Does Climatic Warming Explain Why an Introduced Barnacle Finally Takes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Appendix 1 Table A1
OIK-00806 Kordas, R. L., Dudgeon, S., Storey, S., and Harley, C. D. G. 2014. Intertidal community responses to field-based experimental warming. – Oikos doi: 10.1111/oik.00806 Appendix 1 Table A1. Thermal information for invertebrate species observed on Salt Spring Island, BC. Species name refers to the species identified in Salt Spring plots. If thermal information was unavailable for that species, information for a congeneric from same region is provided (species in parentheses). Response types were defined as; optimum - the temperature where a functional trait is maximized; critical - the mean temperature at which individuals lose some essential function (e.g. growth); lethal - temperature where a predefined percentage of individuals die after a fixed duration of exposure (e.g., LT50). Population refers to the location where individuals were collected for temperature experiments in the referenced study. Distribution and zonation information retrieved from (Invertebrates of the Salish Sea, EOL) or reference listed in entry below. Other abbreviations are: n/g - not given in paper, n/d - no data for this species (or congeneric from the same geographic region). Invertebrate species Response Type Temp. Medium Exposure Population Zone NE Pacific Distribution Reference (°C) time Amphipods n/d for NE low- many spp. worldwide (Gammaridea) Pacific spp high Balanus glandula max HSP critical 33 air 8.5 hrs Charleston, OR high N. Baja – Aleutian Is, Berger and Emlet 2007 production AK survival lethal 44 air 3 hrs Vancouver, BC Liao & Harley unpub Chthamalus dalli cirri beating optimum 28 water 1hr/ 5°C Puget Sound, WA high S. CA – S. Alaska Southward and Southward 1967 cirri beating lethal 35 water 1hr/ 5°C survival lethal 46 air 3 hrs Vancouver, BC Liao & Harley unpub Emplectonema gracile n/d low- Chile – Aleutian Islands, mid AK Littorina plena n/d high Baja – S. -
Evolutionary History of Inversions in the Direction of Architecture-Driven
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.09.085712; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Evolutionary history of inversions in the direction of architecture- driven mutational pressures in crustacean mitochondrial genomes Dong Zhang1,2, Hong Zou1, Jin Zhang3, Gui-Tang Wang1,2*, Ivan Jakovlić3* 1 Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China. 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Bio-Transduction Lab, Wuhan 430075, China * Corresponding authors Short title: Evolutionary history of ORI events in crustaceans Abbreviations: CR: control region, RO: replication of origin, ROI: inversion of the replication of origin, D-I skew: double-inverted skew, LBA: long-branch attraction bioRxiv preprint doi: https://doi.org/10.1101/2020.05.09.085712; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Inversions of the origin of replication (ORI) of mitochondrial genomes produce asymmetrical mutational pressures that can cause artefactual clustering in phylogenetic analyses. It is therefore an absolute prerequisite for all molecular evolution studies that use mitochondrial data to account for ORI events in the evolutionary history of their dataset. -
Does the Acorn Barnacle Balanus Glandula Exhibit Predictable Gradients in Metabolic Performance Across the Intertidal Zone?
Warren J. Baker Endowment for Excellence in Project-Based Learning Robert D. Koob Endowment for Student Success FINAL REPORT Final reports will be published on the Cal Poly Digital Commons website(http://digitalcommons.calpoly.edu). I. Project Title Does the acorn barnacle Balanus glandula exhibit predictable gradients in metabolic performance across the intertidal zone? II. Project Completion Date 2/2019 III. Student(s), Department(s), and Major(s) (1) Kali Horn, Biological Sciences Department, M.S. Biological Sciences IV. Faculty Advisor and Department Kristin Hardy, Biological Sciences Department V. Cooperating Industry, Agency, Non-Profit, or University Organization(s) NA VI. Executive Summary Using funding from the Baker-Koob endowment, I successfully completed an experiment looking at metabolic variation in the common acorn barnacle, Balanus glandula, across tidal heights. We characterized the temperature profile across the zone as well to have data explicitly describing the abiotic variability from the upper intertidal zone to the low. Myself and many undergraduates collected barnacles from the top middle and bottom of the B.glandula distribution and ran the individuals through a suite of experiments to characterize the ‘metabolic phenotype’ . We defined the metabolic phenotype with a comprehensive suite of biochemical (e.g., citrate synthase and lactate dehydrogenase activity), physiological (VO2, aerobic scope) and behavioral (feeding rate) indices of metabolism. After removal from the intertidal zone, barnacles were placed in our intermittent respirometry system to calculate an average oxygen consumption rate over a 24h period. During the first two hours of the experiment, I conducted a behavioral observation to determine overall activity and feeding rate. -
