A Bit About Intervals

Total Page:16

File Type:pdf, Size:1020Kb

A Bit About Intervals A Bit About Intervals In order to study intervals, let's consider (as ever!) C Major scale. 1 2 3 4 5 6 7 Octave A couple of important points before we start: An interval is essentially the 'distance' between two notes. Intervals are always viewed from the point of view of their lowest note. Early music used exclusively what we call 'Perfect Intervals' as they were considered sacred. Perfect fourth Perfect fifth Perfect octave Perfect unison The remaining intervals in the major scale we call unsurprisingly 'Major Intervals' thus: Major second Major third Major sixth Major seventh If we flatten a major interval, the resulting interval we call a 'Minor Interval' thus: Minor second Minor third Minor sixth Minor seventh Copyright © Pete Cook October 2007 A Bit About Intervals Page 2 There are two more types of interval: Diminished intervals and Augmented intervals. You'll find that some of these intervals sound the same as some we've met already, but it is important to understand the sounds and 'spellings' of these intervals for reasons of 'correct musical grammar'. Of course, in reality you're only going to meet some of these in everyday musical life, the others reside pretty much in 'Theoryland'. If we flatten a perfect interval, the resultant interval we call a 'diminished interval' Diminished unison Diminished fourth Diminished fifth Diminished octave (sounds like maj 3rd) (sounds like maj 7th) Similarly, flattening minor intervals gives diminished intervals Diminished second Diminished third Diminished sixth Diminished seventh (sounds like perf unis) (sounds like maj 2nd) (sounds like perf 5th) (sounds like maj 6th) If we sharpen a perfect interval, the resultant interval we call an 'augmented interval'. Augmented unison Augmented fourth Augmented fifth Augmented octave (sounds like min 2nd) a.k.a. 'Tritone' (sounds like min 6th) (sounds like min 9th) (sounds like dim 5th) Similarly, sharpening major intervals gives augmented intervals. Augmented second Augmented third Augmented sixth Augmented seventh (sounds like min 3rd) (sounds like perf 4th) (sounds like min 7th) (sounds like perf octave) Don't worry if all this seems a little daunting, I've covered intervals in much greater detail than you'll probably need here, but I think it's important to get 'the big picture'. Copyright © Pete Cook October 2007.
Recommended publications
  • Tonalandextratonal Functions of Theaugmented
    TONAL AND EXTRATONAL FUNCTIONS OF THE AUGMENTED TRIAD IN THE HARMONIC STRUCTURE OF WEBERN'S 'DEHMEL SONGS' By ROBERT GARTH PRESTON B. Mus., Brandon University, 1982 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS in THE FACULTY OF GRADUATE STUDIES (School of Music, Music Theory) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA October 1989 © Garth Preston, 1989 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department The University of British Columbia Vancouver, Canada DE-6 (2/88) ii ABSTRACT: TONAL AND EXTRATONAL FUNCTIONS OF THE AUGMENTED TRIAD IN THE HARMONIC STRUCTURE OF WEBERN'S 'DEHMEL SONGS' The composing of the 'Dehmel Songs' marks a pivotal juncture both in Webern's oeuvre and in the history of music in general. The years that saw the birth of this cycle of five songs, 1906-8, comprise what is generally regarded as a period of transition, in the work of Schoenberg, Webern and Berg, from a 'late tonal' style of composition to an early 'atonal' style. In this study I approach the 'Dehmel Songs' from the perspective that its harmonic structure as a whole can be rendered intelligible in a theoretical way by combining a simple pitch-class-set analysis, which essentially involves graphing the pattern of recurrence of the 'augmented triad' as a motivic harmonic entity—a pattern which is in fact serial in nature-through the course of the unfolding harmonic progression, with a tonal interpretation that uses that pattern as a referential pitch-class skeleton.
