Society for Music Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tonalandextratonal Functions of Theaugmented
TONAL AND EXTRATONAL FUNCTIONS OF THE AUGMENTED TRIAD IN THE HARMONIC STRUCTURE OF WEBERN'S 'DEHMEL SONGS' By ROBERT GARTH PRESTON B. Mus., Brandon University, 1982 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS in THE FACULTY OF GRADUATE STUDIES (School of Music, Music Theory) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA October 1989 © Garth Preston, 1989 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department The University of British Columbia Vancouver, Canada DE-6 (2/88) ii ABSTRACT: TONAL AND EXTRATONAL FUNCTIONS OF THE AUGMENTED TRIAD IN THE HARMONIC STRUCTURE OF WEBERN'S 'DEHMEL SONGS' The composing of the 'Dehmel Songs' marks a pivotal juncture both in Webern's oeuvre and in the history of music in general. The years that saw the birth of this cycle of five songs, 1906-8, comprise what is generally regarded as a period of transition, in the work of Schoenberg, Webern and Berg, from a 'late tonal' style of composition to an early 'atonal' style. In this study I approach the 'Dehmel Songs' from the perspective that its harmonic structure as a whole can be rendered intelligible in a theoretical way by combining a simple pitch-class-set analysis, which essentially involves graphing the pattern of recurrence of the 'augmented triad' as a motivic harmonic entity—a pattern which is in fact serial in nature-through the course of the unfolding harmonic progression, with a tonal interpretation that uses that pattern as a referential pitch-class skeleton. -
Naming a Chord Once You Know the Common Names of the Intervals, the Naming of Chords Is a Little Less Daunting
Naming a Chord Once you know the common names of the intervals, the naming of chords is a little less daunting. Still, there are a few conventions and short-hand terms that many musicians use, that may be confusing at times. A few terms are used throughout the maze of chord names, and it is good to know what they refer to: Major / Minor – a “minor” note is one half step below the “major.” When naming intervals, all but the “perfect” intervals (1,4, 5, 8) are either major or minor. Generally if neither word is used, major is assumed, unless the situation is obvious. However, when used in naming extended chords, the word “minor” usually is reserved to indicate that the third of the triad is flatted. The word “major” is reserved to designate the major seventh interval as opposed to the minor or dominant seventh. It is assumed that the third is major, unless the word “minor” is said, right after the letter name of the chord. Similarly, in a seventh chord, the seventh interval is assumed to be a minor seventh (aka “dominant seventh), unless the word “major” comes right before the word “seventh.” Thus a common “C7” would mean a C major triad with a dominant seventh (CEGBb) While a “Cmaj7” (or CM7) would mean a C major triad with the major seventh interval added (CEGB), And a “Cmin7” (or Cm7) would mean a C minor triad with a dominant seventh interval added (CEbGBb) The dissonant “Cm(M7)” – “C minor major seventh” is fairly uncommon outside of modern jazz: it would mean a C minor triad with the major seventh interval added (CEbGB) Suspended – To suspend a note would mean to raise it up a half step. -
MUSIC THEORY UNIT 5: TRIADS Intervallic Structure of Triads
MUSIC THEORY UNIT 5: TRIADS Intervallic structure of Triads Another name of an interval is a “dyad” (two pitches). If two successive intervals (3 notes) happen simultaneously, we now have what is referred to as a chord or a “triad” (three pitches) Major and Minor Triads A Major triad consists of a M3 and a P5 interval from the root. A minor triad consists of a m3 and a P5 interval from the root. Diminished and Augmented Triads A diminished triad consists of a m3 and a dim 5th interval from the root. An augmented triad consists of a M3 and an Aug 5th interval from the root. The augmented triad has a major third interval and an augmented fifth interval from the root. An augmented triad differs from a major triad because the “5th” interval is a half-step higher than it is in the major triad. The diminished triad differs from minor triad because the “5th” interval is a half-step lower than it is in the minor triad. Recommended process: 1. Memorize your Perfect 5th intervals from most root pitches (ex. A-E, B-F#, C-G, D-A, etc…) 2. Know that a Major 3rd interval is two whole steps from a root pitch If you can identify a M3 and P5 from a root, you will be able to correctly spell your Major Triads. 3. If you need to know a minor triad, adjust the 3rd of the major triad down a half step to make it minor. 4. If you need to know an Augmented triad, adjust the 5th of the chord up a half step from the MAJOR triad. -
