Parasites of Native and Non-Native Fishes in the Little Colorado River
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Species Status Assessment Report for the Sharpnose Shiner (Notropis Oxyrhynchus) and Smalleye Shiner (N
Species Status Assessment Report For the Sharpnose Shiner (Notropis oxyrhynchus) And Smalleye Shiner (N. buccula) Prepared by the Arlington, Texas Ecological Services Field Office U.S. Fish and Wildlife Service Date of last revision: June 10, 2014 EXECUTIVE SUMMARY This species status assessment reports the results of the comprehensive status review for the sharpnose shiner (Notropis oxyrhynchus) and smalleye shiner (N. buccula) and provides a thorough account of the species’ overall viability and, conversely, extinction risk. Sharpnose and smalleye shiners are small minnows currently restricted to the contiguous river segments of the upper Brazos River basin in north-central Texas. In conducting our status assessment we first considered what the two shiners need to ensure viability. We generally define viability as the ability of the species to persist over the long term and, conversely, to avoid extinction. We then evaluated whether those needs currently exist and the repercussions to the species when those needs are missing, diminished, or inaccessible. We next consider the factors that are causing the species to lack what it needs, included historical, current, and future factors. Finally, considering the information reviewed, we evaluated the current status and future viability of the species in terms of resiliency, redundancy, and representation. Resiliency is the ability of the species to withstand stochastic events and, in the case of the shiners, is best measured by the extent of suitable habitat in terms of stream length. Redundancy is the ability of a species to withstand catastrophic events by spreading the risk and can be measured through the duplication and distribution of resilient populations across its range. -
First Molecular Identification of Invasive Tapeworm, Bothriocephalus Acheilognathi Yamaguti, 1934 (Cestoda: Bothriocephalidea) in India
BioInvasions Records (2015) Volume 4, Issue 4: 269–276 Open Access doi: http://dx.doi.org/10.3391/bir.2015.4.4.07 © 2015 The Author(s). Journal compilation © 2015 REABIC Rapid Communication First molecular identification of invasive tapeworm, Bothriocephalus acheilognathi Yamaguti, 1934 (Cestoda: Bothriocephalidea) in India 1 2 3 1 Anshu Chaudhary *, Haren Ram Chiary , Bindu Sharma and Hridaya Shanker Singh 1Molecular Taxonomy Laboratory, Department of Zoology, University Road, Chaudhary Charan Singh University, Meerut (U.P.), 250004 India 2Department of Zoology, Kirorimal College, University of Delhi, North Campus, New Delhi, Delhi, 110007 India 3Department of Zoology, D.N.P.G. College, Meerut (U.P.), 250004 India *Corresponding author E-mail: [email protected] Received: 10 November 2014 / Accepted: 19 August 2015 / Published online: 15 September 2015 Handling editor: Vadim Panov Abstract During the helminthological survey of non-native fishes in Meerut region, UP, India, specimens of genus Bothriocephalus were collected from introduced fish green swordtail Xiphophorus hellerii Heckel, 1848, a native of North and Central America. The morphological and molecular study inferred with partial sequence of 18S and 28S rRNA confirmed the specimens as B. acheilognathi. Phylogenetic analysis further confirmed its taxonomic status, as it comes under the same clade formed by B. acheilognathi species reported from other geographical regions. This study first time describes the molecular identification of B. acheilognathi from India. The findings of the study also established its ecological impact in northern parts of India and highlights that low degree of host specificity can affect the native fish resources of India. Key words: Cestode, Meerut, Xiphophorus hellerii, 18S, 28S Introduction parasite range by the host-switching from new native ones (Poulin et al. -
Raport Tehnic Privind Metodologia Utilizată Pentru Alcătuirea Bazei
