Chapter 29 Dictation Handout

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 29 Dictation Handout NAME _______________________________________ Chapter 29 Dictation Exercises Section 1. Melodic Dictation You will hear melodies that are four measures in length. Both major and minor keys are possible. Each melody will contain altered tones. The key signature and time signature are provided to you on each blank staff. Click the Play button to hear each exercise. Before each melody begins, you will hear the notes of the entire scale played stepwise up and down, then you will hear the tempo counted off. Write each melody using the correct rhythm. 1. 2. 3. 4. 5. 6. page 1 Section 2. Interval Identification a. Thirds You will hear a variety of thirds. Listen to each interval and identify it as one of the listed qualities. A diminished third sounds identical to a major 2nd, and an augmented third sounds identical to a perfect 4th. 1. major 3rd minor 3rd diminished 3rd augmented 3rd 2. major 3rd minor 3rd diminished 3rd augmented 3rd 3. major 3rd minor 3rd diminished 3rd augmented 3rd 4. major 3rd minor 3rd diminished 3rd augmented 3rd 5. major 3rd minor 3rd diminished 3rd augmented 3rd 6. major 3rd minor 3rd diminished 3rd augmented 3rd 7. major 3rd minor 3rd diminished 3rd augmented 3rd 8. major 3rd minor 3rd diminished 3rd augmented 3rd 9. major 3rd minor 3rd diminished 3rd augmented 3rd 10. major 3rd minor 3rd diminished 3rd augmented 3rd b. Sixths You will hear a variety of sixths. Listen to each interval and identify it as one of the listed qualities. An augmented 6th sounds identical to a minor 7th. 1. major 6th minor 6th augmented 6th 2. major 6th minor 6th augmented 6th 3. major 6th minor 6th augmented 6th 4. major 6th minor 6th augmented 6th 5. major 6th minor 6th augmented 6th 6. major 6th minor 6th augmented 6th 7. major 6th minor 6th augmented 6th 8. major 6th minor 6th augmented 6th 9. major 6th minor 6th augmented 6th 10. major 6th minor 6th augmented 6th page 2 NAME _______________________________________ Section 3. Identify Augmented Sixth Chords in Progressions You will hear chord progressions containing augmented sixth chords. The rhythms below represent the rhythm of the chord progression. Circle each augmented sixth chord where you hear it in the progression. 1. 2. 3. 4. 5. 6. 7. page 3 8. 9. 10. page 4 .
Recommended publications
  • Tonalandextratonal Functions of Theaugmented
    TONAL AND EXTRATONAL FUNCTIONS OF THE AUGMENTED TRIAD IN THE HARMONIC STRUCTURE OF WEBERN'S 'DEHMEL SONGS' By ROBERT GARTH PRESTON B. Mus., Brandon University, 1982 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS in THE FACULTY OF GRADUATE STUDIES (School of Music, Music Theory) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA October 1989 © Garth Preston, 1989 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department The University of British Columbia Vancouver, Canada DE-6 (2/88) ii ABSTRACT: TONAL AND EXTRATONAL FUNCTIONS OF THE AUGMENTED TRIAD IN THE HARMONIC STRUCTURE OF WEBERN'S 'DEHMEL SONGS' The composing of the 'Dehmel Songs' marks a pivotal juncture both in Webern's oeuvre and in the history of music in general. The years that saw the birth of this cycle of five songs, 1906-8, comprise what is generally regarded as a period of transition, in the work of Schoenberg, Webern and Berg, from a 'late tonal' style of composition to an early 'atonal' style. In this study I approach the 'Dehmel Songs' from the perspective that its harmonic structure as a whole can be rendered intelligible in a theoretical way by combining a simple pitch-class-set analysis, which essentially involves graphing the pattern of recurrence of the 'augmented triad' as a motivic harmonic entity—a pattern which is in fact serial in nature-through the course of the unfolding harmonic progression, with a tonal interpretation that uses that pattern as a referential pitch-class skeleton.