    [Show full text]
  • Intervals and Transposition
    CHAPTER 3 Intervals and Transposition Interval Augmented and Simple Intervals TOPICS Octave Diminished Intervals Tuning Systems Unison Enharmonic Intervals Melodic Intervals Perfect, Major, and Minor Tritone Harmonic Intervals Intervals Inversion of Intervals Transposition Consonance and Dissonance Compound Intervals IMPORTANT Tone combinations are classifi ed in music with names that identify the pitch relationships. CONCEPTS Learning to recognize these combinations by both eye and ear is a skill fundamental to basic musicianship. Although many different tone combinations occur in music, the most basic pairing of pitches is the interval. An interval is the relationship in pitch between two tones. Intervals are named by the Intervals number of diatonic notes (notes with different letter names) that can be contained within them. For example, the whole step G to A contains only two diatonic notes (G and A) and is called a second. Figure 3.1 & ww w w Second 1 – 2 The following fi gure shows all the numbers within an octave used to identify intervals: Figure 3.2 w w & w w w w 1ww w2w w3 w4 w5 w6 w7 w8 Notice that the interval numbers shown in Figure 3.2 correspond to the scale degree numbers for the major scale. 55 3711_ben01877_Ch03pp55-72.indd 55 4/10/08 3:57:29 PM The term octave refers to the number 8, its interval number. Figure 3.3 w œ œ w & œ œ œ œ Octavew =2345678=œ1 œ w8 The interval numbered “1” (two notes of the same pitch) is called a unison. Figure 3.4 & 1 =w Unisonw The intervals that include the tonic (keynote) and the fourth and fi fth scale degrees of a Perfect, Major, and major scale are called perfect.
    [Show full text]
  • Andrián Pertout
    Andrián Pertout Three Microtonal Compositions: The Utilization of Tuning Systems in Modern Composition Volume 1 Submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy Produced on acid-free paper Faculty of Music The University of Melbourne March, 2007 Abstract Three Microtonal Compositions: The Utilization of Tuning Systems in Modern Composition encompasses the work undertaken by Lou Harrison (widely regarded as one of America’s most influential and original composers) with regards to just intonation, and tuning and scale systems from around the globe – also taking into account the influential work of Alain Daniélou (Introduction to the Study of Musical Scales), Harry Partch (Genesis of a Music), and Ben Johnston (Scalar Order as a Compositional Resource). The essence of the project being to reveal the compositional applications of a selection of Persian, Indonesian, and Japanese musical scales utilized in three very distinct systems: theory versus performance practice and the ‘Scale of Fifths’, or cyclic division of the octave; the equally-tempered division of the octave; and the ‘Scale of Proportions’, or harmonic division of the octave championed by Harrison, among others – outlining their theoretical and aesthetic rationale, as well as their historical foundations. The project begins with the creation of three new microtonal works tailored to address some of the compositional issues of each system, and ending with an articulated exposition; obtained via the investigation of written sources, disclosure
    [Show full text]
  • Petr Eben's Oratorio Apologia Sokratus
    © 2010 Nelly Matova PETR EBEN’S ORATORIO APOLOGIA SOKRATUS (1967) AND BALLET CURSES AND BLESSINGS (1983): AN INTERPRETATIVE ANALYSIS OF THE SYMBOLISM BEHIND THE TEXT SETTINGS AND MUSICAL STYLE BY NELLY MATOVA DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Musical Arts in Music with a concentration in Choral Music in the Graduate College of the University of Illinois at Urbana-Champaign, 2010 Urbana, Illinois Doctoral Committee: Associate Professor Donna Buchanan, Chair Professor Sever Tipei Assistant Professor David Cooper Assistant Professor Ricardo Herrera ABSTRACT The Czech composer Petr Eben (1927-2007) has written music in all genres except symphony, but he is highly recognized for his organ and choral compositions, which are his preferred genres. His vocal works include choral songs and vocal- instrumental works at a wide range of difficulty levels, from simple pedagogical songs to very advanced and technically challenging compositions. This study examines two of Eben‘s vocal-instrumental compositions. The oratorio Apologia Sokratus (1967) is a three-movement work; its libretto is based on Plato‘s Apology of Socrates. The ballet Curses and Blessings (1983) has a libretto compiled from numerous texts from the thirteenth to the twentieth centuries. The formal design of the ballet is unusual—a three-movement composition where the first is choral, the second is orchestral, and the third combines the previous two played simultaneously. Eben assembled the libretti for both compositions and they both address the contrasting sides of the human soul, evil and good, and the everlasting fight between them. This unity and contrast is the philosophical foundation for both compositions.
