2300AD and Some Star Names Are Copyright Tantalus, Inc. from JIEX

Total Page:16

File Type:pdf, Size:1020Kb

2300AD and Some Star Names Are Copyright Tantalus, Inc. from JIEX 371 Orionis DM+15 1065 Ross 417 DM+17 920 DM+18 1214 DM-03 1110 Ross 42 Steph 497 G112-027 DM-14 1286 L597-031 AC+19:1165-38 DM+02 1729 DM-31 2902 LTT17736 LP658-44 Wolf 1421 DM-01 565 L882-76 Steph 430 LTT12102 WolfG085-019 1539 DM-03 1061 DM+20 802 LP593-68 DM-03 2001 G160-019 L886-6 Lowne 1 DM-22 3005 DM-07 699 L876-3 LTT3171 LTT11684 G087-032 DM-25 3913 DM-35 3233 DM-05 642 DM-17 954 Castor Rob 233 Wolf 230 DM+10 1857 DM+11 878 LTT11438 LTT12003 LTT17876 LP475-70 DM-21L736-49 1074 L736-030 DM-02 0690 DM+12 1944 LTT11502 L672-19 DM+39 1248 DM+25 613 DM+43 1595 G096-045 DM-43LP255-11 2906 Gliese 3211 DM-34 4036 L820-019 DM+10 1756 G087-008 LTT11262 G112-021L744-10 DM-20 643 DM-23 7884 DM-12 2449 L737-009 AC+33:10883 LP532-81 DM+21 652 LP833-42 DM+10 1032 Ross 41 DM-11 916 LP299-36 Gliese 1088 DM-25 1273 L601-78 DM-35 4406 DM+17 1320 LP411-6 G100-028 G081-039 LTT11392 DM-08 2582 DM-49 990 Chi 1 Orionis DM-12 501 DM+36 1638 Capella H DM-05 1844 L1672-14 Alpha Fornacis DM-02 2901 L879-014 DM+11 383 G095-030 DM-05 1123 Capella DM+52 911 DM-40 898 DM+28 1660 G076-062 DM-19 518 DM-36 2458 AC+19:1154-111 DM-36 4067 DM+33 529 DM+18 683 LP205-49 L806-34 DM-04 2490 DM-31 6229 LTT11472 BPM 85717 LP844-28 L675-081 DM+42 1956 LTT17492 DM-55 1095 G099-047 G160-028 Pollux DM-46 3046 Gliese 1050 L749-34 LP845-23 L961-1 Delta Eridani L745-046 Wolf 227 Ross 64 DM+36 1970 L242-066 Gliese 3452 DM-22 1211 Ross 594 G113-020 L182-044 DM+30 448 Kappa Reticuli G107-069 DM+53 934 DM-57 735 Ross 28 G109-035 DM+06 762 DM-53 672 AC+13:1301-119 DM+06 2182 DM-21 1051 G192-011 DM+53 935 DM-45 1184 DM-59 324 Gliese 1046 DM-46 943 DM+48 1707 DM+27 1348 LTT12583 LP476-207 L316-062 AC+45:133-65 G009-008 Ross 92 L387-102 Gliese 1068 DM+62 780 LP658-002 DM-23 8646 BPM 18005 DM-24 1038 LP666-9 DM-26 828 DM-17 3088 DM-11 2741 G048-020 DM-48 376 G077-031 DM-38 4789 DM+02 348 DM-21 368 GD 294 G192-015 DM-29 8019 AC+63:14097 DM-44 3045 DM-51 641 LP656-38 AC+12:1800-213 DM-32 5613 Rob 115 DM-03 1123 DM+52 857 Ross 619 LTT17993 BPM 17964 DM+36 1979 YZ Canis Minor AC+57:22428 DM-12 2918 Gliese 1129 DM-13 544 DM-02 3000 DM+52 1401 L1305-010 DM-31 909 L1750-5 LTT17897 DM+48 746 G111-047 DM-21 1377 DM+34 363 DM+02 305 Ross 555 Wolf 66 L1815-5 L730-18 DM+ 6 211 DM-45 5627 DM-23 693 DM-09 3070 G042-024 DM+46 1551 G115-042 DM-65 0858 DM+49 857 CC Eridani L1113-055 DM-24 658 L678-039 L870-002 Vyssotsky (AB) DM+48 1829 L681-8 L824-28 BPM 31852 G173-039 L227-140 DM+06 398 AC+33:25644 AC+25:7918 DeltaLP245-10 Trianguli LTT12565 L674-015 AC+38:23616 DM-40 5404 DM+65 643 LP469-206 G159-003 DM+67 552 G247-015 DM-54 487 DM+47 612 LP469-67 DM-58 538 DM-47 195 DM-07 780 DM-32 828 DM+41 328 G195-019 Ross 614 DM-18 359 DM-18 3019 DM+46 1635 L897-16 DM-03L968-022 2870LP127-132 DM-62 265 G174-014 LP90-18 DM-42 4101 L1866-6 L1813-21 DM-36 6589 DM-51 532 AC+03:2259-31 LTT12949 DM-63 217 L127-097 LTT12954 DM-45 5378 LP35-347 G009-038 G044-042 DM+05 1668 G250-031 82 Eridani L1820-21 DM-02 129 G163-027 G269-106 DM-59 1362 AC+58:13565 DM+39 2376 LTT12352 