Balanus Glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia
Phylum: Arthropoda, Crustacea Balanus glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia Order: Thoracica, Sessilia, Balanomorpha Acorn barnacle Family: Balanoidea, Balanidae, Balaninae Description (the plate overlapping plate edges) and radii Size: Up to 3 cm in diameter, but usually (the plate edge marked off from the parietes less than 1.5 cm (Ricketts and Calvin 1971; by a definite change in direction of growth Kozloff 1993). lines) (Fig. 3b) (Newman 2007). The plates Color: Shell usually white, often irregular themselves include the carina, the carinola- and color varies with state of erosion. Cirri teral plates and the compound rostrum (Fig. are black and white (see Plate 11, Kozloff 3). 1993). Opercular Valves: Valves consist of General Morphology: Members of the Cirri- two pairs of movable plates inside the wall, pedia, or barnacles, can be recognized by which close the aperture: the tergum and the their feathery thoracic limbs (called cirri) that scutum (Figs. 3a, 4, 5). are used for feeding. There are six pairs of Scuta: The scuta have pits on cirri in B. glandula (Fig. 1). Sessile barna- either side of a short adductor ridge (Fig. 5), cles are surrounded by a shell that is com- fine growth ridges, and a prominent articular posed of a flat basis attached to the sub- ridge. stratum, a wall formed by several articulated Terga: The terga are the upper, plates (six in Balanus species, Fig. 3) and smaller plate pair and each tergum has a movable opercular valves including terga short spur at its base (Fig. 4), deep crests for and scuta (Newman 2007) (Figs. -
Alien Marine Invertebrates of Hawaii
BARNACLE Balanus amphitrite (Darwin, 1854) Striped barnacle Phylum Arthropoda Subphylum Crustacea Class Maxillopoda Subclass Cirripedia Order Thoracica Family Balanidae Photo by R. DeFelice DESCRIPTION HABITAT Balanus amphitrite is a small, conical, sessile barnacle Very common in the intertidal fouling communities of (to about 1.5 cm diameter). Color is whitish with purple harbors and protected embayments. The live attached to or brown longitudinal stripes. Surface of test plates are any available hard surface, including rocks, pier pilings, longitudinally ribbed. The interlocking tergum and ship hull, oyster shells, and mangrove roots. scutum, the paired structures which cover the animal inside are as pictured below. A similar species, Balanus reticulatus Utinomi, is also an introduced species and commonly occurs with B. amphitrite. It also has longitudinal purple or brown stripes, but these stripes are intersected by horizontal grooves, giving the surface of the test plates a rough reticulated striation, unlike B. amphitrite. It can also be distinguished by examination of the tergum and scutum pictured below. Note the more sharply pointed apex of the tergum and the elongated and narrower tergum spur Balanus retculatus. (A) Scutum. (B) Tergum. of B. reticulatus. DISTRIBUTION HAWAIIAN ISLANDS Throughout the main Hawaiian Islands NATIVE RANGE Southwestern Pacific and Indian Ocean PRESENT DISTRIBUTION World-wide in warm and temperate seas spur MECHANISM OF INTRODUCTION Balanus amphitrite. (A) Scutum. (B) Tergum. Unintentional, as fouling on ships hulls © Hawaii Biological Survey 2001 B-35 Balanus amphitrite IMPACT REMARKS Barnacles are a serious fouling problem on ship bot- This now widespread barnacle of southern hemisphere toms, buoys, and pilings. The ecological impact of this origins was first collected in 1902 in Honolulu Harbor. -
Balanus Trigonus
Nauplius ORIGINAL ARTICLE THE JOURNAL OF THE Settlement of the barnacle Balanus trigonus BRAZILIAN CRUSTACEAN SOCIETY Darwin, 1854, on Panulirus gracilis Streets, 1871, in western Mexico e-ISSN 2358-2936 www.scielo.br/nau 1 orcid.org/0000-0001-9187-6080 www.crustacea.org.br Michel E. Hendrickx Evlin Ramírez-Félix2 orcid.org/0000-0002-5136-5283 1 Unidad académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México. A.P. 811, Mazatlán, Sinaloa, 82000, Mexico 2 Oficina de INAPESCA Mazatlán, Instituto Nacional de Pesca y Acuacultura. Sábalo- Cerritos s/n., Col. Estero El Yugo, Mazatlán, 82112, Sinaloa, Mexico. ZOOBANK http://zoobank.org/urn:lsid:zoobank.org:pub:74B93F4F-0E5E-4D69- A7F5-5F423DA3762E ABSTRACT A large number of specimens (2765) of the acorn barnacle Balanus trigonus Darwin, 1854, were observed on the spiny lobster Panulirus gracilis Streets, 1871, in western Mexico, including recently settled cypris (1019 individuals or 37%) and encrusted specimens (1746) of different sizes: <1.99 mm, 88%; 1.99 to 2.82 mm, 8%; >2.82 mm, 4%). Cypris settled predominantly on the carapace (67%), mostly on the gastric area (40%), on the left or right orbital areas (35%), on the head appendages, and on the pereiopods 1–3. Encrusting individuals were mostly small (84%); medium-sized specimens accounted for 11% and large for 5%. On the cephalothorax, most were observed in branchial (661) and orbital areas (240). Only 40–41 individuals were found on gastric and cardiac areas. Some individuals (246), mostly small (95%), were observed on the dorsal portion of somites. -
