 10 NNS were in the western or central region of the Channel coast. Ten sites on the Channel coast surveyed in 2004 were re-visited at least once in 2009 or 2010, and the mean number of sessile invertebrate NNS had increased from 6.0 to 7.6 species per site. Combining data from all visits in 2005–2012 for the sites surveyed in 2004, the mean number of NNS recorded per site rose to 9.2. -
LIST of AQUATIC ALIEN SPECIES of the IBERIAN PENINSULA (2020) Updated List of Aquatic Alien Species Introduced and Established in Iberian Inland Waters
Red-eared slider (Trachemys scripta) © Javier Murcia Requena LIST OF AQUATIC ALIEN SPECIES OF THE IBERIAN PENINSULA (2020) Updated list of aquatic alien species introduced and established in Iberian inland waters Authors Oliva-Paterna F.J., Ribeiro F., Miranda R., Anastácio P.M., García-Murillo P., Cobo F., Gallardo B., García-Berthou E., Boix D., Medina L., Morcillo F., Oscoz J., Guillén A., Aguiar F., Almeida D., Arias A., Ayres C., Banha F., Barca S., Biurrun I., Cabezas M.P., Calero S., Campos J.A., Capdevila-Argüelles L., Capinha C., Carapeto A., Casals F., Chainho P., Cirujano S., Clavero M., Cuesta J.A., Del Toro V., Encarnação J.P., Fernández-Delgado C., Franco J., García-Meseguer A.J., Guareschi S., Guerrero A., Hermoso V., Machordom A., Martelo J., Mellado-Díaz A., Moreno J.C., Oficialdegui F.J., Olivo del Amo R., Otero J.C., Perdices A., Pou-Rovira Q., Rodríguez-Merino A., Ros M., Sánchez-Gullón E., Sánchez M.I., Sánchez-Fernández D., Sánchez-González J.R., Soriano O., Teodósio M.A., Torralva M., Vieira-Lanero R., Zamora-López, A. & Zamora-Marín J.M. LIFE INVASAQUA – TECHNICAL REPORT LIFE INVASAQUA – TECHNICAL REPORT Pumpkinseed (Lepomis gibbosus) © Bernard Dupont.. CC-BY-SA-2.0 5 LIST OF AQUATIC ALIEN SPECIES OF THE IBERIAN PENINSULA (2020) Updated list of aquatic alien species introduced and established in Iberian inland waters LIFE INVASAQUA - Aquatic Invasive Alien Species of Freshwater and Estuarine Systems: Awareness and Prevention in the Iberian Peninsula. LIFE17 GIE/ES/000515 This publication is a Technical report by the European Project LIFE INVASAQUA (LIFE17 GIE/ES/000515). -
Does Climatic Warming Explain Why an Introduced Barnacle Finally Takes
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Electronic Publication Information Center Biol Invasions (2010) 12:3579–3589 DOI 10.1007/s10530-010-9752-5 ORIGINAL PAPER Does climatic warming explain why an introduced barnacle finally takes over after a lag of more than 50 years? Sophia Witte • Christian Buschbaum • Justus E. E. van Beusekom • Karsten Reise Received: 3 June 2009 / Accepted: 29 March 2010 / Published online: 21 April 2010 Ó Springer Science+Business Media B.V. 2010 Abstract Invading alien species may have to await and several warm summers in a row has led to an appropriate conditions before developing from a rare exponential population growth in A. modestus. addition to the recipient community to a dominance over native species. Such a retarded invasion seems Keywords Alien species Á Austrominius modestus Á to have happened with the antipodean cirripede Invasion Á Climate change Á North Sea crustacean Austrominius modestus Darwin, formerly known as Elminius modestus, at its northern range in Europe due to climatic change. This barnacle was introduced to southern Britain almost seven decades ago, and from there spread north and south. At the Introduction island of Sylt in the North Sea, the first A. modestus were observed already in 1955 but this alien Translocation of species across natural barriers by remained rare until recently, when in summer of human carriers has become a process of increasing 2007 it had overtaken the native barnacles Semibal- global importance in aquatic coastal ecosystems anus balanoides and Balanus crenatus in abundance. (Carlton 1985; Grosholz 2002). -
Klaipėda University Coastal Research and Planning Institute
KLAIPĖDA UNIVERSITY COASTAL RESEARCH AND PLANNING INSTITUTE ALEKSAS NARŠČIUS DEVELOPMENT AND APPLICATION OF THE INFORMATION SYSTEMS ON AQUATIC NON-INDIGENOUS SPECIES Doctoral dissertation Biomedical sciences, ecology and environmental sciences (03B), hydrobiology, marine biology, aquatic ecology, limnology (B260) Klaipėda, 2013 Dissertation prepared 2008–2012 at Klaipėda University, Coastal Research and Planning Institute. Supervisor: prof. habil. dr. Sergej Olenin (Klaipėda University; Biomedical Sciences, Ecology and Environmental Sciences – 03B). TABLE OF CONTENTS 1. INTRODUCTION .............................................................................................. 5 2. LITERATURE REVIEW .................................................................................. 15 2.1. Essential features of a bioinvasion process .......................................................... 15 2.1.1. Non-indigenous, cryptogenic and invasive alien species .................................. 15 2.1.2. Invasion process, introduction pathways and vectors ....................................... 18 2.1.3. Understanding impacts of invasive alien species .............................................. 20 2.2. Sharing biological invasion data .......................................................................... 23 2.2.1. Data sharing needs and problems ...................................................................... 24 2.2.2. Publically available NIS information sources ................................................... 25 2.2.3. Towards