Procyon DM-69 177 DM+19 279 DM+56 1458 GD 806 Steph 928 G069-047 DM+67 191 G244-037 DM-28 302 DM+01 2447 DM+41 2147 LP36-98 G146-058 DM+56 1459 L190-21 DM-23 332 DM+71 482 DM-26 334 DM-31 325 LP60-179 Kapteyn's Star DM-46 346 DM+31 2240 DM+22 2302 AC+70:4336 LP350-20 G051-015 Gliese 1077 AC+58:25001 DM-09 697 G268-110 DM+63 229 G119-036 DM+53 1320 Sirius G268-038 LP732-94 DM+63 869 LTT1702 G221-005 AC+56:13511 DM+63 219 L1157-47 DM-24 9706 L97-12 Alpha Mensae G218-020 G119-062 LTT10257 AC+70:4337 G244-047 LP36-181 Haifeng Ross 627 Wolf 358 L88-59 DM-23 9765 AD Leonis DM+63 238 DM-25 225 AC+79:1584 DM+63 137 LP732-35 DM+32 2132 AC+23:468-46 L1912-9 DM-42 249 AC+31:719 DM-56 329 G266-157 DM+20 85 LP30-55 LP525-39 G031-053 DM-16 295 DM+04 123 L192-072 LP731-58 Neubayern DM+60 124 AC+60:3496 L363-38 Gliese 1128 AC+82:1111 DM-24 9867 G253-006 Gliese 3667 DM+54 223 Gliese 1123 DM-31 9113 Wolf 47 L396-007 L725-32 DM+61 195 DM-44 101 BPM 46239 DM-32 8179 Qinyang G172-001 Augerau DM-68 41 DM-43 7228 DM-60 2911 Van Maanen's Star L1226-9 L829-026 AC+27:28217 LApJ Denebola Ross 1003 DM+74 456 L143-23 61 Ursae Majoris Nyotekundu AC+71:532 DM+40 45 DM+66 717 DM+57 150 Gliese 2005 L1154-029 DM-53 42 LP553-59 Beta Virginis DM-39 7301 L901-010 Bessieres DM+66 34 DM-51 4413 G265-008 Ross 119 DM+36 2219 Henry's Star G122-049 L722-22 G217-037 LTT10045 Ross 128 DM-65 13 Beta Cassiopeiae DM+28 4704 DM-26 8883 L217-28 L145-141 Beta Hydri DM+43 44 DM-09 3413 G158-027 DM+45DM+44 44084548 AC+79:3888 Hunjiang LTT20 Sol L362-081 LTT3 85 Pegasi LTT13356 DM+74 1047 L577-87 Ross 248 LP734-32 DM-73 2299 G129-047 Alpha Crucis DM+55 1519 DM+11 2440 DM+76 928 DM+01 4774 AC+00:1514-64 Proxima Centauri Alpha Centauri DM-78 1473 LTT13408 G012-030 LTT17123 DM-06 6318 L758-108 L104-2 G130-004 Wolf 424 L049-019 Ross 249 DM-68 1684 LP823-4 LTT17025 AC+66:3955 Lacaille 9352 DM+42 2296 DM-51 6859 DM+56 2966 LP763-12 Ross 695 DM+19 5116 Kruger 60 G157-077 Gliese 1157 Beta Canum Venaticorum L471-42 G130-003 DM-57 10015 L119-44 L504-27 L789-006 DM+43 4305 G123-035 DM-68 2331 DM+57 2735 DM-45 7872 LTT4730 L23-30 DM-15 6290 DM+04 5035 G273-059 Wolf 414 L399-068 DM-17 6785 Gliese 1277 Formalhaut G190-028 DM-17 67696768 Wolf 437 LP378-541 L119-021 DM-00 2601 DM+68 946 DM+59 1915 AY Indi Wolf 1039 GD 319 DM+69 1053 DM-72 2690 DM+09 2636 Barnard's star Xiuning DM+15 4733 L1295-31 61 Cygni DM-32 17321 Wolf 433 G259-015 DM-23 17699 Delta Pavonis DM-39 14192 AC+10:95-26 Wolf 461 LP44-113 Ross 226 ZZ Piscium L21-3 DM+48 2108 Beta Comae Berenices Chi Draconis DM+15 2620 DM-65 3918 LP701-29 L1295-9 DM+16 2404 DM+00 2989 G261-006 DM+61 2068 DM+11G165-008 2576 AC+76:5308 Serurier DM-26 16501 DT Virginis DM-17 3813 DM-58 5467 AC+65:6955 DM-21 6267 LP98-79 LP71-165 V1581 Cygni L788-34 Gliese 3770 DM-46 8664 G232-070 DM-54 5466 LTT14363 DM-54 10055 DM+14 2621 DM+36 2393 Wolf 489 D'Artagnon BPM 27793LTT9012 AC+54:1646-56 DM-60 7528 DM+35 2436 DM-69 2558 Davout DM+46 1889 DM-21 3660 L258-146 DM+17 2611 DM-40 9712 DM-45 13677 DM-20 4125 Broward LTT13999 DM-11 3759 LP914-54 L347-014 G227-029 DM+47 2112 DM-36 13940 AC+31:68884 L617-35 DM+67 935 Wolf 1069 DM+38 4818 AC+17:534-105 G188-038L499-56 L763-63 L1484-43 L355-062 