2300AD and Some Star Names Are Copyright Tantalus, Inc. from JIEX
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Faces of Stars
Resolving the Faces of Stars estled among the venerable telescope domes on Mount Wilson, a mile-high peak overlooking Los Angeles, is the highest- resolution optical instrument in the world. Inside several hundred meters of evacuated pipe, beams of star- light from six 1-meter (39-inch) telescopes converge on a central fa- cility to be matched up light wave for light wave. The result allows measurements of details as small as a thousandth of an arcsecond wide — the apparent size of a penny in Los Angeles seen from At- lanta. Georgia State University’s Center for High Angular Resolu- tion Astronomy (CHARA) built and runs the instrument under the directorship of Harold McAlister. The CHARA Array is currently Nthe largest of several new installations around the world applying 21st-century technology to an old idea: optical interferometry. The concept of interferometry predates photographic fi lm, but astronomers didn’t really put it into practice until the early 1920s (see “Milestones in Optical Interferometry,” page 44). Now, nearly a century later, technology is catching up with theory. Astronomers are using a new breed of giant interferometers to measure some of ERIC SIMISON / SEA WEST ENTERPRISES SIMISON / SEA WEST ERIC the most diffi cult fundamental parameters in stellar astrophysics, in By David H. Berger, The CHARA Array particular the sizes and shapes of stars (S&T: May 2003, page 30). is one of several These parameters are most easily studied for the nearest and Jason P. Aufdenberg, facilities on Mount brightest stars, those dear to skygazers’ hearts. The CHARA Array and Nils H. -
Careful Measurements Reveal That the Earth Has a Slight Difference in Its Dimensions
Careful measurements reveal that the earth has a slight difference in its dimensions EUREKA!!! COPY EARTH’S SHAPE? •The shape of the earth is technically called an OBLATE SPHEROID: •Slightly flattened at the poles and bulging in the middle(equator) EXAGGERATED PICTURE! COPY BUT….. IT LOOKS PERFECTLY ROUND TO US! OBLATE SPHEROID check this out!!! IT’S DRILL TIME!!!!! Polar Equatorial Circumference Circumference Polar Equatorial diameter Diameter Actual Numbers • Polar diameter • Equatorial diameter = 12,714km = 12,757km (7882mi) (7909mi) • Polar • Equatorial Circumference Circumference = 40,076km = 40,006km (24,847mi) (24,804mi) MODEL COPY •A MODEL is a way of representing the properties of some object – (Drawing, diagram, graph, chart, photo, table) Evidence for the Earth’s Shape: • 1. Altitude of Polaris • 2. Gravity Measurements • 3. “Sinking” ships • 4. Lunar Eclipses * POLARIS= NORTH STAR NORTH POLE Earth’s AXIS of Rotation Geographic Poles SOUTH POLE WHAT ABOUT THE SOUTH POLE? • At the present time, Polaris is the pole star in the northern direction. Sigma Octantis is the closest star to the south celestial pole, but it is too faint to serve as a useful pole star. The Southern Cross constellation functions as an approximate southern pole constellation. Some people travel to the equator in order to be able to see both Polaris and the Southern cross. Pointer Stars! POLARIS Polaris is found in the little dipper!! COPY COPY Detailed Evidence for the Earth’s Shape COPY 1. Altitude of Polaris: The altitude is the ANGLE above the horizon Polaris is directly over the North Pole (Fixed Star) Your LATITUDE (degrees North or South of equator) equals ALTITUDE of POLARIS! 90O 30O 0O Person standing at 30ON POLARIS 90O 45O 0O 2. -
Wynyard Planetarium & Observatory a Autumn Observing Notes
