GF3 012B Bk3 Practical Intervals

Total Page:16

File Type:pdf, Size:1020Kb

GF3 012B Bk3 Practical Intervals (Book 3) Lesson 12b. Practical Intervals The following examples, catalogue the intervals that would be commonly used with "C" as the Key Note. Knowing the Key Signatures absolutely "cold" will play an important part in Major Second Minor Second Dim. Second Aug. second speedy identification and calculation of any interval. & 2 w b2b w bb2∫w #2 #w w w w w Notice that in a Diminished or Augmented interval of any numerical degree, neither Major Third Minor Third Dim. Third Aug. Third one of the notes belongs to the Major Scale of the other note. & 3 w b3 b w bb3∫w #3#w w w w w In a Minor Interval, the lower note belongs to the Major Scale of the higher note Perfect Fourth Diminished Fourth Augmented Fourth but not the other way around. & 4 w b4 b w #4 #w A good way to practice identifying w w w intervals is to write random pairs of letter names on some piece of paper. Perfect Fifth Diminished Fifth Augmented Fifth It does not even have to be music manuscript. & w bw #w w 5 w b5 w #5 i.e. Identify the following intervals. Bb to C D to G A to Eb B to C Major Sixth Minor Sixth Dim. Sixth Aug.Sixth F to Ab E to Db G to B Db to G & w bw ∫w #w F# to C# A to G# Eb to Ab G to Db w 6 w b6 w bb6 w #6 Major Seventh Minor Seventh Dim. Seventh (Aug. Seventh) etc. (never used) You might come across some intervals & w bw ∫w #w which may be difficult to identify. w 7 w b7 w bb7 w (#7?) i.e. D# to Gbb = Triply Diminished 4th? Unison Aug. Unison Augmented Octave This would be a highly unlikely pair of notes to encounter in any melodic or #w harmonic situation. Keep in mind that & we do not generally assume, that there w 1 w w #1 # w w #8 is such a Key as D# Major. We would usually defer to its enharmonic equivalent which is the Key of Eb. Keep the The lowest note of an interval is said to be the Key Note. puzzles practical rather than academic. An interval with "D" as the lowest note is in the Key of "D". (F#, C#) An interval with "F" as the lowest note is in the Key of "F". (Bb) Leave the funny ideas to written An interval with "Ab" as the lowest note is in the Key of "Ab". (Bb,Eb,Ab,Db) music examinations. etc..
Recommended publications
  • Tonalandextratonal Functions of Theaugmented
    TONAL AND EXTRATONAL FUNCTIONS OF THE AUGMENTED TRIAD IN THE HARMONIC STRUCTURE OF WEBERN'S 'DEHMEL SONGS' By ROBERT GARTH PRESTON B. Mus., Brandon University, 1982 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS in THE FACULTY OF GRADUATE STUDIES (School of Music, Music Theory) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA October 1989 © Garth Preston, 1989 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department The University of British Columbia Vancouver, Canada DE-6 (2/88) ii ABSTRACT: TONAL AND EXTRATONAL FUNCTIONS OF THE AUGMENTED TRIAD IN THE HARMONIC STRUCTURE OF WEBERN'S 'DEHMEL SONGS' The composing of the 'Dehmel Songs' marks a pivotal juncture both in Webern's oeuvre and in the history of music in general. The years that saw the birth of this cycle of five songs, 1906-8, comprise what is generally regarded as a period of transition, in the work of Schoenberg, Webern and Berg, from a 'late tonal' style of composition to an early 'atonal' style. In this study I approach the 'Dehmel Songs' from the perspective that its harmonic structure as a whole can be rendered intelligible in a theoretical way by combining a simple pitch-class-set analysis, which essentially involves graphing the pattern of recurrence of the 'augmented triad' as a motivic harmonic entity—a pattern which is in fact serial in nature-through the course of the unfolding harmonic progression, with a tonal interpretation that uses that pattern as a referential pitch-class skeleton.