G215-050 L074-113 DM-05 5715 LApJ DM+10 2531 G201-027 DM+19 2725 DM+19 2870 Red Speck AC+70:8247 LTT13887 L762-51 DM+50 2030 L74-208 DM-07 5871 Ross 486 DM-27 9225 Altair L645-74 DM-30 19255 DM+52 1804 Wolf 1561 DM+66 1281 Alpha Cephei Gliese 1265 Ellis DM-30 19175 LP98-132 Beta Trianguli Australis DM-26 12026 Hochbaden DM+61 2050 LP069-457 L1049-51 DM-07 4003 L115-021 DM-26 12036 Wolf 922 DM-51 13128 Gliese 1179 DM-51 12998 LP798-25 DM+67 1014 70 Ophiuchi DM+00 4810 G149-094 DM-46 11370 DM+18 2776 DM-01 2892 LP271-25 DM-47 13928 DM+53 1719 AT Microscopii DM-16 6046 DM+04 4048 Wolf 926 AC+17:536-125 DM-31 10649DM-21 3781DM+27 2303 Ross 476 DM+24 4533 DM-37 10765 Wolf 629 L1149-75 DM-01 4323 44 I Bootis G203-047 DM-53 9928 DM-03 3508 DM+18 2782 Arcturus DM+08 4887 G203-042 DM-34 11626 DM-28 10318 Gliese 1218 L207-41 L715-089 Vega LP101-148 DM-51 11094 AU Microscopii LTT5568 Ross 848 LP229-17 Clarkesstar LP103-294 LTT14082 L339-019 L427-34 AC+44:871-589 DM+13 2721 LTT14424 DM-56 7345 DM-62 5888 DM+27 4120 Wolf 1495 G184-019 AC+32:54804 Ross 52 DM+45 2247 AC+61:26806 BPM 26134 DM-45 10150 L1363-003 AC-12:2306-155 AC+16:734-144 CE Bootis DM-57 7690 DM-27 14659 LP397-34 Wolf 940 26 Draconis HU Delphini L768-119 G180-060 LP639-1 DM-60 6718 G179-020 DM+43 2796 DM+30 2512 G154-044 LP101-015 G208-042 Wolf 918 DM+38 2847 New Melbourne G144-025 DM+19 2881 DM-51 10396 DM-48 12818 DM-56 9037 L714-088 DM+11 2625 G180-011 Wolf 654 DM-58 7399 G065-039 Botany Bay King DM+27 2888 LP518-058 BPM 90688 L480-069 Delta Capricorni DM-03 4233 DM-48 9312 AC+20:1463-148 Vyssotsky (AB) DM+31 2884 L1346-53 DM+25 3173 AC+39:57322 DM+14 4668 DM+39 2947 G227-035 Wolf 937 Ross 508 G125-003 Ross 165 DM-07 4156 DM+24 4357 L1124-13 LP440-38 DM+14 2889 LP275-68 DM+24 2786 G169-029 AC+22:308-605Wolf 906 DM+38 3095G204-058 LTT16303 DM-25 15018 DM-37 10500 G185-018 DM-28 16676 L856-054 DM-07 3856 DM-38 10983 DM-46 9672 DM+10 2710 LP801-9 DM-23 11940 G019-007 DM-04 4226 L565-18 LTT14507 Ross 188 Ross 868 AC-07:342-402 AC+41:726-154 G182-036 DM+17 2785 G205-028 AC+02:2155-242 G204-039 DM+16 2849 G142-011 DM+07 3023 DM-01 3220 L839-21 DM+05 3409 LTT15513 DM-14 5936 L1209-6 L1271-10 G025-008 DM+41 2695 L1499-34 DM-24 16193 G180-063 DM-39 10940 L489-58 Ross 802 DM+45 2743 DM+05 3993 G022-026 L997-021 DM+31 3767 AC+24:747-102 L841-9 LP805-10 LP625-34 LP229-30 G151-034 DM-43 12343 DM-19 5899 LTT15483 AC+18:1890-112 DM-04 4225 AC+08:142-393 G023-024 DM+32 2896 DM-37 13048 DM-24 15668 L989-020 DM-05 4426 LP390-16 Beta Aquilae G139-003 DM-28 12769 G139-029 LTT15435 DM+03 3465 DM+02 4076 L1427-13 G139-012 L1418-61 DM+04 4157 DM-24 12677 AC+16:247-80 L1276-44 G139-021 DM-21 4352 DM-21 5081 Delta Aquilae L1350-84 DM-18 4986 G155-029 DM+19 3268 AC+02:2142-173 DM+15 3364 DM+15 3108 L1279-91 LP389-18 Ross 863 DM-03 4380 L1064-69 DM-01 3474 LTT15114 Ross 136 Wolf 1466 A Revised Near Star Map For 2300AD.
Recommended publications
  • The Faces of Stars