Wynyard Planetarium & Observatory A Autumn Observing Notes Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn Tour of the Sky with the Naked Eye CASSIOPEIA Look for the ‘W’ 4 shape 3 Polaris URSA MINOR Notice how the constellations swing around Polaris during the night Pherkad Kochab Is Kochab orange compared 2 to Polaris? Pointers Is Dubhe Dubhe yellowish compared to Merak? 1 Merak THE PLOUGH Figure 1: Sketch of the northern sky in autumn. © Rob Peeling, CaDAS, 2007 version 1.2 Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn North 1. On leaving the planetarium, turn around and look northwards over the roof of the building. Close to the horizon is a group of stars like the outline of a saucepan with the handle stretching to your left. This is the Plough (also called the Big Dipper) and is part of the constellation Ursa Major, the Great Bear. The two right-hand stars are called the Pointers. Can you tell that the higher of the two, Dubhe is slightly yellowish compared to the lower, Merak? Check with binoculars. Not all stars are white. The colour shows that Dubhe is cooler than Merak in the same way that red-hot is cooler than white- hot. 2. Use the Pointers to guide you upwards to the next bright star. This is Polaris, the Pole (or North) Star. Note that it is not the brightest star in the sky, a common misconception. Below and to the left are two prominent but fainter stars. These are Kochab and Pherkad, the Guardians of the Pole. Look carefully and you will notice that Kochab is slightly orange when compared to Polaris. -
Proceedings of SPIE - the International Society for Optical Engineering
Review and scientific prospects of high- contrast optical stellar interferometry Item Type Proceedings; text Authors Defrère, D.; Absil, O.; Berger, J.-P.; Danchi, W.C.; Dandumont, C.; Eisenhauer, F.; Ertel, S.; Gardner, T.; Glauser, A.; Hinz, P.; Ireland, M.; Kammerer, J.; Kraus, S.; Labadie, L.; Lacour, S.; Laugier, R.; Loicq, J.; Martin, G.; Martinache, F.; Martinod, M.A.; Mennesson, B.; Monnier, J.; Norris, B.; Nowak, M.; Pott, J.U.; Quanz, S.P.; Serabyn, E.; Stone, J.; Tuthill, P.; Woillez, J. Citation Defrère, D., Absil, O., Berger, J. P., Danchi, W. C., Dandumont, C., Eisenhauer, F., ... & Woillez, J. (2020, December). Review and scientific prospects of high-contrast optical stellar interferometry. In Optical and Infrared Interferometry and Imaging VII (Vol. 11446, p. 114461J). International Society for Optics and Photonics. DOI 10.1117/12.2561505 Publisher SPIE Journal Proceedings of SPIE - The International Society for Optical Engineering Rights Copyright © 2020 SPIE. Download date 26/09/2021 05:12:08 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/660530 PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Review and scientific prospects of high-contrast optical stellar interferometry Defrère, D., Absil, O., Berger, J.-P., Danchi, W. C., Dandumont, C., et al. D. Defrère, O. Absil, J.-P. Berger, W. C. Danchi, C. Dandumont, F. Eisenhauer, S. Ertel, T. Gardner, A. Glauser, P. Hinz, M. Ireland, J. Kammerer, S. Kraus, L. Labadie, S. Lacour, R. Laugier, J. Loicq, G. Martin, F. Martinache, M. A. Martinod, B. Mennesson, J. Monnier, B. Norris, M. -
Ghost Imaging of Space Objects
Ghost Imaging of Space Objects Dmitry V. Strekalov, Baris I. Erkmen, Igor Kulikov, and Nan Yu Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109-8099 USA NIAC Final Report September 2014 Contents I. The proposed research 1 A. Origins and motivation of this research 1 B. Proposed approach in a nutshell 3 C. Proposed approach in the context of modern astronomy 7 D. Perceived benefits and perspectives 12 II. Phase I goals and accomplishments 18 A. Introducing the theoretical model 19 B. A Gaussian absorber 28 C. Unbalanced arms configuration 32 D. Phase I summary 34 III. Phase II goals and accomplishments 37 A. Advanced theoretical analysis 38 B. On observability of a shadow gradient 47 C. Signal-to-noise ratio 49 D. From detection to imaging 59 E. Experimental demonstration 72 F. On observation of phase objects 86 IV. Dissemination and outreach 90 V. Conclusion 92 References 95 1 I. THE PROPOSED RESEARCH The NIAC Ghost Imaging of Space Objects research program has been carried out at the Jet Propulsion Laboratory, Caltech. The program consisted of Phase I (October 2011 to September 2012) and Phase II (October 2012 to September 2014). The research team consisted of Drs. Dmitry Strekalov (PI), Baris Erkmen, Igor Kulikov and Nan Yu. The team members acknowledge stimulating discussions with Drs. Leonidas Moustakas, Andrew Shapiro-Scharlotta, Victor Vilnrotter, Michael Werner and Paul Goldsmith of JPL; Maria Chekhova and Timur Iskhakov of Max Plank Institute for Physics of Light, Erlangen; Paul Nu˜nez of Coll`ege de France & Observatoire de la Cˆote d’Azur; and technical support from Victor White and Pierre Echternach of JPL. -