    [Show full text]
  • Intervals and Transposition
    CHAPTER 3 Intervals and Transposition Interval Augmented and Simple Intervals TOPICS Octave Diminished Intervals Tuning Systems Unison Enharmonic Intervals Melodic Intervals Perfect, Major, and Minor Tritone Harmonic Intervals Intervals Inversion of Intervals Transposition Consonance and Dissonance Compound Intervals IMPORTANT Tone combinations are classifi ed in music with names that identify the pitch relationships. CONCEPTS Learning to recognize these combinations by both eye and ear is a skill fundamental to basic musicianship. Although many different tone combinations occur in music, the most basic pairing of pitches is the interval. An interval is the relationship in pitch between two tones. Intervals are named by the Intervals number of diatonic notes (notes with different letter names) that can be contained within them. For example, the whole step G to A contains only two diatonic notes (G and A) and is called a second. Figure 3.1 & ww w w Second 1 – 2 The following fi gure shows all the numbers within an octave used to identify intervals: Figure 3.2 w w & w w w w 1ww w2w w3 w4 w5 w6 w7 w8 Notice that the interval numbers shown in Figure 3.2 correspond to the scale degree numbers for the major scale. 55 3711_ben01877_Ch03pp55-72.indd 55 4/10/08 3:57:29 PM The term octave refers to the number 8, its interval number. Figure 3.3 w œ œ w & œ œ œ œ Octavew =2345678=œ1 œ w8 The interval numbered “1” (two notes of the same pitch) is called a unison. Figure 3.4 & 1 =w Unisonw The intervals that include the tonic (keynote) and the fourth and fi fth scale degrees of a Perfect, Major, and major scale are called perfect.
    [Show full text]
  • Generalized Interval System and Its Applications
    Generalized Interval System and Its Applications Minseon Song May 17, 2014 Abstract Transformational theory is a modern branch of music theory developed by David Lewin. This theory focuses on the transformation of musical objects rather than the objects them- selves to find meaningful patterns in both tonal and atonal music. A generalized interval system is an integral part of transformational theory. It takes the concept of an interval, most commonly used with pitches, and through the application of group theory, generalizes beyond pitches. In this paper we examine generalized interval systems, beginning with the definition, then exploring the ways they can be transformed, and finally explaining com- monly used musical transformation techniques with ideas from group theory. We then apply the the tools given to both tonal and atonal music. A basic understanding of group theory and post tonal music theory will be useful in fully understanding this paper. Contents 1 Introduction 2 2 A Crash Course in Music Theory 2 3 Introduction to the Generalized Interval System 8 4 Transforming GISs 11 5 Developmental Techniques in GIS 13 5.1 Transpositions . 14 5.2 Interval Preserving Functions . 16 5.3 Inversion Functions . 18 5.4 Interval Reversing Functions . 23 6 Rhythmic GIS 24 7 Application of GIS 28 7.1 Analysis of Atonal Music . 28 7.1.1 Luigi Dallapiccola: Quaderno Musicale di Annalibera, No. 3 . 29 7.1.2 Karlheinz Stockhausen: Kreuzspiel, Part 1 . 34 7.2 Analysis of Tonal Music: Der Spiegel Duet . 38 8 Conclusion 41 A Just Intonation 44 1 1 Introduction David Lewin(1933 - 2003) is an American music theorist.
    [Show full text]
  • 8.1.4 Intervals in the Equal Temperament The
    8.1 Tonal systems 8-13 8.1.4 Intervals in the equal temperament The interval (inter vallum = space in between) is the distance of two notes; expressed numerically by the relation (ratio) of the frequencies of the corresponding tones. The names of the intervals are derived from the place numbers within the scale – for the C-major-scale, this implies: C = prime, D = second, E = third, F = fourth, G = fifth, A = sixth, B = seventh, C' = octave. Between the 3rd and 4th notes, and between the 7th and 8th notes, we find a half- step, all other notes are a whole-step apart each. In the equal-temperament tuning, a whole- step consists of two equal-size half-step (HS). All intervals can be represented by multiples of a HS: Distance between notes (intervals) in the diatonic scale, represented by half-steps: C-C = 0, C-D = 2, C-E = 4, C-F = 5, C-G = 7, C-A = 9, C-B = 11, C-C' = 12. Intervals are not just definable as HS-multiples in their relation to the root note C of the C- scale, but also between all notes: e.g. D-E = 2 HS, G-H = 4 HS, F-A = 4 HS. By the subdivision of the whole-step into two half-steps, new notes are obtained; they are designated by the chromatic sign relative to their neighbors: C# = C-augmented-by-one-HS, and (in the equal-temperament tuning) identical to the Db = D-diminished-by-one-HS. Corresponding: D# = Eb, F# = Gb, G# = Ab, A# = Bb.