    [Show full text]
  • Petr Eben's Oratorio Apologia Sokratus
    © 2010 Nelly Matova PETR EBEN’S ORATORIO APOLOGIA SOKRATUS (1967) AND BALLET CURSES AND BLESSINGS (1983): AN INTERPRETATIVE ANALYSIS OF THE SYMBOLISM BEHIND THE TEXT SETTINGS AND MUSICAL STYLE BY NELLY MATOVA DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Musical Arts in Music with a concentration in Choral Music in the Graduate College of the University of Illinois at Urbana-Champaign, 2010 Urbana, Illinois Doctoral Committee: Associate Professor Donna Buchanan, Chair Professor Sever Tipei Assistant Professor David Cooper Assistant Professor Ricardo Herrera ABSTRACT The Czech composer Petr Eben (1927-2007) has written music in all genres except symphony, but he is highly recognized for his organ and choral compositions, which are his preferred genres. His vocal works include choral songs and vocal- instrumental works at a wide range of difficulty levels, from simple pedagogical songs to very advanced and technically challenging compositions. This study examines two of Eben‘s vocal-instrumental compositions. The oratorio Apologia Sokratus (1967) is a three-movement work; its libretto is based on Plato‘s Apology of Socrates. The ballet Curses and Blessings (1983) has a libretto compiled from numerous texts from the thirteenth to the twentieth centuries. The formal design of the ballet is unusual—a three-movement composition where the first is choral, the second is orchestral, and the third combines the previous two played simultaneously. Eben assembled the libretti for both compositions and they both address the contrasting sides of the human soul, evil and good, and the everlasting fight between them. This unity and contrast is the philosophical foundation for both compositions.
    [Show full text]
  • Generalized Interval System and Its Applications
    Generalized Interval System and Its Applications Minseon Song May 17, 2014 Abstract Transformational theory is a modern branch of music theory developed by David Lewin. This theory focuses on the transformation of musical objects rather than the objects them- selves to find meaningful patterns in both tonal and atonal music. A generalized interval system is an integral part of transformational theory. It takes the concept of an interval, most commonly used with pitches, and through the application of group theory, generalizes beyond pitches. In this paper we examine generalized interval systems, beginning with the definition, then exploring the ways they can be transformed, and finally explaining com- monly used musical transformation techniques with ideas from group theory. We then apply the the tools given to both tonal and atonal music. A basic understanding of group theory and post tonal music theory will be useful in fully understanding this paper. Contents 1 Introduction 2 2 A Crash Course in Music Theory 2 3 Introduction to the Generalized Interval System 8 4 Transforming GISs 11 5 Developmental Techniques in GIS 13 5.1 Transpositions . 14 5.2 Interval Preserving Functions . 16 5.3 Inversion Functions . 18 5.4 Interval Reversing Functions . 23 6 Rhythmic GIS 24 7 Application of GIS 28 7.1 Analysis of Atonal Music . 28 7.1.1 Luigi Dallapiccola: Quaderno Musicale di Annalibera, No. 3 . 29 7.1.2 Karlheinz Stockhausen: Kreuzspiel, Part 1 . 34 7.2 Analysis of Tonal Music: Der Spiegel Duet . 38 8 Conclusion 41 A Just Intonation 44 1 1 Introduction David Lewin(1933 - 2003) is an American music theorist.
    [Show full text]
  • 8.1.4 Intervals in the Equal Temperament The
    8.1 Tonal systems 8-13 8.1.4 Intervals in the equal temperament The interval (inter vallum = space in between) is the distance of two notes; expressed numerically by the relation (ratio) of the frequencies of the corresponding tones. The names of the intervals are derived from the place numbers within the scale – for the C-major-scale, this implies: C = prime, D = second, E = third, F = fourth, G = fifth, A = sixth, B = seventh, C' = octave. Between the 3rd and 4th notes, and between the 7th and 8th notes, we find a half- step, all other notes are a whole-step apart each. In the equal-temperament tuning, a whole- step consists of two equal-size half-step (HS). All intervals can be represented by multiples of a HS: Distance between notes (intervals) in the diatonic scale, represented by half-steps: C-C = 0, C-D = 2, C-E = 4, C-F = 5, C-G = 7, C-A = 9, C-B = 11, C-C' = 12. Intervals are not just definable as HS-multiples in their relation to the root note C of the C- scale, but also between all notes: e.g. D-E = 2 HS, G-H = 4 HS, F-A = 4 HS. By the subdivision of the whole-step into two half-steps, new notes are obtained; they are designated by the chromatic sign relative to their neighbors: C# = C-augmented-by-one-HS, and (in the equal-temperament tuning) identical to the Db = D-diminished-by-one-HS. Corresponding: D# = Eb, F# = Gb, G# = Ab, A# = Bb.