Information Bulletin on Variable Stars
COMMISSIONS AND OF THE I A U INFORMATION BULLETIN ON VARIABLE STARS Nos November July EDITORS L SZABADOS K OLAH TECHNICAL EDITOR A HOLL TYPESETTING K ORI ADMINISTRATION Zs KOVARI EDITORIAL BOARD L A BALONA M BREGER E BUDDING M deGROOT E GUINAN D S HALL P HARMANEC M JERZYKIEWICZ K C LEUNG M RODONO N N SAMUS J SMAK C STERKEN Chair H BUDAPEST XI I Box HUNGARY URL httpwwwkonkolyhuIBVSIBVShtml HU ISSN COPYRIGHT NOTICE IBVS is published on b ehalf of the th and nd Commissions of the IAU by the Konkoly Observatory Budap est Hungary Individual issues could b e downloaded for scientic and educational purp oses free of charge Bibliographic information of the recent issues could b e entered to indexing sys tems No IBVS issues may b e stored in a public retrieval system in any form or by any means electronic or otherwise without the prior written p ermission of the publishers Prior written p ermission of the publishers is required for entering IBVS issues to an electronic indexing or bibliographic system to o CONTENTS C STERKEN A JONES B VOS I ZEGELAAR AM van GENDEREN M de GROOT On the Cyclicity of the S Dor Phases in AG Carinae ::::::::::::::::::::::::::::::::::::::::::::::::::: : J BOROVICKA L SAROUNOVA The Period and Lightcurve of NSV ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::: W LILLER AF JONES A New Very Long Period Variable Star in Norma ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::: EA KARITSKAYA VP GORANSKIJ Unusual Fading of V Cygni Cyg X in Early November ::::::::::::::::::::::::::::::::::::::: -
Long Delayed Echo: New Approach to the Problem
Geometrical joke(r?)s for SETI. R. T. Faizullin OmSTU, Omsk, Russia Since the beginning of radio era long delayed echoes (LDE) were traced. They are the most likely candidates for extraterrestrial communication, the so-called "paradox of Stormer" or "world echo". By LDE we mean a radio signal with a very long delay time and abnormally low energy loss. Unlike the well-known echoes of the delay in 1/7 seconds, the mechanism of which have long been resolved, the delay of radio signals in a second, ten seconds or even minutes is one of the most ancient and intriguing mysteries of physics of the ionosphere. Nowadays it is difficult to imagine that at the beginning of the century any registered echo signal was treated as extraterrestrial communication: “Notable changes occurred at a fixed time and the analogy among the changes and numbers was so clear, that I could not provide any plausible explanation. I'm familiar with natural electrical interference caused by the activity of the Sun, northern lights and telluric currents, but I was sure, as it is possible to be sure in anything, that the interference was not caused by any of common reason. Only after a while it came to me, that the observed interference may occur as the result of conscious activities. I'm overwhelmed by the the feeling, that I may be the first men to hear greetings transmitted from one planet to the other... Despite the signal being weak and unclear it made me certain that soon people, as one, will direct their eyes full of hope and affection towards the sky, overwhelmed by good news: People! We got the message from an unknown and distant planet. -
GTO Keypad Manual, V5.001