    [Show full text]
  • (Semitones and Tones). We Call These “Seconds. A
    Music 11, 7/10/06 Scales/Intervals We already know half steps and whole steps (semitones and tones). We call these “seconds.” Adjacent pitch names are always called seconds, but because the space between adjacent pitch names can vary, there are different types of second: Major second (M2) = whole step = whole tone Minor second (m2) = half step = semitone In a major scale, all the seconds are major seconds (M2) except 2: E-F and B-C are minor seconds (m2). Inversion Suppose we take the two notes that make up a second, and “flip” them over—that is, lets put the lower note up an octave, so that it lies above the other note. The distance between E-D is now D-E. We say that the “inversion” of E-D is D-E, and the interval that results is not a second, but instead a seventh. More specifically, the inversion of a major second (M2) is a minor seventh (m7). There are two things to remember about inversions: 1. When an interval is inverted, their numbers add-up to 9. M2 and m7 are inversions of each other, and we can see that 2 + 7 = 9. 2. When a major interval is inverted, its quality becomes minor, and vise versa. The inversion of a M2 is a m7. Major has become minor. Likewise, the inversion of a minor second (m2) is a major seventh (M7). By these rules, we can invert other intervals, like thirds. Study the following chart: # of semitones interval name inversion # of semitones 1 m2 M7 (11) 2 M2 m7 (10) 3 m3 M6 (9) 4 M3 m6 (8) Obviously, wider intervals have more semitones between pitches.
    [Show full text]
  • Chord and It Gives It It's Name
    Interval Functions • In any chord, each interval has a ‘job’ or ‘function’ • The root is the most fundamental part of the chord and it gives it it’s name and ‘tone’ or pitch • The third is what makes the chord sound happy or sad. • The fifth ‘bulks’ up the chord • The seventh adds the ‘spice’ on top of the chord Intervals (Advanced) • Perfect intervals are the 4, 5 and 8 (octave). These are intervals whose frequencies divide into neat fractions. • Perfect Intervals are considered ‘consonant’ as opposed to ‘dissonant’ ROUGHWORK Note Frequency Note Frequency A1 28 A4 220 C B1 31 B4 247 G C1 33 C4 262 D1 37 D4 294 E1 41 E4 330 F1 44 F4 349 33 G1 49 G4 392 A2 55 A5 440 49 B2 62 B5 494 C2 65 C5 523 D2 73 D5 587 E2 82 E5 659 F2 87 F5 698 2 G2 98 G5 784 A3 110 A6 880 3 B3 123 B6 988 C3 131 C6 1047 D3 147 D6 1175 E3 165 E6 1319 F3 175 F6 1397 G3 196 G6 1568 • Non-perfect intervals are 2, 3, 6 and 7. They can be either a major or minor interval. Interval Name Interval Alternate Name Unison 0 Aug Diminished Second Minor Second Dim m2 Majo Augmented Unison r Major Second Minor M2 Aug Diminished Third Minor Third Dim m3 Majo Augmented Second r Major Third Minor M3 Aug Diminished Fourth Perfect Fourth Dim 4 Aug Augmented Third Diminished Fifth/Augmented Fourth Dim Tritone Aug Diminished Fifth/Augmented Fourth Perfect Fifth Dim 5 Aug Diminished Sixth Minor Sixth Minor m6 Majo Augmented Fifth r Major Sixth Dim M6 Majo Diminished Seventh r Minor Seventh Minor m7 Aug Augmented Sixth Major Seventh Minor M7 Aug Diminished Octave Perfect Octave Dim Octave
    [Show full text]
  • Shadings in the Chromatic Field: Intonations After Morton Feldman
    Shadings in the Chromatic Field: Intonations after Morton Feldman Marc Sabat ... this could be an element of the aural plane, where I'm trying to balance, a kind of coexistence between the chromatic field and those notes selected from the chromatic field that are not in the chromatic series.1 Harmony, or how pitched sounds combine, implies microtonality, enharmonic variations of tuning. Historically, these came to be reflected in written music by having various ways of spelling pitches. A harmonic series over E leads to the notes B and G#, forming a just major triad. Writing Ab instead of G# implies a different structure, but in what way? How may such differences of notation be realized as differences of sound? The notion of enharmonic "equivalence," which smooths away such shadings, belongs to a 20th century atonal model: twelve-tone equal temperament. This system rasters the frequency glissando by constructing equal steps in the irrational proportion of vibration 1:12√2. Twelve successive steps divide an octave, at which interval the "pitch- classes" repeat their names. Their vertical combinations have been exhaustively demonstrated, most notably in Tom Johnson's Chord Catalogue. However, the actual sounding of pitches, tempered or not, always reveals a microtonally articulated sound continuum. Hearing out the complex tonal relations within it suggests a new exploration of harmony: composing intonations in writing, playing and hearing music. Morton Feldman recognized that this opening for composition is fundamentally a question of rethinking the notational image. In works composed for the most part between 1977 and 1985, inspired by his collaboration with violinist Paul Zukofsky, Feldman chose to distinguish between enharmonically spelled pitches.