Cod și Nume proiect: POIM 2014+ 120008 Managementul adecvat al speciilor invazive din România, în conformitate cu Regulamentul UE 1143/2014 referitor la prevenirea și gestionarea introducerii și răspândirii speciilor alogene invazive Raport tehnic privind metodologia utilizată pentru alcătuirea bazei de date cu căile de pătrundere identificate cel puțin pentru speciile selectate din lista DAISE – 100 of the Worst Activitatea 2.1. Căi de introducere prioritare a speciilor alogene din România Subactivitatea 2.1.1. Identificarea căilor de introducere prioritare a speciilor alogene din România Proiect cofinanțat din Fondul European de Dezvoltare Regională prin Programul Operațional Infrastructură Mare 2014-2020 Titlul proiectului: Managementul adecvat al speciilor invazive din România, în conformitate cu Regulamentul UE 1143/2014 referitor la prevenirea și gestionarea introducerii și răspândirii speciilor alogene invazive Cod proiect: POIM2014+ 120008 Obiectivul general al proiectului este de a crea instrumentele științifice și administrative necesare pentru managementul eficient al speciilor invazive din România, în conformitate cu Regulamentul UE 1143/2014 privind prevenirea si gestionarea introducerii si răspândirii speciilor alogene invazive. Data încheierii contractului: 27 noiembrie 2018 Valoarea totală a contractului: 29.507.870,54 lei Contractant: Ministerul Mediului Apelor și Pădurilor Echipa de experți: • POPA Oana Paula– Coordonator activitate / Expert specii invazive • COGĂLNICEANU Dan - Expert coordonator național specii invazive -
The Studies on Cestodes in China Cheng Gonghuang* Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, China
ary Scien in ce r te & e T V e f c h o Gonghuang, J Veterinar Sci Technolo 2013, 5:1 n n l Journal of VVeterinaryeterinary Science & o o a a l l n n o o r r DOI: 10.4172/2157-7579.1000150 g g u u y y o o J J ISSN: 2157-7579 TTechnologyechnology Short Communication Open Access The Studies on Cestodes in China Cheng Gonghuang* Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, China Abstract Cestode studies carry out in China for about 80 years since the earliest paper published by Shen Tseng and after then a lot of works have been done and there comes many good results as total about 400 species with many new were reported and described. All the works have been reviewed here by author and it is known that a big work called “Cestodology” will be published the next year. Keywords: Cestode; Study; Taxonomy; China Then a lot of scientists such as Li SY [1], Gu [2], Lin and Li [5] did the cestodes of investigation of domestic fowls and beasts. Yeh [12], Cestodes are a lot of parasites that parasitized in human and other Liao and Shi [13], Chen Y [14], Wang XY [15], Tang CC [16], Wang PQ animals. They belong to phylum-Platyhelminthes, Class-Cestoda. It [17] reported a series of fish cestodes in China. Xu et al. [18] and Kong is known to make human diseases when they parasitized in a human and Yin [19], Wu SQ [20], Yang P [21], Lin Y [22], Lin et al. -
First Report of the Asian Fish Tapeworm, Bothriocephalus
35 First Report of the Asian Fish Tapeworm, Bothriocephalus acheilognathi (Cestoda: Bothriocephalidea:Bothriocephalidae) from Oklahoma with New Host Records in Non- Hatchery Fishes in Arkansas Chris T. McAllister Science and Mathematics Division, Eastern Oklahoma State College, Idabel, OK 74745 Charles R. Bursey Department of Biology, Pennsylvania State University-Shenango Campus, Sharon, PA 16146 Thomas J. Fayton Gulf Coast Research Laboratory, University of Southern Mississippi, Ocean Springs, MS 39564 Matthew B. Connior Life Sciences, Northwest Arkansas Community College, Bentonville, AR 72712 Henry W. Robison Department of Biology, Southern Arkansas University, Magnolia, AR 71754 Abstract: The Asian fish tapeworm, Bothriocephalus acheilognathi is an invasive pathogen in North America and beyond. It first appeared in North America in the mid-1970s likely arriving in shipments of introduced