    [Show full text]
  • Generalized Interval System and Its Applications
    Generalized Interval System and Its Applications Minseon Song May 17, 2014 Abstract Transformational theory is a modern branch of music theory developed by David Lewin. This theory focuses on the transformation of musical objects rather than the objects them- selves to find meaningful patterns in both tonal and atonal music. A generalized interval system is an integral part of transformational theory. It takes the concept of an interval, most commonly used with pitches, and through the application of group theory, generalizes beyond pitches. In this paper we examine generalized interval systems, beginning with the definition, then exploring the ways they can be transformed, and finally explaining com- monly used musical transformation techniques with ideas from group theory. We then apply the the tools given to both tonal and atonal music. A basic understanding of group theory and post tonal music theory will be useful in fully understanding this paper. Contents 1 Introduction 2 2 A Crash Course in Music Theory 2 3 Introduction to the Generalized Interval System 8 4 Transforming GISs 11 5 Developmental Techniques in GIS 13 5.1 Transpositions . 14 5.2 Interval Preserving Functions . 16 5.3 Inversion Functions . 18 5.4 Interval Reversing Functions . 23 6 Rhythmic GIS 24 7 Application of GIS 28 7.1 Analysis of Atonal Music . 28 7.1.1 Luigi Dallapiccola: Quaderno Musicale di Annalibera, No. 3 . 29 7.1.2 Karlheinz Stockhausen: Kreuzspiel, Part 1 . 34 7.2 Analysis of Tonal Music: Der Spiegel Duet . 38 8 Conclusion 41 A Just Intonation 44 1 1 Introduction David Lewin(1933 - 2003) is an American music theorist.
    [Show full text]
  • Chapter 29 Dictation Handout
    NAME _______________________________________ Chapter 29 Dictation Exercises Section 1. Melodic Dictation You will hear melodies that are four measures in length. Both major and minor keys are possible. Each melody will contain altered tones. The key signature and time signature are provided to you on each blank staff. Click the Play button to hear each exercise. Before each melody begins, you will hear the notes of the entire scale played stepwise up and down, then you will hear the tempo counted off. Write each melody using the correct rhythm. 1. 2. 3. 4. 5. 6. page 1 Section 2. Interval Identification a. Thirds You will hear a variety of thirds. Listen to each interval and identify it as one of the listed qualities. A diminished third sounds identical to a major 2nd, and an augmented third sounds identical to a perfect 4th. 1. major 3rd minor 3rd diminished 3rd augmented 3rd 2. major 3rd minor 3rd diminished 3rd augmented 3rd 3. major 3rd minor 3rd diminished 3rd augmented 3rd 4. major 3rd minor 3rd diminished 3rd augmented 3rd 5. major 3rd minor 3rd diminished 3rd augmented 3rd 6. major 3rd minor 3rd diminished 3rd augmented 3rd 7. major 3rd minor 3rd diminished 3rd augmented 3rd 8. major 3rd minor 3rd diminished 3rd augmented 3rd 9. major 3rd minor 3rd diminished 3rd augmented 3rd 10. major 3rd minor 3rd diminished 3rd augmented 3rd b. Sixths You will hear a variety of sixths. Listen to each interval and identify it as one of the listed qualities. An augmented 6th sounds identical to a minor 7th.
    [Show full text]
  • 8.1.4 Intervals in the Equal Temperament The
    8.1 Tonal systems 8-13 8.1.4 Intervals in the equal temperament The interval (inter vallum = space in between) is the distance of two notes; expressed numerically by the relation (ratio) of the frequencies of the corresponding tones. The names of the intervals are derived from the place numbers within the scale – for the C-major-scale, this implies: C = prime, D = second, E = third, F = fourth, G = fifth, A = sixth, B = seventh, C' = octave. Between the 3rd and 4th notes, and between the 7th and 8th notes, we find a half- step, all other notes are a whole-step apart each. In the equal-temperament tuning, a whole- step consists of two equal-size half-step (HS). All intervals can be represented by multiples of a HS: Distance between notes (intervals) in the diatonic scale, represented by half-steps: C-C = 0, C-D = 2, C-E = 4, C-F = 5, C-G = 7, C-A = 9, C-B = 11, C-C' = 12. Intervals are not just definable as HS-multiples in their relation to the root note C of the C- scale, but also between all notes: e.g. D-E = 2 HS, G-H = 4 HS, F-A = 4 HS. By the subdivision of the whole-step into two half-steps, new notes are obtained; they are designated by the chromatic sign relative to their neighbors: C# = C-augmented-by-one-HS, and (in the equal-temperament tuning) identical to the Db = D-diminished-by-one-HS. Corresponding: D# = Eb, F# = Gb, G# = Ab, A# = Bb.