    [Show full text]
  • Chord Studies
    Chord Studies 374 Chords, including: Triads Sixths Sevenths Ninths Chord Adjustments in Just Intonation Triads Sixths Sevenths Intervals and their Derivations from Equal Temperament Edited by Nikk Pilato Triads Triads are three-note chords that can be stacked in thirds (therefore, a chord such as C-F-G is not technically a triad, but rather a trichord). The three components of a triad are the root, the third, and the fifth. There are four types of triads: • Major (M3 + m3, ex: C-E-G) ! Can be expressed as C, CM, or C! • Minor (m3 + M3, ex: C-E!-G) ! Can be expressed as Cm, or C- • Diminished (m3 + m3, ex: C-E!-G!) ! Can be expressed C " • Augmented (M3 + M3m ex: C-E-G") ! Can be expressed C+ Sixth Chords A sixth chord can also be interpreted as a minor seventh chord in first inversion. Whether it should be regarded as a sixth or a minor seventh will depend on its harmonic function and context in the music. In modern music, a sixth chord is any triad with an added sixth above the root. • Major Sixth (major triad + a M6, ex: C-E-G-A) • Minor Sixth (minor Triad + a M6, ex: C-E!-G-A) There are also “special” sixth chords, such as: • Neapolitan Sixth: First inversion chord of a major triad built on the flat second (ex: In C Major, this would be F-A!-D!, where D! would be the flat second, and F the first inversion). It is notated !II6 or N6. • Augmented Sixth: Instead of a M6, these chords have an augmented sixth present along with a major third.
    [Show full text]
  • Intervals Continued Compound Intervals, Inversions MUS 102 Music Fundamentals Mark Nelson, Instructor
    Intervals Continued Compound Intervals, Inversions MUS 102 Music Fundamentals Mark Nelson, Instructor Compound Intervals: These intervals are greater than one octave but they function the same as intervals of an octave or less. One can merely remove the octave and what is left is essentially the interval it functions as. Example 1: This compound interval has D on the bottom and F# on the top. By moving the D up one octave to the next D, the interval can now be identified conventionally: Step 1: count the pitches – D-E-F = 3. The interval is a 3rd. Step 2: count the ½ steps – D-D#, D#-E, E-F, F-F# = 4. The interval is a Major 3rd or M3. You can also lower the F# by one octave and you would get the same interval, just one octave lower. Inversions: An inversion is when the two pitches of an interval are reversed. The total between each of the two intervals always adds up to 9. For example, a P4 and its inversion P5 is 4+5=9. Inversion possibilities: 1. Inverted intervals always invert to their opposite except perfect intervals which invert only to themselves. 2. Inversions are useful to flip pitches to allow different singers or instruments to take the high or low part. 3. Inversions have the following rules: Perfect intervals invert to Perfect intervals Major intervals invert to minor intervals (and vise versa) Diminished intervals invert to augmented intervals (and vice versa) Doubly diminished intervals invert to doubly augmented intervals. Chart of Interval Inversions Perfect, Minor, Major, Diminished and Augmented Perfect Unison Perfect
    [Show full text]
  • Music Theory Contents
    Music theory Contents 1 Music theory 1 1.1 History of music theory ........................................ 1 1.2 Fundamentals of music ........................................ 3 1.2.1 Pitch ............................................. 3 1.2.2 Scales and modes ....................................... 4 1.2.3 Consonance and dissonance .................................. 4 1.2.4 Rhythm ............................................ 5 1.2.5 Chord ............................................. 5 1.2.6 Melody ............................................ 5 1.2.7 Harmony ........................................... 6 1.2.8 Texture ............................................ 6 1.2.9 Timbre ............................................ 6 1.2.10 Expression .......................................... 7 1.2.11 Form or structure ....................................... 7 1.2.12 Performance and style ..................................... 8 1.2.13 Music perception and cognition ................................ 8 1.2.14 Serial composition and set theory ............................... 8 1.2.15 Musical semiotics ....................................... 8 1.3 Music subjects ............................................. 8 1.3.1 Notation ............................................ 8 1.3.2 Mathematics ......................................... 8 1.3.3 Analysis ............................................ 9 1.3.4 Ear training .......................................... 9 1.4 See also ................................................ 9 1.5 Notes ................................................