Grass Carp, Ctenopharyngodon idella from China to control aquatic vegetation. This tapeworm now can be found in many parts of the world (except Antarctica) where it infects over 200 species of fishes, including several raised in commercial hatcheries. In examining 67 fishes, including 11 Bluntnose Minnow (Pimephales notatus), one Spotted Sucker (Minytrema melanops), 17 Western Mosquitofish (Gambusia affinis) and 22 Creek Chub (Semotilus atromaculatus) from four watersheds in Arkansas, and 16 G. affinis from a watershed in Oklahoma, we found B. acheilognathi in 15 (22%) of them. In addition, examination of 256 fishes from the same watersheds where other fishes were infected with this tapeworm yielded no B. acheilognathi. Here, we report, for the first time, B. acheilognathi in an Oklahoma fish, document two new host records, and confirm the parasite in Arkansas in non-hatchery fishes.©2015 Oklahoma Academy of Science Proc. -
Fauna Europaea: Helminths (Animal Parasitic)
UvA-DARE (Digital Academic Repository) Fauna Europaea: Helminths (Animal Parasitic) Gibson, D.I.; Bray, R.A.; Hunt, D.; Georgiev, B.B.; Scholz, T.; Harris, P.D.; Bakke, T.A.; Pojmanska, T.; Niewiadomska, K.; Kostadinova, A.; Tkach, V.; Bain, O.; Durette-Desset, M.C.; Gibbons, L.; Moravec, F.; Petter, A.; Dimitrova, Z.M.; Buchmann, K.; Valtonen, E.T.; de Jong, Y. DOI 10.3897/BDJ.2.e1060 Publication date 2014 Document Version Final published version Published in Biodiversity Data Journal License CC BY Link to publication Citation for published version (APA): Gibson, D. I., Bray, R. A., Hunt, D., Georgiev, B. B., Scholz, T., Harris, P. D., Bakke, T. A., Pojmanska, T., Niewiadomska, K., Kostadinova, A., Tkach, V., Bain, O., Durette-Desset, M. C., Gibbons, L., Moravec, F., Petter, A., Dimitrova, Z. M., Buchmann, K., Valtonen, E. T., & de Jong, Y. (2014). Fauna Europaea: Helminths (Animal Parasitic). Biodiversity Data Journal, 2, [e1060]. https://doi.org/10.3897/BDJ.2.e1060 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. -
Small Subunit Rdna and the Platyhelminthes: Signal, Noise, Conflict and Compromise
Chapter 25 In: Interrelationships of the Platyhelminthes (eds. D.T.J. Littlewood & R.A. Bray) ____________________________________________________________________________________________________________ 25 SMALL SUBUNIT RDNA AND THE PLATYHELMINTHES: SIGNAL, NOISE, CONFLICT AND COMPROMISE D. Timothy J. Littlewood and Peter D. Olson The strategies of gene sequencing and gene characterisation in phylogenetic studies are frequently determined by a balance between cost and benefit, where benefit is measured in terms of the amount of phylogenetic signal resolved for a given problem at a specific taxonomic level. Generally, cost is far easier to predict than benefit. Building upon existing databases is a cost-effective means by which molecular data may rapidly contribute to addressing systematic problems. As technology advances and gene sequencing becomes more affordable and accessible to many researchers, it may be surprising that certain genes and gene products remain favoured targets for systematic and phylogenetic studies. In particular, ribosomal DNA (rDNA), and the various RNA products transcribed from it continue to find utility in wide ranging groups of organisms. The small (SSU) and large subunit (LSU) rDNA fragments especially lend themselves to study as they provide an attractive mix of constant sites that enable multiple alignments between homologues, and variable sites that provide phylogenetic signal (Hillis and Dixon 1991; Dixon and Hillis 1993). Ribosomal RNA (rRNA) is also the commonest nucleic acid in any cell and thus was the prime target for sequencing in both eukaryotes and prokaryotes during the early history of SSU nucleotide based molecular systematics (Olsen and Woese 1993). In particular, the SSU gene (rDNA) and gene product (SSU rRNA1) have become such established sources of taxonomic and systematic markers among some taxa that databanks dedicated to the topic have been developed and maintained with international and governmental funding (e.g. -