    Resolving the Faces of Stars estled among the venerable telescope domes on Mount Wilson, a mile-high peak overlooking Los Angeles, is the highest- resolution optical instrument in the world. Inside several hundred meters of evacuated pipe, beams of star- light from six 1-meter (39-inch) telescopes converge on a central fa- cility to be matched up light wave for light wave. The result allows measurements of details as small as a thousandth of an arcsecond wide — the apparent size of a penny in Los Angeles seen from At- lanta. Georgia State University’s Center for High Angular Resolu- tion Astronomy (CHARA) built and runs the instrument under the directorship of Harold McAlister. The CHARA Array is currently Nthe largest of several new installations around the world applying 21st-century technology to an old idea: optical interferometry. The concept of interferometry predates photographic fi lm, but astronomers didn’t really put it into practice until the early 1920s (see “Milestones in Optical Interferometry,” page 44). Now, nearly a century later, technology is catching up with theory. Astronomers are using a new breed of giant interferometers to measure some of ERIC SIMISON / SEA WEST ENTERPRISES SIMISON / SEA WEST ERIC the most diffi cult fundamental parameters in stellar astrophysics, in By David H. Berger, The CHARA Array particular the sizes and shapes of stars (S&T: May 2003, page 30). is one of several These parameters are most easily studied for the nearest and Jason P. Aufdenberg, facilities on Mount brightest stars, those dear to skygazers’ hearts. The CHARA Array and Nils H.
    [Show full text]
  • Careful Measurements Reveal That the Earth Has a Slight Difference in Its Dimensions
    Careful measurements reveal that the earth has a slight difference in its dimensions EUREKA!!! COPY EARTH’S SHAPE? •The shape of the earth is technically called an OBLATE SPHEROID: •Slightly flattened at the poles and bulging in the middle(equator) EXAGGERATED PICTURE! COPY BUT….. IT LOOKS PERFECTLY ROUND TO US! OBLATE SPHEROID check this out!!! IT’S DRILL TIME!!!!! Polar Equatorial Circumference Circumference Polar Equatorial diameter Diameter Actual Numbers • Polar diameter • Equatorial diameter = 12,714km = 12,757km (7882mi) (7909mi) • Polar • Equatorial Circumference Circumference = 40,076km = 40,006km (24,847mi) (24,804mi) MODEL COPY •A MODEL is a way of representing the properties of some object – (Drawing, diagram, graph, chart, photo, table) Evidence for the Earth’s Shape: • 1. Altitude of Polaris • 2. Gravity Measurements • 3. “Sinking” ships • 4. Lunar Eclipses * POLARIS= NORTH STAR NORTH POLE Earth’s AXIS of Rotation Geographic Poles SOUTH POLE WHAT ABOUT THE SOUTH POLE? • At the present time, Polaris is the pole star in the northern direction. Sigma Octantis is the closest star to the south celestial pole, but it is too faint to serve as a useful pole star. The Southern Cross constellation functions as an approximate southern pole constellation. Some people travel to the equator in order to be able to see both Polaris and the Southern cross. Pointer Stars! POLARIS Polaris is found in the little dipper!! COPY COPY Detailed Evidence for the Earth’s Shape COPY 1. Altitude of Polaris: The altitude is the ANGLE above the horizon Polaris is directly over the North Pole (Fixed Star) Your LATITUDE (degrees North or South of equator) equals ALTITUDE of POLARIS! 90O 30O 0O Person standing at 30ON POLARIS 90O 45O 0O 2.