The 17-Tone Puzzle — and the Neo-Medieval Key That Unlocks It
The 17-tone Puzzle — And the Neo-medieval Key That Unlocks It by George Secor A Grave Misunderstanding The 17 division of the octave has to be one of the most misunderstood alternative tuning systems available to the microtonal experimenter. In comparison with divisions such as 19, 22, and 31, it has two major advantages: not only are its fifths better in tune, but it is also more manageable, considering its very reasonable number of tones per octave. A third advantage becomes apparent immediately upon hearing diatonic melodies played in it, one note at a time: 17 is wonderful for melody, outshining both the twelve-tone equal temperament (12-ET) and the Pythagorean tuning in this respect. The most serious problem becomes apparent when we discover that diatonic harmony in this system sounds highly dissonant, considerably more so than is the case with either 12-ET or the Pythagorean tuning, on which we were hoping to improve. Without any further thought, most experimenters thus consign the 17-tone system to the discard pile, confident in the knowledge that there are, after all, much better alternatives available. My own thinking about 17 started in exactly this way. In 1976, having been a microtonal experimenter for thirteen years, I went on record, dismissing 17-ET in only a couple of sentences: The 17-tone equal temperament is of questionable harmonic utility. If you try it, I doubt you’ll stay with it for long.1 Since that time I have become aware of some things which have caused me to change my opinion completely. -
Discover Seventh Chords
Seventh Chords Stack of Thirds - Begin with a major or natural minor scale (use raised leading tone for chords based on ^5 and ^7) - Build a four note stack of thirds on each note within the given key - Identify the characteristic intervals of each of the seventh chords w w w w w w w w % w w w w w w w Mw/M7 mw/m7 m/m7 M/M7 M/m7 m/m7 d/m7 w w w w w w % w w w w #w w #w mw/m7 d/wm7 Mw/M7 m/m7 M/m7 M/M7 d/d7 Seventh Chord Quality - Five common seventh chord types in diatonic music: * Major: Major Triad - Major 7th (M3 - m3 - M3) * Dominant: Major Triad - minor 7th (M3 - m3 - m3) * Minor: minor triad - minor 7th (m3 - M3 - m3) * Half-Diminished: diminished triad - minor 3rd (m3 - m3 - M3) * Diminished: diminished triad - diminished 7th (m3 - m3 - m3) - In the Major Scale (all major scales!) * Major 7th on scale degrees 1 & 4 * Minor 7th on scale degrees 2, 3, 6 * Dominant 7th on scale degree 5 * Half-Diminished 7th on scale degree 7 - In the Minor Scale (all minor scales!) with a raised leading tone for chords on ^5 and ^7 * Major 7th on scale degrees 3 & 6 * Minor 7th on scale degrees 1 & 4 * Dominant 7th on scale degree 5 * Half-Diminished 7th on scale degree 2 * Diminished 7th on scale degree 7 Using Roman Numerals for Triads - Roman Numeral labels allow us to identify any seventh chord within a given key. -
Music in Theory and Practice
CHAPTER 4 Chords Harmony Primary Triads Roman Numerals TOPICS Chord Triad Position Simple Position Triad Root Position Third Inversion Tertian First Inversion Realization Root Second Inversion Macro Analysis Major Triad Seventh Chords Circle Progression Minor Triad Organum Leading-Tone Progression Diminished Triad Figured Bass Lead Sheet or Fake Sheet Augmented Triad IMPORTANT In the previous chapter, pairs of pitches were assigned specifi c names for identifi cation CONCEPTS purposes. The phenomenon of tones sounding simultaneously frequently includes group- ings of three, four, or more pitches. As with intervals, identifi cation names are assigned to larger tone groupings with specifi c symbols. Harmony is the musical result of tones sounding together. Whereas melody implies the Harmony linear or horizontal aspect of music, harmony refers to the vertical dimension of music. A chord is a harmonic unit with at least three different tones sounding simultaneously. Chord The term includes all possible such sonorities. Figure 4.1 #w w w w w bw & w w w bww w ww w w w w w w w‹ Strictly speaking, a triad is any three-tone chord. However, since western European music Triad of the seventeenth through the nineteenth centuries is tertian (chords containing a super- position of harmonic thirds), the term has come to be limited to a three-note chord built in superposed thirds. The term root refers to the note on which a triad is built. “C major triad” refers to a major Triad Root triad whose root is C. The root is the pitch from which a triad is generated. 73 3711_ben01877_Ch04pp73-94.indd 73 4/10/08 3:58:19 PM Four types of triads are in common use. -
Intervals and Transposition