Irish Biodiversity: a Taxonomic Inventory of Fauna
Irish Biodiversity: a taxonomic inventory of fauna Irish Wildlife Manual No. 38 Irish Biodiversity: a taxonomic inventory of fauna S. E. Ferriss, K. G. Smith, and T. P. Inskipp (editors) Citations: Ferriss, S. E., Smith K. G., & Inskipp T. P. (eds.) Irish Biodiversity: a taxonomic inventory of fauna. Irish Wildlife Manuals, No. 38. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Section author (2009) Section title . In: Ferriss, S. E., Smith K. G., & Inskipp T. P. (eds.) Irish Biodiversity: a taxonomic inventory of fauna. Irish Wildlife Manuals, No. 38. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Cover photos: © Kevin G. Smith and Sarah E. Ferriss Irish Wildlife Manuals Series Editors: N. Kingston and F. Marnell © National Parks and Wildlife Service 2009 ISSN 1393 - 6670 Inventory of Irish fauna ____________________ TABLE OF CONTENTS Executive Summary.............................................................................................................................................1 Acknowledgements.............................................................................................................................................2 Introduction ..........................................................................................................................................................3 Methodology........................................................................................................................................................................3 -
3.2.11 Bothriocephalosis - 1
3.2.11 Bothriocephalosis - 1 3.2.11 Bothriocephalosis Andrew Mitchell U. S. Department of Agriculture Agricultural Research Service H K Dupree-Stuttgart National Aquaculture Research Center PO Box 1050 Stuttgart, AR 72160-1050 870/673-4483 [email protected] A. Name of Disease and Etiological Agent Bothriocephalosis is the intestinal infection of certain fish by the cestode Bothriocephalus acheilognathi (Yamaguti 1934), a Pseudophyllidean tapeworm. The infecting organism is also known as the Asian fish tapeworm and as the Chinese tapeworm and has had several synonymous scientific names, including: Bothriocephalus opsariichthydis = Bothriocephalus opsalichthydis, Bothriocephalus fluviatilis, Schyzocotyle fluviatilis, Bothriocephalus gowkongensis, and Bothriocephalus phoxini. B. Known Geographical Range and Host Species of the Disease 1. Geographical Range The Asian tapeworm has been reported in Asia, Australia, Europe, South Africa, and North America. In North America, it has been reported in Mexico, British Columbia, throughout the lower half of the United States, and in Colorado, Nebraska, New Hampshire, New York, Nevada, and Utah. 2. Host Species Most members of the family Cyprinidae should be considered as potential hosts. However, goldfish Carassius auratus, are apparently not susceptible to B. acheilognathi. This worm also infects some silurids, poecilids, percids, and centrarchids. In the United States, the fish host species include: goby Awaous guamensis, grass carp Ctenopharygodon idella, common carp Cyprinus carpio, sleeper -
Schyzocotyle Acheilognathi) and Schyzocotyle Sp
The Discovery of Asian Fish Tapeworm (Schyzocotyle Acheilognathi) and Schyzocotyle Sp. In Western Australia May Pose a Threat to the Health of Endemic Native Fishes Cindy Joanna Palermo ( [email protected] ) Murdoch University https://orcid.org/0000-0001-7604-7196 David L. Morgan Murdoch University School of Veterinary and Life Sciences Stephen J. Beatty Murdoch University School of Veterinary and Life Sciences Aileen Elliot Murdoch University School of Veterinary and Life Sciences Telleasha L. Greay Murdoch University School of Veterinary and Life Sciences Research Article Keywords: Invasive freshwater sh, Co-invading parasite, Modied wetland, Phylogenetic, Western Australia Posted Date: February 