    [Show full text]
  • Wynyard Planetarium & Observatory a Autumn Observing Notes
    Wynyard Planetarium & Observatory A Autumn Observing Notes Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn Tour of the Sky with the Naked Eye CASSIOPEIA Look for the ‘W’ 4 shape 3 Polaris URSA MINOR Notice how the constellations swing around Polaris during the night Pherkad Kochab Is Kochab orange compared 2 to Polaris? Pointers Is Dubhe Dubhe yellowish compared to Merak? 1 Merak THE PLOUGH Figure 1: Sketch of the northern sky in autumn. © Rob Peeling, CaDAS, 2007 version 1.2 Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn North 1. On leaving the planetarium, turn around and look northwards over the roof of the building. Close to the horizon is a group of stars like the outline of a saucepan with the handle stretching to your left. This is the Plough (also called the Big Dipper) and is part of the constellation Ursa Major, the Great Bear. The two right-hand stars are called the Pointers. Can you tell that the higher of the two, Dubhe is slightly yellowish compared to the lower, Merak? Check with binoculars. Not all stars are white. The colour shows that Dubhe is cooler than Merak in the same way that red-hot is cooler than white- hot. 2. Use the Pointers to guide you upwards to the next bright star. This is Polaris, the Pole (or North) Star. Note that it is not the brightest star in the sky, a common misconception. Below and to the left are two prominent but fainter stars. These are Kochab and Pherkad, the Guardians of the Pole. Look carefully and you will notice that Kochab is slightly orange when compared to Polaris.
    [Show full text]
  • Proceedings of SPIE - the International Society for Optical Engineering
    Review and scientific prospects of high- contrast optical stellar interferometry Item Type Proceedings; text Authors Defrère, D.; Absil, O.; Berger, J.-P.; Danchi, W.C.; Dandumont, C.; Eisenhauer, F.; Ertel, S.; Gardner, T.; Glauser, A.; Hinz, P.; Ireland, M.; Kammerer, J.; Kraus, S.; Labadie, L.; Lacour, S.; Laugier, R.; Loicq, J.; Martin, G.; Martinache, F.; Martinod, M.A.; Mennesson, B.; Monnier, J.; Norris, B.; Nowak, M.; Pott, J.U.; Quanz, S.P.; Serabyn, E.; Stone, J.; Tuthill, P.; Woillez, J. Citation Defrère, D., Absil, O., Berger, J. P., Danchi, W. C., Dandumont, C., Eisenhauer, F., ... & Woillez, J. (2020, December). Review and scientific prospects of high-contrast optical stellar interferometry. In Optical and Infrared Interferometry and Imaging VII (Vol. 11446, p. 114461J). International Society for Optics and Photonics. DOI 10.1117/12.2561505 Publisher SPIE Journal Proceedings of SPIE - The International Society for Optical Engineering Rights Copyright © 2020 SPIE. Download date 26/09/2021 05:12:08 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/660530 PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Review and scientific prospects of high-contrast optical stellar interferometry Defrère, D., Absil, O., Berger, J.-P., Danchi, W. C., Dandumont, C., et al. D. Defrère, O. Absil, J.-P. Berger, W. C. Danchi, C. Dandumont, F. Eisenhauer, S. Ertel, T. Gardner, A. Glauser, P. Hinz, M. Ireland, J. Kammerer, S. Kraus, L. Labadie, S. Lacour, R. Laugier, J. Loicq, G. Martin, F. Martinache, M. A. Martinod, B. Mennesson, J. Monnier, B. Norris, M.