    [Show full text]
  • Study of Bartok's Compositions by Focusing on Theories of Lendvai, Karpati and Nettl
    Science Arena Publications Specialty Journal of Humanities and Cultural Science ISSN: 2520-3274 Available online at www.sciarena.com 2018, Vol, 3 (4): 9-25 Study of Bartok's Compositions by Focusing on Theories of Lendvai, Karpati and Nettl Amir Alavi Lecturer, Tehran Art University, Tehran, Iran. Abstract: Bela Bartok is one of the most influential composers of the twentieth century whose works have been attended by many theorists. Among the most prominent musical theorists focusing on Bartok's works, Erno Lendvai, Jonas Karpati, Burno Nettl, and Milton Babbitt can be mentioned. These scholars have offered great theories by studying hidden, melodic and harmonic relations, and formal structures in the Bartok’s composition. The breadth of Bartok's works, diversity in using pitch organization, and lack of Bartok's personal views on analyzing his works, encouraged theorists to study his work more. The reason for focusing on Bartok in this research can be attributed to his prominent state as a composer in the twentieth century, as well as the way he employs folk melodies as the main component of composing structure. By focusing on tonal aspects, pitch organization, chord relations, and harmonic structures, this study deals with melodic lines and formal principles, and then dissects the theories and indicators in accordance with the mentioned theorists’ views. Keywords: Bartok, Axis System, Pole and Counter Pole, Overtone. INTRODUCTION Bartok's musical structure was initially influenced by the folk music of Eastern Europe. However, he has not provided any explanation with regard to his music. John Vinton's paper titled “Bartok in His Own Music” can be considered as the main source of reflection of Bartok's thoughts.
    [Show full text]
  • The Death and Resurrection of Function
    THE DEATH AND RESURRECTION OF FUNCTION A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By John Gabriel Miller, B.A., M.C.M., M.A. ***** The Ohio State University 2008 Doctoral Examination Committee: Approved by Dr. Gregory Proctor, Advisor Dr. Graeme Boone ________________________ Dr. Lora Gingerich Dobos Advisor Graduate Program in Music Copyright by John Gabriel Miller 2008 ABSTRACT Function is one of those words that everyone understands, yet everyone understands a little differently. Although the impact and pervasiveness of function in tonal theory today is undeniable, a single, unambiguous definition of the term has yet to be agreed upon. So many theorists—Daniel Harrison, Joel Lester, Eytan Agmon, Charles Smith, William Caplin, and Gregory Proctor, to name a few—have so many different nuanced understandings of function that it is nearly impossible for conversations on the subject to be completely understood by all parties. This is because function comprises at least four distinct aspects, which, when all called by the same name, function , create ambiguity, confusion, and contradiction. Part I of the dissertation first illuminates this ambiguity in the term function by giving a historical basis for four different aspects of function, three of which are traced to Riemann, and one of which is traced all the way back to Rameau. A solution to the problem of ambiguity is then proposed: the elimination of the term function . In place of function , four new terms—behavior , kinship , province , and quality —are invoked, each uniquely corresponding to one of the four aspects of function identified.