15th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-191598/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/19 Abstract Purpose The Asian sh tapeworm (Schyzocotyle acheilognathi) is an important sh parasite with a wide host range that infects over 300 species of sh worldwide. Schyzocotyle acheilognathi has been reported from eastern coastal areas of Australia, but has not been previously reported in Western Australia (WA). Methods During a control program for invasive freshwater shes in south-western WA, a region with a unique and highly endangered freshwater sh fauna, tapeworms identied as S. acheilognathi from their distinctive scolex morphology were found at a prevalence of 3.3% in goldsh (Carassius auratus), 37.0% in koi carp (Cyprinus carpio haematopterus), and 65.0% in eastern mosquitosh (Gambusia holbrooki). For molecular conrmation, the 18S rRNA gene was targeted at hypervariable region V4 using conventional PCR and Sanger sequencing. -
Parasites of Fishes in South Dakota E
South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange South Dakota State University Agricultural Bulletins Experiment Station 7-1-1959 Parasites of Fishes in South Dakota E. J. Hugghins Follow this and additional works at: http://openprairie.sdstate.edu/agexperimentsta_bulletins Recommended Citation Hugghins, E. J., "Parasites of Fishes in South Dakota" (1959). Bulletins. Paper 484. http://openprairie.sdstate.edu/agexperimentsta_bulletins/484 This Bulletin is brought to you for free and open access by the South Dakota State University Agricultural Experiment Station at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Bulletins by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. BULLETIN 484 JULY 1959 Contents Introductory and Background Information -------------------------------------------�--- 5 D efiniti o ns ________________ ----------------------------------______ ________ ________________ __ ____ _____ _______ __ 5 Classifi ca ti on ____ __ ____ __________________ __________________ ______ ______ __________________________ ______ ______ 7 Key for Identification ----------------------------------------------------------------------------_____ 7 Simplified Key to Major Groups of Fish Parasites__________________________________ 7 Life Cycles in General -
From a Cave Salamander, Eurycea Lucifuga and Grotto
93 First Report of Bothriocephalus rarus (Bothriocephalidea: Bothriocephalidae) from a Cave Salamander, Eurycea lucifuga and Grotto Salamanders, Eurycea spelaea (Caudata: Plethodontidae) from Oklahoma, with a Summary of Helminths from these Hosts Chris T. McAllister Science and Mathematics Division, Eastern Oklahoma State College, Idabel, OK 74745 Charles R. Bursey Department of Biology, Pennsylvania State University-Shenango, Sharon, PA 16146 Henry W. Robison 9717 Wild Mountain Drive, Sherwood, AR 72120 Matthew B. Connior Life Sciences, Northwest Arkansas Community College, Bentonville, AR 72712 Stanley E. Trauth Department of Biological Sciences, Arkansas State University, State University, AR 72467 Danté B. Fenolio San Antonio Zoo, 3903 North St. Mary’s Street, San Antonio, TX 78212 ©2016 Oklahoma Academy of Science The cave salamander, Eurycea lucifuga species that occurs in darker zones of caves, Rafinesque, 1822, as its name implies, is underground streams and sinkholes in the Salem restricted to moist woodlands, cliff fissures, and and Springfield plateaus in the Ozark region of damp limestone caves in the Central Highlands southwestern Missouri to southeastern Kansas of North America from western Virginia and and adjacent areas from northern Arkansas to central Indiana southward to northern Georgia northeastern Oklahoma (Powell et al. 2016). and west to eastern Oklahoma (Powell et al. Larval grotto salamanders can be found outside 2016). In Oklahoma, E. lucifuga is restricted to of caves in surface springs and in the entrance karst systems in the northeastern portion of the zone of caves but can also be found living deeper state (Sievert and Sievert 2011). in cave systems (Fenolio et al. 2004; Trauth et al.