    [Show full text]
  • Ghost Imaging of Space Objects
    Ghost Imaging of Space Objects Dmitry V. Strekalov, Baris I. Erkmen, Igor Kulikov, and Nan Yu Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109-8099 USA NIAC Final Report September 2014 Contents I. The proposed research 1 A. Origins and motivation of this research 1 B. Proposed approach in a nutshell 3 C. Proposed approach in the context of modern astronomy 7 D. Perceived benefits and perspectives 12 II. Phase I goals and accomplishments 18 A. Introducing the theoretical model 19 B. A Gaussian absorber 28 C. Unbalanced arms configuration 32 D. Phase I summary 34 III. Phase II goals and accomplishments 37 A. Advanced theoretical analysis 38 B. On observability of a shadow gradient 47 C. Signal-to-noise ratio 49 D. From detection to imaging 59 E. Experimental demonstration 72 F. On observation of phase objects 86 IV. Dissemination and outreach 90 V. Conclusion 92 References 95 1 I. THE PROPOSED RESEARCH The NIAC Ghost Imaging of Space Objects research program has been carried out at the Jet Propulsion Laboratory, Caltech. The program consisted of Phase I (October 2011 to September 2012) and Phase II (October 2012 to September 2014). The research team consisted of Drs. Dmitry Strekalov (PI), Baris Erkmen, Igor Kulikov and Nan Yu. The team members acknowledge stimulating discussions with Drs. Leonidas Moustakas, Andrew Shapiro-Scharlotta, Victor Vilnrotter, Michael Werner and Paul Goldsmith of JPL; Maria Chekhova and Timur Iskhakov of Max Plank Institute for Physics of Light, Erlangen; Paul Nu˜nez of Coll`ege de France & Observatoire de la Cˆote d’Azur; and technical support from Victor White and Pierre Echternach of JPL.
    [Show full text]
  • Information Bulletin on Variable Stars
    COMMISSIONS AND OF THE I A U INFORMATION BULLETIN ON VARIABLE STARS Nos November July EDITORS L SZABADOS K OLAH TECHNICAL EDITOR A HOLL TYPESETTING K ORI ADMINISTRATION Zs KOVARI EDITORIAL BOARD L A BALONA M BREGER E BUDDING M deGROOT E GUINAN D S HALL P HARMANEC M JERZYKIEWICZ K C LEUNG M RODONO N N SAMUS J SMAK C STERKEN Chair H BUDAPEST XI I Box HUNGARY URL httpwwwkonkolyhuIBVSIBVShtml HU ISSN COPYRIGHT NOTICE IBVS is published on b ehalf of the th and nd Commissions of the IAU by the Konkoly Observatory Budap est Hungary Individual issues could b e downloaded for scientic and educational purp oses free of charge Bibliographic information of the recent issues could b e entered to indexing sys tems No IBVS issues may b e stored in a public retrieval system in any form or by any means electronic or otherwise without the prior written p ermission of the publishers Prior written p ermission of the publishers is required for entering IBVS issues to an electronic indexing or bibliographic system to o CONTENTS C STERKEN A JONES B VOS I ZEGELAAR AM van GENDEREN M de GROOT On the Cyclicity of the S Dor Phases in AG Carinae ::::::::::::::::::::::::::::::::::::::::::::::::::: : J BOROVICKA L SAROUNOVA The Period and Lightcurve of NSV ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::: W LILLER AF JONES A New Very Long Period Variable Star in Norma ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::: EA KARITSKAYA VP GORANSKIJ Unusual Fading of V Cygni Cyg X in Early November :::::::::::::::::::::::::::::::::::::::
    [Show full text]
  • Long Delayed Echo: New Approach to the Problem
    Geometrical joke(r?)s for SETI. R. T. Faizullin OmSTU, Omsk, Russia Since the beginning of radio era long delayed echoes (LDE) were traced. They are the most likely candidates for extraterrestrial communication, the so-called "paradox of Stormer" or "world echo". By LDE we mean a radio signal with a very long delay time and abnormally low energy loss. Unlike the well-known echoes of the delay in 1/7 seconds, the mechanism of which have long been resolved, the delay of radio signals in a second, ten seconds or even minutes is one of the most ancient and intriguing mysteries of physics of the ionosphere. Nowadays it is difficult to imagine that at the beginning of the century any registered echo signal was treated as extraterrestrial communication: “Notable changes occurred at a fixed time and the analogy among the changes and numbers was so clear, that I could not provide any plausible explanation. I'm familiar with natural electrical interference caused by the activity of the Sun, northern lights and telluric currents, but I was sure, as it is possible to be sure in anything, that the interference was not caused by any of common reason. Only after a while it came to me, that the observed interference may occur as the result of conscious activities. I'm overwhelmed by the the feeling, that I may be the first men to hear greetings transmitted from one planet to the other... Despite the signal being weak and unclear it made me certain that soon people, as one, will direct their eyes full of hope and affection towards the sky, overwhelmed by good news: People! We got the message from an unknown and distant planet.