CHAPTER 3 Intervals and Transposition Interval Augmented and Simple Intervals TOPICS Octave Diminished Intervals Tuning Systems Unison Enharmonic Intervals Melodic Intervals Perfect, Major, and Minor Tritone Harmonic Intervals Intervals Inversion of Intervals Transposition Consonance and Dissonance Compound Intervals IMPORTANT Tone combinations are classifi ed in music with names that identify the pitch relationships. CONCEPTS Learning to recognize these combinations by both eye and ear is a skill fundamental to basic musicianship. Although many different tone combinations occur in music, the most basic pairing of pitches is the interval. An interval is the relationship in pitch between two tones. Intervals are named by the Intervals number of diatonic notes (notes with different letter names) that can be contained within them. For example, the whole step G to A contains only two diatonic notes (G and A) and is called a second. Figure 3.1 & ww w w Second 1 – 2 The following fi gure shows all the numbers within an octave used to identify intervals: Figure 3.2 w w & w w w w 1ww w2w w3 w4 w5 w6 w7 w8 Notice that the interval numbers shown in Figure 3.2 correspond to the scale degree numbers for the major scale. 55 3711_ben01877_Ch03pp55-72.indd 55 4/10/08 3:57:29 PM The term octave refers to the number 8, its interval number. Figure 3.3 w œ œ w & œ œ œ œ Octavew =2345678=œ1 œ w8 The interval numbered “1” (two notes of the same pitch) is called a unison. Figure 3.4 & 1 =w Unisonw The intervals that include the tonic (keynote) and the fourth and fi fth scale degrees of a Perfect, Major, and major scale are called perfect. -
I. the Term Стр. 1 Из 93 Mode 01.10.2013 Mk:@Msitstore:D
Mode Стр. 1 из 93 Mode (from Lat. modus: ‘measure’, ‘standard’; ‘manner’, ‘way’). A term in Western music theory with three main applications, all connected with the above meanings of modus: the relationship between the note values longa and brevis in late medieval notation; interval, in early medieval theory; and, most significantly, a concept involving scale type and melody type. The term ‘mode’ has always been used to designate classes of melodies, and since the 20th century to designate certain kinds of norm or model for composition or improvisation as well. Certain phenomena in folksong and in non-Western music are related to this last meaning, and are discussed below in §§IV and V. The word is also used in acoustical parlance to denote a particular pattern of vibrations in which a system can oscillate in a stable way; see Sound, §5(ii). For a discussion of mode in relation to ancient Greek theory see Greece, §I, 6 I. The term II. Medieval modal theory III. Modal theories and polyphonic music IV. Modal scales and traditional music V. Middle East and Asia HAROLD S. POWERS/FRANS WIERING (I–III), JAMES PORTER (IV, 1), HAROLD S. POWERS/JAMES COWDERY (IV, 2), HAROLD S. POWERS/RICHARD WIDDESS (V, 1), RUTH DAVIS (V, 2), HAROLD S. POWERS/RICHARD WIDDESS (V, 3), HAROLD S. POWERS/MARC PERLMAN (V, 4(i)), HAROLD S. POWERS/MARC PERLMAN (V, 4(ii) (a)–(d)), MARC PERLMAN (V, 4(ii) (e)–(i)), ALLAN MARETT, STEPHEN JONES (V, 5(i)), ALLEN MARETT (V, 5(ii), (iii)), HAROLD S. POWERS/ALLAN MARETT (V, 5(iv)) Mode I. -
Andrián Pertout
Andrián Pertout Three Microtonal Compositions: The Utilization of Tuning Systems in Modern Composition Volume 1 Submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy Produced on acid-free paper Faculty of Music The University of Melbourne March, 2007 Abstract Three Microtonal Compositions: The Utilization of Tuning Systems in Modern Composition encompasses the work undertaken by Lou Harrison (widely regarded as one of America’s most influential and original composers) with regards to just intonation, and tuning and scale systems from around the globe – also taking into account the influential work of Alain Daniélou (Introduction to the Study of Musical Scales), Harry Partch (Genesis of a Music), and Ben Johnston (Scalar Order as a Compositional Resource). The essence of the project being to reveal the compositional applications of a selection of Persian, Indonesian, and Japanese musical scales utilized in three very distinct systems: theory versus performance practice and the ‘Scale of Fifths’, or cyclic division of the octave; the equally-tempered division of the octave; and the ‘Scale of Proportions’, or harmonic division of the octave championed by Harrison, among others – outlining their theoretical and aesthetic rationale, as well as their historical foundations. The project begins with the creation of three new microtonal works tailored to address some of the compositional issues of each system, and ending with an articulated exposition; obtained via the investigation of written sources, disclosure -
Brain Tumors : Practical Guide to Diagnosis and Treatment