ASTRO-PHYSICS GTO KEYPAD Version v5.xxx Please read the manual even if you are familiar with previous keypad versions Flash RAM Updates Keypad Java updates can be accomplished through the Internet. Check our web site www.astro-physics.com/software-updates/ November 11, 2020 ASTRO-PHYSICS KEYPAD MANUAL FOR MACH2GTO Version 5.xxx November 11, 2020 ABOUT THIS MANUAL 4 REQUIREMENTS 5 What Mount Control Box Do I Need? 5 Can I Upgrade My Present Keypad? 5 GTO KEYPAD 6 Layout and Buttons of the Keypad 6 Vacuum Fluorescent Display 6 N-S-E-W Directional Buttons 6 STOP Button 6 <PREV and NEXT> Buttons 7 Number Buttons 7 GOTO Button 7 ± Button 7 MENU / ESC Button 7 RECAL and NEXT> Buttons Pressed Simultaneously 7 ENT Button 7 Retractable Hanger 7 Keypad Protector 8 Keypad Care and Warranty 8 Warranty 8 Keypad Battery for 512K Memory Boards 8 Cleaning Red Keypad Display 8 Temperature Ratings 8 Environmental Recommendation 8 GETTING STARTED – DO THIS AT HOME, IF POSSIBLE 9 Set Up your Mount and Cable Connections 9 Gather Basic Information 9 Enter Your Location, Time and Date 9 Set Up Your Mount in the Field 10 Polar Alignment 10 Mach2GTO Daytime Alignment Routine 10 KEYPAD START UP SEQUENCE FOR NEW SETUPS OR SETUP IN NEW LOCATION 11 Assemble Your Mount 11 Startup Sequence 11 Location 11 Select Existing Location 11 Set Up New Location 11 Date and Time 12 Additional Information 12 KEYPAD START UP SEQUENCE FOR MOUNTS USED AT THE SAME LOCATION WITHOUT A COMPUTER 13 KEYPAD START UP SEQUENCE FOR COMPUTER CONTROLLED MOUNTS 14 1 OBJECTS MENU – HAVE SOME FUN! -
New Ultracool Dwarf Neighbours Within 20 Pc from Gaia DR2 R.-D
A&A 637, A45 (2020) Astronomy https://doi.org/10.1051/0004-6361/201937373 & c ESO 2020 Astrophysics New ultracool dwarf neighbours within 20 pc from Gaia DR2 R.-D. Scholz Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany e-mail: [email protected] Received 20 December 2019 / Accepted 23 March 2020 ABSTRACT Aims. The Gaia data release 2 (DR2) contains >6000 objects with parallaxes (Plx + 3 × e_Plx) > 50 mas, placing them within 20 pc from the Sun. Because the expected numbers based on extrapolating the well-known 10 pc census are much lower, nearby Gaia stars need a quality assessment. The 20 pc sample of white dwarfs (WDs) has been verified and completed with Gaia DR2. We here confirm and complete the 20 pc sample of ultracool dwarfs (UCDs) with spectral types &M7 and given Gaia DR2 parallaxes. Methods. Dividing the Gaia DR2 20 pc sample into subsamples of various astrometric and photometric quality, we studied their distribution on the sky, in the MG versus G−RP colour-magnitude diagram (CMD), and as a function of G magnitude and total proper motion. After excluding 139 known WDs and 263 known UCDs from the CMD, we checked all remaining ≈3500 candidates with MG > 14 mag (used to define UCDs in this study) for the correctness of their Gaia DR2 proper motions by visual inspection of finder charts, comparison with proper motion catalogues, and comparison with our own proper motion measurements. For confirmed UCD candidates we estimated spectral types photometrically using Gaia and near-infrared absolute magnitudes and colours. -
Arxiv:1202.5581V1 [Astro-Ph.SR]
Know Your Neighborhood: A Detailed Model Atmosphere Analysis of Nearby White Dwarfs N. Giammichele,1 P. Bergeron1, & P. Dufour D´epartement de Physique, Universit´ede Montr´eal, C.P. 6128, Succ. Centre-Ville, Montr´eal, Qu´ebec H3C 3J7, Canada. [email protected], [email protected], [email protected] ABSTRACT We present improved atmospheric parameters of nearby white dwarfs lying within 20 pc of the Sun. The aim of the current study is to obtain the best statistical model of the least-biased sample of the white dwarf population. A homogeneous analysis of the local population is performed combining detailed spectroscopic and photometric analyses based on improved model atmosphere calculations for various spectral types including DA, DB, DC, DQ, and DZ stars. The spectroscopic technique is applied to all stars in our sample for which opti- cal spectra are available. Photometric energy distributions, when available, are also combined to trigonometric parallax measurements to derive effective tem- peratures, stellar radii, as well as atmospheric compositions. A revised catalog of white