    [Show full text]
  • (Semitones and Tones). We Call These “Seconds. A
    Music 11, 7/10/06 Scales/Intervals We already know half steps and whole steps (semitones and tones). We call these “seconds.” Adjacent pitch names are always called seconds, but because the space between adjacent pitch names can vary, there are different types of second: Major second (M2) = whole step = whole tone Minor second (m2) = half step = semitone In a major scale, all the seconds are major seconds (M2) except 2: E-F and B-C are minor seconds (m2). Inversion Suppose we take the two notes that make up a second, and “flip” them over—that is, lets put the lower note up an octave, so that it lies above the other note. The distance between E-D is now D-E. We say that the “inversion” of E-D is D-E, and the interval that results is not a second, but instead a seventh. More specifically, the inversion of a major second (M2) is a minor seventh (m7). There are two things to remember about inversions: 1. When an interval is inverted, their numbers add-up to 9. M2 and m7 are inversions of each other, and we can see that 2 + 7 = 9. 2. When a major interval is inverted, its quality becomes minor, and vise versa. The inversion of a M2 is a m7. Major has become minor. Likewise, the inversion of a minor second (m2) is a major seventh (M7). By these rules, we can invert other intervals, like thirds. Study the following chart: # of semitones interval name inversion # of semitones 1 m2 M7 (11) 2 M2 m7 (10) 3 m3 M6 (9) 4 M3 m6 (8) Obviously, wider intervals have more semitones between pitches.
    [Show full text]
  • Music Terminology
    ABAGANON MATERIAL MUSIC THEORY OF DODECAPHONIC EQUAL TEMPERAMENT MUSIC INTRODUCTION PG.3 RHYTHM PG.4 PITCH PG.14 MELODY PG.35 COMPOSITION PG.42 PHYSICS PG.52 PHILOSOPHY PG.67 CLASSICAL PG.76 JAZZ PG.92 BOOK DESIGN This book was designed with a few things in mind. Primarily, it was written to adapt to the way musicians and composers learn and think. Usually, they learn in hierarchies, or in other words, they put everything into groups. This form of learning and thinking comes from the tasks that musicians typically have to perform. They memorize groups of rhythms, pitches, motor skills, sounds, and more. This allows them to learn larger amounts of information. An example of this type of learning and thinking can be found in the way that most people memorize a phone number. Usually they will memorize it in groups of 3 + 3 + 4 (this is typical in the United States, although some people from other nationalities will group the numbers differently). You can see this grouping in the way phone numbers are written: (123) 456-7890. By learning in this way, a person is essentially memorizing three bits of information, instead of ten individual pieces. This allows the brain to memorize far more material. To fit with this style of learning, the book’s chapters have been set to cover distinctly separate areas of music, which makes it easier to locate certain topics, as well as keep related ideas close together. This style is different from other textbooks, which often use chapters as guides that separate different musical topics by difficulty of comprehension.
    [Show full text]
  • Study of Bartok's Compositions by Focusing on Theories of Lendvai, Karpati and Nettl
    Science Arena Publications Specialty Journal of Humanities and Cultural Science ISSN: 2520-3274 Available online at www.sciarena.com 2018, Vol, 3 (4): 9-25 Study of Bartok's Compositions by Focusing on Theories of Lendvai, Karpati and Nettl Amir Alavi Lecturer, Tehran Art University, Tehran, Iran. Abstract: Bela Bartok is one of the most influential composers of the twentieth century whose works have been attended by many theorists. Among the most prominent musical theorists focusing on Bartok's works, Erno Lendvai, Jonas Karpati, Burno Nettl, and Milton Babbitt can be mentioned. These scholars have offered great theories by studying hidden, melodic and harmonic relations, and formal structures in the Bartok’s composition. The breadth of Bartok's works, diversity in using pitch organization, and lack of Bartok's personal views on analyzing his works, encouraged theorists to study his work more. The reason for focusing on Bartok in this research can be attributed to his prominent state as a composer in the twentieth century, as well as the way he employs folk melodies as the main component of composing structure. By focusing on tonal aspects, pitch organization, chord relations, and harmonic structures, this study deals with melodic lines and formal principles, and then dissects the theories and indicators in accordance with the mentioned theorists’ views. Keywords: Bartok, Axis System, Pole and Counter Pole, Overtone. INTRODUCTION Bartok's musical structure was initially influenced by the folk music of Eastern Europe. However, he has not provided any explanation with regard to his music. John Vinton's paper titled “Bartok in His Own Music” can be considered as the main source of reflection of Bartok's thoughts.