    [Show full text]
  • Shadings in the Chromatic Field: Intonations After Morton Feldman
    Shadings in the Chromatic Field: Intonations after Morton Feldman Marc Sabat ... this could be an element of the aural plane, where I'm trying to balance, a kind of coexistence between the chromatic field and those notes selected from the chromatic field that are not in the chromatic series.1 Harmony, or how pitched sounds combine, implies microtonality, enharmonic variations of tuning. Historically, these came to be reflected in written music by having various ways of spelling pitches. A harmonic series over E leads to the notes B and G#, forming a just major triad. Writing Ab instead of G# implies a different structure, but in what way? How may such differences of notation be realized as differences of sound? The notion of enharmonic "equivalence," which smooths away such shadings, belongs to a 20th century atonal model: twelve-tone equal temperament. This system rasters the frequency glissando by constructing equal steps in the irrational proportion of vibration 1:12√2. Twelve successive steps divide an octave, at which interval the "pitch- classes" repeat their names. Their vertical combinations have been exhaustively demonstrated, most notably in Tom Johnson's Chord Catalogue. However, the actual sounding of pitches, tempered or not, always reveals a microtonally articulated sound continuum. Hearing out the complex tonal relations within it suggests a new exploration of harmony: composing intonations in writing, playing and hearing music. Morton Feldman recognized that this opening for composition is fundamentally a question of rethinking the notational image. In works composed for the most part between 1977 and 1985, inspired by his collaboration with violinist Paul Zukofsky, Feldman chose to distinguish between enharmonically spelled pitches.
    [Show full text]
  • Intervals Continued Compound Intervals, Inversions MUS 102 Music Fundamentals Mark Nelson, Instructor
    Intervals Continued Compound Intervals, Inversions MUS 102 Music Fundamentals Mark Nelson, Instructor Compound Intervals: These intervals are greater than one octave but they function the same as intervals of an octave or less. One can merely remove the octave and what is left is essentially the interval it functions as. Example 1: This compound interval has D on the bottom and F# on the top. By moving the D up one octave to the next D, the interval can now be identified conventionally: Step 1: count the pitches – D-E-F = 3. The interval is a 3rd. Step 2: count the ½ steps – D-D#, D#-E, E-F, F-F# = 4. The interval is a Major 3rd or M3. You can also lower the F# by one octave and you would get the same interval, just one octave lower. Inversions: An inversion is when the two pitches of an interval are reversed. The total between each of the two intervals always adds up to 9. For example, a P4 and its inversion P5 is 4+5=9. Inversion possibilities: 1. Inverted intervals always invert to their opposite except perfect intervals which invert only to themselves. 2. Inversions are useful to flip pitches to allow different singers or instruments to take the high or low part. 3. Inversions have the following rules: Perfect intervals invert to Perfect intervals Major intervals invert to minor intervals (and vise versa) Diminished intervals invert to augmented intervals (and vice versa) Doubly diminished intervals invert to doubly augmented intervals. Chart of Interval Inversions Perfect, Minor, Major, Diminished and Augmented Perfect Unison Perfect
    [Show full text]
  • Intervals an Interval Is the Distance Between One Note and Another
    Intervals An interval is the distance between one note and another. It is always measured from the lower note. Working out intervals can be very similar to working out scale degrees. The smallest interval in western notation is a semitone (or half-tone) and there is no real limit (other than the range of human hearing – 20Hz to 20kHz) for the largest interval. Major and minor intervals The distance from C to D is a whole tone. D is the second degree of the scale of C major, so it is known as a ‘ major second ’. The distance from C to E is a ‘major third ’. However: the distance from C to Eb is a ‘ minor third ’, as the note E is lowered by one semitone. 1 to b2 = minor second 1 to 2 = major second 1 to b3 = minor third 1 to 3 = major third 1 to b6 = minor sixth 1 to 6 = major sixth 1 to b7 = minor seventh 1 to 7 = major seventh Perfect intervals You will have noticed that the fourth, fifth and octave are missing from the table above. These intervals are considered ‘perfect ’, and different rules apply to them. For example, instead of ‘major’ the interval between note 1 and note four is known as a ‘perfect’ interval. There are no minor intervals when using the ‘perfect’ intervals – a perfect interval that has been lowered by a semitone is known as ‘diminished’. 1 to b4 = diminished fourth 1 to 4 = perfect fourth 1 to b5 = diminished fifth (the ‘devil’s interval’) 1 to 5 = perfect fifth 1 to b8 = diminished octave 1 to 8 = perfect octave N.B.