    [Show full text]
  • GTO Keypad Manual, V5.001
    ASTRO-PHYSICS GTO KEYPAD Version v5.xxx Please read the manual even if you are familiar with previous keypad versions Flash RAM Updates Keypad Java updates can be accomplished through the Internet. Check our web site www.astro-physics.com/software-updates/ November 11, 2020 ASTRO-PHYSICS KEYPAD MANUAL FOR MACH2GTO Version 5.xxx November 11, 2020 ABOUT THIS MANUAL 4 REQUIREMENTS 5 What Mount Control Box Do I Need? 5 Can I Upgrade My Present Keypad? 5 GTO KEYPAD 6 Layout and Buttons of the Keypad 6 Vacuum Fluorescent Display 6 N-S-E-W Directional Buttons 6 STOP Button 6 <PREV and NEXT> Buttons 7 Number Buttons 7 GOTO Button 7 ± Button 7 MENU / ESC Button 7 RECAL and NEXT> Buttons Pressed Simultaneously 7 ENT Button 7 Retractable Hanger 7 Keypad Protector 8 Keypad Care and Warranty 8 Warranty 8 Keypad Battery for 512K Memory Boards 8 Cleaning Red Keypad Display 8 Temperature Ratings 8 Environmental Recommendation 8 GETTING STARTED – DO THIS AT HOME, IF POSSIBLE 9 Set Up your Mount and Cable Connections 9 Gather Basic Information 9 Enter Your Location, Time and Date 9 Set Up Your Mount in the Field 10 Polar Alignment 10 Mach2GTO Daytime Alignment Routine 10 KEYPAD START UP SEQUENCE FOR NEW SETUPS OR SETUP IN NEW LOCATION 11 Assemble Your Mount 11 Startup Sequence 11 Location 11 Select Existing Location 11 Set Up New Location 11 Date and Time 12 Additional Information 12 KEYPAD START UP SEQUENCE FOR MOUNTS USED AT THE SAME LOCATION WITHOUT A COMPUTER 13 KEYPAD START UP SEQUENCE FOR COMPUTER CONTROLLED MOUNTS 14 1 OBJECTS MENU – HAVE SOME FUN!
    [Show full text]
  • New Ultracool Dwarf Neighbours Within 20 Pc from Gaia DR2 R.-D
    A&A 637, A45 (2020) Astronomy https://doi.org/10.1051/0004-6361/201937373 & c ESO 2020 Astrophysics New ultracool dwarf neighbours within 20 pc from Gaia DR2 R.-D. Scholz Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany e-mail: [email protected] Received 20 December 2019 / Accepted 23 March 2020 ABSTRACT Aims. The Gaia data release 2 (DR2) contains >6000 objects with parallaxes (Plx + 3 × e_Plx) > 50 mas, placing them within 20 pc from the Sun. Because the expected numbers based on extrapolating the well-known 10 pc census are much lower, nearby Gaia stars need a quality assessment. The 20 pc sample of white dwarfs (WDs) has been verified and completed with Gaia DR2. We here confirm and complete the 20 pc sample of ultracool dwarfs (UCDs) with spectral types &M7 and given Gaia DR2 parallaxes. Methods. Dividing the Gaia DR2 20 pc sample into subsamples of various astrometric and photometric quality, we studied their distribution on the sky, in the MG versus G−RP colour-magnitude diagram (CMD), and as a function of G magnitude and total proper motion. After excluding 139 known WDs and 263 known UCDs from the CMD, we checked all remaining ≈3500 candidates with MG > 14 mag (used to define UCDs in this study) for the correctness of their Gaia DR2 proper motions by visual inspection of finder charts, comparison with proper motion catalogues, and comparison with our own proper motion measurements. For confirmed UCD candidates we estimated spectral types photometrically using Gaia and near-infrared absolute magnitudes and colours.
    [Show full text]
  • Arxiv:1202.5581V1 [Astro-Ph.SR]
    Know Your Neighborhood: A Detailed Model Atmosphere Analysis of Nearby White Dwarfs N. Giammichele,1 P. Bergeron1, & P. Dufour D´epartement de Physique, Universit´ede Montr´eal, C.P. 6128, Succ. Centre-Ville, Montr´eal, Qu´ebec H3C 3J7, Canada. [email protected], [email protected], [email protected] ABSTRACT We present improved atmospheric parameters of nearby white dwarfs lying within 20 pc of the Sun. The aim of the current study is to obtain the best statistical model of the least-biased sample of the white dwarf population. A homogeneous analysis of the local population is performed combining detailed spectroscopic and photometric analyses based on improved model atmosphere calculations for various spectral types including DA, DB, DC, DQ, and DZ stars. The spectroscopic technique is applied to all stars in our sample for which opti- cal spectra are available. Photometric energy distributions, when available, are also combined to trigonometric parallax measurements to derive effective tem- peratures, stellar radii, as well as atmospheric compositions. A revised catalog of white dwarfs in the solar neighborhood is presented. We provide, for the first time, a comprehensive analysis of the mass distribution and the chemical distribution of white dwarf stars in a volume-limited sample. Subject headings: Solar neighborhood – stars: luminosity function, mass function – techniques: photometric – techniques: spectroscopic – white dwarfs arXiv:1202.5581v1 [astro-ph.SR] 24 Feb 2012 1. Introduction White dwarf stars represent a significant contribution to the global stellar population and an important indicator of the evolutionary history of the Galaxy. As such, it becomes 1Visiting Astronomer, Kitt Peak National Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under cooperative agreement with the National Science Foundation.