dwarfs in the solar neighborhood is presented. We provide, for the first time, a comprehensive analysis of the mass distribution and the chemical distribution of white dwarf stars in a volume-limited sample. Subject headings: Solar neighborhood – stars: luminosity function, mass function – techniques: photometric – techniques: spectroscopic – white dwarfs arXiv:1202.5581v1 [astro-ph.SR] 24 Feb 2012 1. Introduction White dwarf stars represent a significant contribution to the global stellar population and an important indicator of the evolutionary history of the Galaxy. As such, it becomes 1Visiting Astronomer, Kitt Peak National Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under cooperative agreement with the National Science Foundation. -
Taking the Measure of the Universe: Precision Astrometry with SIM
Accepted for publication in PASP, January 2008 issue A Preprint typeset using LTEX style emulateapj v. 08/22/09 TAKING THE MEASURE OF THE UNIVERSE: PRECISION ASTROMETRY WITH SIM PLANETQUEST Stephen C. Unwin1, Michael Shao2, Angelle M. Tanner2, Ronald J. Allen3, Charles A. Beichman4, David Boboltz5, Joseph H. Catanzarite2, Brian C. Chaboyer6, David R. Ciardi4, Stephen J. Edberg2, Alan L. Fey5, Debra A. Fischer7, Christopher R. Gelino8, Andrew P. Gould9, Carl Grillmair8, Todd J. Henry10, Kathryn V. Johnston11,12, Kenneth J. Johnston5, Dayton L. Jones2, Shrinivas R. Kulkarni4, Nicholas M. Law4, Steven R. Majewski13, Valeri V. Makarov2, Geoffrey W. Marcy14, David L. Meier2, Rob P. Olling15, Xiaopei Pan2, Richard J. Patterson13, Jo Eliza Pitesky2, Andreas Quirrenbach16, Stuart B. Shaklan2, Edward J. Shaya15, Louis E. Strigari17, John A. Tomsick18,19, Ann E. Wehrle20, and Guy Worthey21 Accepted for publication in PASP, January 2008 issue ABSTRACT Precision astrometry at microarcsecond accuracy has application to a wide range of astrophysical problems. This paper is a study of the science questions that can be addressed using an instrument with flexible scheduling that delivers parallaxes at about 4 microarcsec (µas) on targets as faint as V = 20, and differential accuracy of 0.6 µas on bright targets. The science topics are drawn primarily from the Team Key Projects, selected in 2000, for the Space Interferometry Mission PlanetQuest (SIM PlanetQuest). We use the capabilities of this mission to illustrate the importance of the next level of astrometric precision in modern astrophysics. SIM PlanetQuest is currently in the detailed design phase, having completed in 2005 all of the enabling technologies needed for the flight instrument. -
QUALIFIER EXAM SOLUTIONS 1. Cosmology (Early Universe, CMB, Large-Scale Structure)
Draft version June 20, 2012 Preprint typeset using LATEX style emulateapj v. 5/2/11 QUALIFIER EXAM SOLUTIONS Chenchong Zhu (Dated: June 20, 2012) Contents 1. Cosmology (Early Universe, CMB, Large-Scale Structure) 7 1.1. A Very Brief Primer on Cosmology 7 1.1.1. The FLRW Universe 7 1.1.2. The Fluid and Acceleration Equations 7 1.1.3. Equations of State 8 1.1.4. History of Expansion 8 1.1.5. Distance and Size Measurements 8 1.2. Question 1 9 1.2.1. Couldn't photons have decoupled from baryons before recombination? 10 1.2.2. What is the last scattering surface? 11 1.3. Question 2 11 1.4. Question 3 12 1.4.1. How do baryon and photon density perturbations grow? 13 1.4.2. How does an individual density perturbation grow? 14 1.4.3. What is violent relaxation? 14 1.4.4. What are top-down and bottom-up growth? 15 1.4.5. How can the power spectrum be observed? 15 1.4.6. How can the power spectrum constrain cosmological parameters? 15 1.4.7. How can we determine the dark matter mass function from perturbation analysis? 15 1.5. Question 4 16 1.5.1. What is Olbers's Paradox? 16 1.5.2. Are there Big Bang-less cosmologies? 16 1.6. Question 5 16 1.7. Question 6 17 1.7.1. How can we possibly see galaxies that are moving away from us at superluminal speeds? 18 1.7.2. Why can't we explain the Hubble flow through the physical motion of galaxies through space? 19 1.7.3.