    [Show full text]
  • Music Theory Contents
    Music theory Contents 1 Music theory 1 1.1 History of music theory ........................................ 1 1.2 Fundamentals of music ........................................ 3 1.2.1 Pitch ............................................. 3 1.2.2 Scales and modes ....................................... 4 1.2.3 Consonance and dissonance .................................. 4 1.2.4 Rhythm ............................................ 5 1.2.5 Chord ............................................. 5 1.2.6 Melody ............................................ 5 1.2.7 Harmony ........................................... 6 1.2.8 Texture ............................................ 6 1.2.9 Timbre ............................................ 6 1.2.10 Expression .......................................... 7 1.2.11 Form or structure ....................................... 7 1.2.12 Performance and style ..................................... 8 1.2.13 Music perception and cognition ................................ 8 1.2.14 Serial composition and set theory ............................... 8 1.2.15 Musical semiotics ....................................... 8 1.3 Music subjects ............................................. 8 1.3.1 Notation ............................................ 8 1.3.2 Mathematics ......................................... 8 1.3.3 Analysis ............................................ 9 1.3.4 Ear training .......................................... 9 1.4 See also ................................................ 9 1.5 Notes ................................................
    [Show full text]
  • Les Duresses
    Marc Sabat Les Duresses a book of music in Just Intonation PLAINSOUND MUSIC EDITION Les Duresses (2004–) for violins This work-in-progress is a collection of pieces for violin or violin+instrument, conceived as experimental ‘intonation studies’ in a sense parallel to Conlon Nancarrow’s ‘Studies for Player Piano’. Like Couperin’s books of music for harpsichord, I think of my collection as contemporary house music existing for private playing pleasure which might occasionally double as more formal concert music. ‘Les Duresses’ is dedicated to Natalie Pfeiffer. The first two pieces in the series, titled ‘Intonation after Morton Feldman #1 and #2’, each take as a point of departure a pair of tuned dyads drawn from Morton Feldman’s unfinished ‘Composition’ (1984) for solo violin. The harmonically complex transitions become the respective topics of the new pieces, seeking to make these comprehensible to both player and listener. These pieces may be transposed and played on viola, Partch adapted viola, or cello if desired. The Extended Helmholtz-Ellis JI Pitch Notation microtonal accidentals designed by Marc Sabat and Wolfgang von Schweinitz, 2004 3-LIMIT (PYTHAGOREAN) INTERVALS FUNCTION OF THE ACCIDENTALS notate 35 pitches from the series of untempered perfect fifths (3/2) ! ± 702.0 cents; d k r y Ä perfect fifth (3/2); perfect fourth (4/3); major wholetone (9/8) 5-LIMIT (PTOLEMAIC) INTERVALS notate an alteration by one syntonic comma (81/80) ! ± 21.5 cents; major third (5/4); minor third (6/5); major sixth (5/3); minor sixth (8/5); c j q x
    [Show full text]
  • Mathematical Perspectives on Music-Theoretical Knowledge
    Mathematical Perspectives on Music-theoretical Knowledge Thomas Noll 1 1 Dear Colleagues, it is a great pleasure to be invited to this excellent institute and Iʼm very glad that you are interested in the application of mathematics to music theory. My talk will focus on very basic music-theoretical concepts which are inspired by some properties of the traditional notation system. The links which I will draw to actual music are mostly concerned with the bass line. This is somewhat complementary to the focus of the joint project which Tom Fiore and I are currently working on. That one deals with voice leadings in harmonic progressions. The mathematical trajectory of my talk will take us from linear maps on Zn to linear maps on the free Z-module of rank 2 and turther on to associated automorphisms of the free group on two generators. All this is closely linked the the field of algebraic combinatorics on words. Elementary Observations about Musical Notation and the Diatonic System (Almost) every generic interval comes in two species. “Myhill's Property” Exceptions: P1 P8 P15 2 2 In traditional musical notation note heads are placed on parallel horizontal staff lines and occasionally accidentals are attached to them. This system is well- adopted to the notation of music, which - in the broadest sense - can be called diatonic. Before going into sophisticated aspects of this concept, let us start from a simplified perspective: Diatonic tone relations are those which can be notated with no use sharps or flats. There is a generic way to measure intervals, namely to count the height differences between two notes on the staff.
    [Show full text]