Settlement and Succession on Rocky Shores at Auckland, North Island, New Zealand
ISSN 0083-7903, 70 (Print) ISSN 2538-1016; 70 (Online) Settlement and Succession on Rocky Shores at Auckland, North Island, New Zealand by PENELOPE A. LUCKENS New Zealand Oceanographic.Institute Memoir No. 70 1976 NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH Settlement and Succession on Rocky Shores at Auckland, North Island, New Zealand by PENELOPE A. LUCKENS New Zealand Oceanographic Institute, Wellington New Zealand Oceanographic Institute Memoir No. 70 1976 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Citation according to World List of Scientific Periodicals ( 4th edn.): Mem. N.Z. oceanogr. Inst. 70 New Zealand Oceanographic Institute Memoir No. 70 ISSN 0083-7903 Edited by Q. W. Ruscoe and D. J. Zwartz, Science Information Division, DSIR Received for publication May 1969 © Crown Copyright 1976 A. R. SHEARER, GOVERNMENT PRINTER, WELLINGTON, NEW ZEALAND - 1976 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Abstract page 5 Introduction .. 5 The experimental areas Location and physical structure Tidal phenomena 9 Terminology 9 General zonation pattern at the localities sampled 9 Methods 11 Settlement seasons 12 Organisms settling in the experimental areas (Table 1) 15 Factors affecting settlement of some of the organisms 42 Changes observed after clearance of the experimental areas .. 44 Temporal succession .. 60 Climax populations 60 Summary 61 Acknowledgments 61 Appendix 62 References 63 Index 64 3 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. -
Cumulative Effects of Multiple Stressors: an Invasive Oyster and Nutrient Enrichment Reduce Subsequent Invasive Barnacle Recruitment
Journal of Experimental Marine Biology and Ecology 486 (2017) 322–327 Contents lists available at ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Cumulative effects of multiple stressors: An invasive oyster and nutrient enrichment reduce subsequent invasive barnacle recruitment Siobhan R. Vye a,b,⁎,1,MarkC.Emmersona,b,c,JaimieT.A.Dicka,b,c, Nessa E. O'Connor a,b,c a School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK b Queen's University Marine Laboratory, 12-13 The Strand, Portaferry, Co. Down, Northern Ireland BT22 1PF, UK c Institute for Global Food Security, Queen's University Belfast, 18-30 Malone Road, Belfast BT9 5BN, UK article info abstract Article history: Studies identifying interactions between biological invasions and other stressors have generally focussed on Received 12 February 2016 quantifying their cumulative effects on mature species assemblages. In benthic systems, however, early life his- Received in revised form 21 June 2016 tory processes are key determinants of assemblage structure and functioning. This study tested whether the pres- Accepted 24 October 2016 ence of an invasive species affected early life history processes of two common barnacle species and whether this Available online xxxx was affected by a second common stressor, nutrient enrichment. The results of a field experiment identified and characterised the effects of an invasive oyster, Crassostrea gigas, on the early life history processes of the two bar- Keywords: Multiple stressors nacle species under ambient and enriched nutrient conditions. In the presence C. gigas, the invasive barnacle Crassostrea gigas Austrominius modestus, had a lower recruitment rate, however, there was no effect of the presence of C. -
Assessing the Relationship Between Propagule Pressure and Invasion Risk in Ballast Water
ASSESSING THE RELATIONSHIP BETWEEN PROPAGULE PRESSURE AND INVASION RISK IN BALLAST WATER Committee on Assessing Numeric Limits for Living Organisms in Ballast Water Water Science and Technology Board Division on Earth and Life Studies THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu PREPUBLICATION COPY THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the panel responsible for the report were chosen for their special competences and with regard for appropriate balance. Support for this study was provided by the EPA under contract no. EP-C-09-003, TO#11. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the organizations or agencies that provided support for the project. International Standard Book Number X-XXX-XXXXX-X Library of Congress Catalog Card Number XX-XXXXX Additional copies of this report are available from the National Academies Press, 500 5th Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap.edu. Copyright 2011 by the National Academy of Sciences. All rights reserved. Printed in the United States of America. PREPUBLICATION COPY The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. -
Competition and Intertidal Zonation of Barnacles at Leigh, New Zealand