Brain Tumors DK616x_C000a.indd 1 09/01/2006 8:49:40 AM NEUROLOGICAL DISEASE AND THERAPY Advisory Board Gordon H. Baltuch, M.D., Ph.D. Department of Neurosurgery University of Pennsylvania Philadelphia, Pennsylvania, U.S.A. Cheryl Bushnell, M.D., M.H.S. Duke Center for Cerebrovascular Disease Department of Medicine, Division of Neurology Duke University Medical Center Durham, North Carolina, U.S.A. Louis R. Caplan, M.D. Professor of Neurology Harvard University School of Medicine Beth Israel Deaconess Medical Center Boston, Massachusetts, U.S.A. Mark A. Stacy, M.D. Movement Disorders Center Duke University Medical Center Durham, North Carolina, U.S.A. Mark H. Tuszynski, M.D., Ph.D. Professor of Neurosciences Director, Center for Neural Repair University of California—San Diego La Jolla, California, U.S.A. DK616x_C000a.indd 2 09/01/2006 8:49:43 AM 1. Handbook of Parkinson’s Disease, edited by William C. Koller 2. Medical Therapy of Acute Stroke, edited by Mark Fisher 3. Familial Alzheimer’s Disease: Molecular Genetics and Clinical Perspectives, edited by Gary D. Miner, Ralph W. Richter, John P. Blass, Jimmie L. Valentine, and Linda A. Winters-Miner 4. Alzheimer’s Disease: Treatment and Long-Term Management, edited by Jeffrey L. Cummings and Bruce L. Miller 5. Therapy of Parkinson’s Disease, edited by William C. Koller and George Paulson 6. Handbook of Sleep Disorders, edited by Michael J. Thorpy 7. Epilepsy and Sudden Death, edited by Claire M. Lathers and Paul L. Schraeder 8. Handbook of Multiple Sclerosis, edited by Stuart D. Cook 9. Memory Disorders: Research and Clinical Practice, edited by Takehiko Yanagihara and Ronald C. -
Boris's Bells, by Way of Schubert and Others
Boris's Bells, By Way of Schubert and Others Mark DeVoto We define "bell chords" as different dominant-seventh chords whose roots are separated by multiples of interval 3, the minor third. The sobriquet derives from the most famous such pair of harmonies, the alternating D7 and AI? that constitute the entire harmonic substance of the first thirty-eight measures of scene 2 of the Prologue in Musorgsky's opera Boris Godunov (1874) (example O. Example 1: Paradigm of the Boris Godunov bell succession: AJ,7-D7. A~7 D7 '~~&gl n'IO D>: y 7 G: y7 The Boris bell chords are an early milestone in the history of nonfunctional harmony; yet the two harmonies, considered individually, are ofcourse abso lutely functional in classical contexts. This essay traces some ofthe historical antecedents of the bell chords as well as their developing descendants. Dominant Harmony The dominant-seventh chord is rightly recognized as the most unambiguous of the essential tonal resources in classical harmonic progression, and the V7-1 progression is the strongest means of moving harmony forward in immediate musical time. To put it another way, the expectation of tonic harmony to follow a dominant-seventh sonority is a principal component of forehearing; we assume, in our ordinary and long-tested experience oftonal music, that the tonic function will follow the dominant-seventh function and be fortified by it. So familiar is this everyday phenomenon that it hardly needs to be stated; we need mention it here only to assert the contrary case, namely, that the dominant-seventh function followed by something else introduces the element of the unexpected. -
Generalized Interval System and Its Applications
Generalized Interval System and Its Applications Minseon Song May 17, 2014 Abstract Transformational theory is a modern branch of music theory developed by David Lewin. This theory focuses on the transformation of musical objects rather than the objects them- selves to find meaningful patterns in both tonal and atonal music. A generalized interval system is an integral part of transformational theory. It takes the concept of an interval, most commonly used with pitches, and through the application of group theory, generalizes beyond pitches. In this paper we examine generalized interval systems, beginning with the definition, then exploring the ways they can be transformed, and finally explaining com- monly used musical transformation techniques with ideas from group theory. We then apply the the tools given to both tonal and atonal music. A basic understanding of group theory and post tonal music theory will be useful in fully understanding this paper. Contents 1 Introduction 2 2 A Crash Course in Music Theory 2 3 Introduction to the Generalized Interval System 8 4 Transforming GISs 11 5 Developmental Techniques in GIS 13 5.1 Transpositions . 14 5.2 Interval Preserving Functions . 16 5.3 Inversion Functions . 18 5.4 Interval Reversing Functions . 23 6 Rhythmic GIS 24 7 Application of GIS 28 7.1 Analysis of Atonal Music . 28 7.1.1 Luigi Dallapiccola: Quaderno Musicale di Annalibera, No. 3 . 29 7.1.2 Karlheinz Stockhausen: Kreuzspiel, Part 1 . 34 7.2 Analysis of Tonal Music: Der Spiegel Duet . 38 8 Conclusion 41 A Just Intonation 44 1 1 Introduction David Lewin(1933 - 2003) is an American music theorist.