    [Show full text]
  • The Interval Dissonance Rate: an Analytical Look Into Chromaticism of Chopin’S Op
    Bridges 2017 Conference Proceedings The Interval Dissonance Rate: An Analytical Look into Chromaticism of Chopin’s Op. 10 No. 2 and Scriabin’s Op. 11 No. 2 Nikita Mamedov Robert Peck School of Music, School of Music, Louisiana State University Louisiana State University Baton Rouge, LA 70803, USA Baton Rouge, LA 70803, USA [email protected] [email protected] Abstract The concept of dissonance and consonance in music is established from two or more simultaneous notes. There are multiple approaches into dissecting this concept; some of these are acoustical, psychological, and mathematical. We developed an Interval Dissonance Rate (IDR) – an innovative tool that integrates musical and mathematical analyses in non-monophonic Western music, using interval vectors and the frequency of recurrent pitches in the vectors to determine the percentage of dissonant and consonant intervals. Two tonal pieces with musical chromaticism by Frédéric Chopin and Alexander Scriabin are used for IDR analysis. According to results, the IDR of Chopin’s Étude Op. 10 No. 2 is equal to 17.65%, while the IDR of Scriabin’s Prelude Op. 11 No. 2 is equal to 29.37%. The IDR also allows one to look for intervallic patterns of various composers and in music of specific genres. Introduction The type of sound that is created between two or more simultaneous notes provides a given work with a sense of cohesiveness. The intervallic makeup of a composition defines characteristics of its style and genre. The tension created between two notes in a musical set depends on pitch, register, intensity of the sound, and texture of the harmony [1].
    [Show full text]
  • Scholtz, Algorithms for Tunings and Temperaments
    Volume 4, Number 4, July 1998 Copyright © 1998 Society for Music Theory Kenneth P. Scholtz NOTE: The examples for the (text-only) PDF version of this item are available online at: http://www.mtosmt.org/issues/mto.98.4.4/mto.98.4.4.scholtz.php KEYWORDS: Algorithm, chain of fifths, diatonic scale, equal temperament, enharmonic, just intonation, meantone, Pythagorean tuning, schisma, syntonic comma ABSTRACT: Diatonic keyboard tunings in equal temperament, just intonation, meantone and well tempered scales are derived from Pythagorean tuning using algorithms whose operations involve combinations of pure fifths and syntonic commas. Graphic diagrams of the line of fifths are used to show the harmonic and mathematical relationships between common tunings and temperaments. Four modes of just intonation are derived from Pythagorean tuning by an algorithm that narrows each major third by one syntonic comma. Equal temperament is approximated with imperceptible error by algorithms that narrow Pythagorean and justly tuned enharmonic intervals by one or more syntonic commas. Table of Contents 1. Introduction 2. The Chain of Fifths 3. Pythagorean Tuning 4. Equal Temperament 5. The Four Modes of Just Intonation 6. Meantone Temperament 7. Well Temperament 8. Algorithms for Schismatic and Syntonic Equal Temperment 1 of 15 9. Concluding Thoughts Appendix I Appendix II References 1. Introduction [1.1] This article describes algorithms that map the traditional harmonic tunings and temperaments for the keyboard: Pythagorean tuning, equal temperament, just intonation, and historical variations on meantone temperaments. Keyboard tuning is used because it has been worked out in detail over hundreds of years and is understood to give a reasonable approximation of the pitch choices made by performers on instruments without fixed pitches.
    [Show full text]