    [Show full text]
  • Taking the Measure of the Universe: Precision Astrometry with SIM
    Accepted for publication in PASP, January 2008 issue A Preprint typeset using LTEX style emulateapj v. 08/22/09 TAKING THE MEASURE OF THE UNIVERSE: PRECISION ASTROMETRY WITH SIM PLANETQUEST Stephen C. Unwin1, Michael Shao2, Angelle M. Tanner2, Ronald J. Allen3, Charles A. Beichman4, David Boboltz5, Joseph H. Catanzarite2, Brian C. Chaboyer6, David R. Ciardi4, Stephen J. Edberg2, Alan L. Fey5, Debra A. Fischer7, Christopher R. Gelino8, Andrew P. Gould9, Carl Grillmair8, Todd J. Henry10, Kathryn V. Johnston11,12, Kenneth J. Johnston5, Dayton L. Jones2, Shrinivas R. Kulkarni4, Nicholas M. Law4, Steven R. Majewski13, Valeri V. Makarov2, Geoffrey W. Marcy14, David L. Meier2, Rob P. Olling15, Xiaopei Pan2, Richard J. Patterson13, Jo Eliza Pitesky2, Andreas Quirrenbach16, Stuart B. Shaklan2, Edward J. Shaya15, Louis E. Strigari17, John A. Tomsick18,19, Ann E. Wehrle20, and Guy Worthey21 Accepted for publication in PASP, January 2008 issue ABSTRACT Precision astrometry at microarcsecond accuracy has application to a wide range of astrophysical problems. This paper is a study of the science questions that can be addressed using an instrument with flexible scheduling that delivers parallaxes at about 4 microarcsec (µas) on targets as faint as V = 20, and differential accuracy of 0.6 µas on bright targets. The science topics are drawn primarily from the Team Key Projects, selected in 2000, for the Space Interferometry Mission PlanetQuest (SIM PlanetQuest). We use the capabilities of this mission to illustrate the importance of the next level of astrometric precision in modern astrophysics. SIM PlanetQuest is currently in the detailed design phase, having completed in 2005 all of the enabling technologies needed for the flight instrument.
    [Show full text]
  • QUALIFIER EXAM SOLUTIONS 1. Cosmology (Early Universe, CMB, Large-Scale Structure)
    Draft version June 20, 2012 Preprint typeset using LATEX style emulateapj v. 5/2/11 QUALIFIER EXAM SOLUTIONS Chenchong Zhu (Dated: June 20, 2012) Contents 1. Cosmology (Early Universe, CMB, Large-Scale Structure) 7 1.1. A Very Brief Primer on Cosmology 7 1.1.1. The FLRW Universe 7 1.1.2. The Fluid and Acceleration Equations 7 1.1.3. Equations of State 8 1.1.4. History of Expansion 8 1.1.5. Distance and Size Measurements 8 1.2. Question 1 9 1.2.1. Couldn't photons have decoupled from baryons before recombination? 10 1.2.2. What is the last scattering surface? 11 1.3. Question 2 11 1.4. Question 3 12 1.4.1. How do baryon and photon density perturbations grow? 13 1.4.2. How does an individual density perturbation grow? 14 1.4.3. What is violent relaxation? 14 1.4.4. What are top-down and bottom-up growth? 15 1.4.5. How can the power spectrum be observed? 15 1.4.6. How can the power spectrum constrain cosmological parameters? 15 1.4.7. How can we determine the dark matter mass function from perturbation analysis? 15 1.5. Question 4 16 1.5.1. What is Olbers's Paradox? 16 1.5.2. Are there Big Bang-less cosmologies? 16 1.6. Question 5 16 1.7. Question 6 17 1.7.1. How can we possibly see galaxies that are moving away from us at superluminal speeds? 18 1.7.2. Why can't we explain the Hubble flow through the physical motion of galaxies through space? 19 1.7.3.
    [Show full text]