New Zealand Journal of Marine and Freshwater Research ISSN: 0028-8330 (Print) 1175-8805 (Online) Journal homepage: http://www.tandfonline.com/loi/tnzm20 Competition and intertidal zonation of barnacles at Leigh, New Zealand Penelope A. Luckens To cite this article: Penelope A. Luckens (1975) Competition and intertidal zonation of barnacles at Leigh, New Zealand, New Zealand Journal of Marine and Freshwater Research, 9:3, 379-394, DOI: 10.1080/00288330.1975.9515574 To link to this article: http://dx.doi.org/10.1080/00288330.1975.9515574 Published online: 30 Mar 2010. Submit your article to this journal Article views: 3556 View related articles Citing articles: 11 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnzm20 Download by: [203.118.161.175] Date: 14 February 2017, At: 22:37 1975] 379 COMPETITION AND INTERTIDAL ZONATION OF BARNACLES AT LEIGH, NEW ZEALAND PENELOPE A. LUCKENS New Zealand Oceanographic Institute, Department of Scientific and Industrial Research, P.O. Box 8009, Wellington (Received for publication 16 June 1971; revision received 12 August 1974) ABSTRACT Three species of barnacles (Chamaesipho brunnea, C, columna, and Epopella plicata) occupy a large part of the intertidal zone at Goat Island Bay, Leigh. Although settlement and growth patterns vary in the three species, intraspecific competition results mainly in reduced growth rates with increasing density. Smothering of earlier settled specimens occurs occasionally in C. columna. Competition and preferential predation by gastropods restrict C. brunnea to the upper shore. Epopella plicata and C. columna compete for settlement space. -
Effect of Removal of Organic Material on Stable Isotope Ratios in Skeletal Carbonate from Taxonomic Groups with Complex Mineralogies
Received: 19 May 2020 Revised: 16 July 2020 Accepted: 17 July 2020 DOI: 10.1002/rcm.8901 RESEARCH ARTICLE Effect of removal of organic material on stable isotope ratios in skeletal carbonate from taxonomic groups with complex mineralogies Marcus M. Key Jr1 | Abigail M. Smith2 | Niomi J. Phillips1 | Jeffrey S. Forrester3 1Department of Earth Sciences, P.O. Box 1773, Dickinson College, Carlisle, PA, Rationale: Stable oxygen and carbon isotope ratios are one of the most accurate 17013-2896, USA ways of determining environmental changes in the past, which are used to predict 2Department of Marine Science, University of Otago, P.O. Box 56, Dunedin, 9054, future environmental change. Biogenic carbonates from marine organisms are the New Zealand most common source of samples for stable isotope analysis. Before they are 3 Department of Mathematics and Computer analyzed by mass spectrometry, any organic material is traditionally removed by one Science, P.O. Box 1773, Dickinson College, Carlisle, PA, 17013-2896, USA of three common pretreatment methods: roasting, bleaching, or with hydrogen peroxide at various strengths and durations. Correspondence 18 13 Marcus M. Key, Jr, Department of Earth Methods: This study compares δ O and δ C values in a control with no Sciences, P.O. Box 1773, Dickinson College, pretreatment with those from five different pretreatment methods using Carlisle, PA 17013-2896, USA. Email: [email protected] conventional acid digestion mass spectrometry. The objectives are to: assess the impact of the most common pretreatment methods on δ18O and δ13C values from Funding information Atlantic Richfield Foundation Research Award (1) taxonomically underrepresented groups in previous studies, and (2) those that of Dickinson College; Research and precipitate a wide range of biomineralogies, in the debate of whether to pretreat or Development Committee of Dickinson College not to pretreat. -
University of Cape Town
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Taxonomy, Systematics and Biogeography of South African Cirripedia (Thoracica) Aiden Biccard Town A thesis submitted in fulfilment of the degreeCape of Master of Science in the Department of Zoology, Faculty of Science, University of Cape Town Supervisor Prof. Charles L. Griffiths University 1 Town “and whatever the man called every livingCape creature, that was its name.” - Genesis 2:19 of University 2 Plagiarism declaration This dissertation documents the results of original research carried out at the Marine Biology Research Centre, Zoology Department, University of Cape Town. This work has not been submitted for a degree at any other university and any assistance I received is fully acknowledged. The following paper is included in Appendix B for consideration by the examiner. As a supervisor of the project undertaken by T. O. Whitehead, I participated in all of the field work and laboratory work involved for the identification of specimens and played a role in the conceptualisation of the project. Figure 1 was compiled by me. Town Whitehead, T. O., Biccard, A. and Griffiths, C. L., 2011. South African pelagic goose barnacles (Cirripedia, Thoracica): substratum preferences and influences of plastic debris on abundance and distribution. Crustaceana, 84(5-6): 635-649.