    [Show full text]
  • Chord and It Gives It It's Name
    Interval Functions • In any chord, each interval has a ‘job’ or ‘function’ • The root is the most fundamental part of the chord and it gives it it’s name and ‘tone’ or pitch • The third is what makes the chord sound happy or sad. • The fifth ‘bulks’ up the chord • The seventh adds the ‘spice’ on top of the chord Intervals (Advanced) • Perfect intervals are the 4, 5 and 8 (octave). These are intervals whose frequencies divide into neat fractions. • Perfect Intervals are considered ‘consonant’ as opposed to ‘dissonant’ ROUGHWORK Note Frequency Note Frequency A1 28 A4 220 C B1 31 B4 247 G C1 33 C4 262 D1 37 D4 294 E1 41 E4 330 F1 44 F4 349 33 G1 49 G4 392 A2 55 A5 440 49 B2 62 B5 494 C2 65 C5 523 D2 73 D5 587 E2 82 E5 659 F2 87 F5 698 2 G2 98 G5 784 A3 110 A6 880 3 B3 123 B6 988 C3 131 C6 1047 D3 147 D6 1175 E3 165 E6 1319 F3 175 F6 1397 G3 196 G6 1568 • Non-perfect intervals are 2, 3, 6 and 7. They can be either a major or minor interval. Interval Name Interval Alternate Name Unison 0 Aug Diminished Second Minor Second Dim m2 Majo Augmented Unison r Major Second Minor M2 Aug Diminished Third Minor Third Dim m3 Majo Augmented Second r Major Third Minor M3 Aug Diminished Fourth Perfect Fourth Dim 4 Aug Augmented Third Diminished Fifth/Augmented Fourth Dim Tritone Aug Diminished Fifth/Augmented Fourth Perfect Fifth Dim 5 Aug Diminished Sixth Minor Sixth Minor m6 Majo Augmented Fifth r Major Sixth Dim M6 Majo Diminished Seventh r Minor Seventh Minor m7 Aug Augmented Sixth Major Seventh Minor M7 Aug Diminished Octave Perfect Octave Dim Octave
    [Show full text]
  • Shadings in the Chromatic Field: Intonations After Morton Feldman
    Shadings in the Chromatic Field: Intonations after Morton Feldman Marc Sabat ... this could be an element of the aural plane, where I'm trying to balance, a kind of coexistence between the chromatic field and those notes selected from the chromatic field that are not in the chromatic series.1 Harmony, or how pitched sounds combine, implies microtonality, enharmonic variations of tuning. Historically, these came to be reflected in written music by having various ways of spelling pitches. A harmonic series over E leads to the notes B and G#, forming a just major triad. Writing Ab instead of G# implies a different structure, but in what way? How may such differences of notation be realized as differences of sound? The notion of enharmonic "equivalence," which smooths away such shadings, belongs to a 20th century atonal model: twelve-tone equal temperament. This system rasters the frequency glissando by constructing equal steps in the irrational proportion of vibration 1:12√2. Twelve successive steps divide an octave, at which interval the "pitch- classes" repeat their names. Their vertical combinations have been exhaustively demonstrated, most notably in Tom Johnson's Chord Catalogue. However, the actual sounding of pitches, tempered or not, always reveals a microtonally articulated sound continuum. Hearing out the complex tonal relations within it suggests a new exploration of harmony: composing intonations in writing, playing and hearing music. Morton Feldman recognized that this opening for composition is fundamentally a question of rethinking the notational image. In works composed for the most part between 1977 and 1985, inspired by his collaboration with violinist Paul Zukofsky, Feldman chose to distinguish between enharmonically spelled pitches.
    [Show full text]