Checklists of Cestodes of Freshwater and Marine Fishes of Basrah Province, Iraq
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Marine Ecology Progress Series 605:1
Vol. 605: 1–16, 2018 MARINE ECOLOGY PROGRESS SERIES Published October 26 https://doi.org/10.3354/meps12751 Mar Ecol Prog Ser OPEN ACCESS FEATURE ARTICLE Host diet influences parasite diversity: a case study looking at tapeworm diversity among sharks Trent K. Rasmussen1,*, Haseeb S. Randhawa1,2,3,4 1Ecology Degree Programme, University of Otago, PO Box 56, Dunedin 9054, New Zealand 2Present address: Falkland Islands Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Bypass Road, Stanley FIQQ 1ZZ, Falkland Islands 3Present address: South Atlantic Environmental Research Institute, PO Box 609, Stanley Cottage, Stanley FIQQ 1ZZ, Falkland Islands 4Present address: New Brunswick Museum, 277 Douglas Avenue, Saint John, New Brunswick E2K 1E5, Canada ABSTRACT: In theory, animal diets may act as impor- tant filters for different parasite species. However, there is currently a lack of empirical research looking at host diet as a potential predictor of parasite diversity among different host species. The aim of this study was to assess the influence of several host diet features (including diet breadth, diet composition, and trophic level) on tapeworm diversity in sharks, relative to other key factors, including host size, habitat, phylogeny, latitude, and depth. Data on these host features were compiled from a comprehensive analysis of literature records including 91 different shark species, and 3 measures of tapeworm diversity were examined: tape- worm species richness, tapeworm taxonomic distinct- ness (TD), and variance in tapeworm TD. The diet breadth of a shark species was revealed to be a better The variety of prey in sharks’ diets may have a large influ- predictor of tapeworm species richness than other host ence on how many parasite species infect them. -
Rhinopristiformes: Pristidae) in the Gulf of Mexico
Institute of Parasitology, Biology Centre CAS Folia Parasitologica 2020, 67: 009 doi: 10.14411/fp.2020.009 http://folia.paru.cas.cz Research Article A new genus and species of fish blood fluke, Achorovermis testisinuosus gen. et sp. n. (Digenea: Aporocotylidae), infecting critically endangered smalltooth sawfish, Pristis pectinata (Rhinopristiformes: Pristidae) in the Gulf of Mexico Micah B. Warren1, Micah D. Bakenhaster2, Rachel M. Scharer3, Gregg R. Poulakis3 and Stephen A. Bullard1 1 Auburn University, School of Fisheries, Aquaculture & Aquatic Sciences and Aquatic Parasitology Laboratory, Auburn, AL, USA; 2 Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, USA; 3 Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Charlotte Harbor Field Laboratory, Port Charlotte, FL, USA Abstract: Achorovermis testisinuosus gen. et sp. n. (Digenea: Aporocotylidae) infects the heart of the smalltooth sawfish, Pristis pect- inata Latham (Rhinopristiformes: Pristidae), in the eastern Gulf of Mexico. Specimens of the new genus, along with the other blood flukes that infect batoids are similar by having an inverse U-shaped intestine and a curving testis as well as by lacking tegumental spines. The new genus differs from all of the other blood flukes infecting batoids by having an elongate body (>50 × longer than wide), a testis having >100 curves, and an ovary wholly anterior to the uterus. It differs from Ogawaia glaucostegi Cutmore, Cribb et Yong, 2018, the only other blood fluke infecting a rhinopristiform, by having a body that is >50 × (vs <30 ×) longer than wide, a testis that is >75 × (vs <40 ×) longer than wide and has >100 (vs <70) curves, an ovary wholly anterior to (vs lateral and dorsal to) the seminal vesi- cle, a uterus wholly posterior to (vs overlapping and lateral to both) the testis and ovary, and a sinuous (vs convoluted) uterus. -
BIO 475 - Parasitology Spring 2009 Stephen M
BIO 475 - Parasitology Spring 2009 Stephen M. Shuster Northern Arizona University http://www4.nau.edu/isopod Lecture 12 Platyhelminth Systematics-New Euplatyhelminthes Superclass Acoelomorpha a. Simple pharynx, no gut. b. Usually free-living in marine sands. 3. Also parasitic/commensal on echinoderms. 1 Euplatyhelminthes 2. Superclass Rhabditophora - with rhabdites Euplatyhelminthes 2. Superclass Rhabditophora - with rhabdites a. Class Rhabdocoela 1. Rod shaped gut (hence the name) 2. Often endosymbiotic with Crustacea or other invertebrates. Euplatyhelminthes 3. Example: Syndesmis a. Lives in gut of sea urchins, entirely on protozoa. 2 Euplatyhelminthes Class Temnocephalida a. Temnocephala 1. Ectoparasitic on crayfish 5. Class Tricladida a. like planarians b. Bdelloura 1. live in gills of Limulus Class Temnocephalida 4. Life cycles are poorly known. a. Seem to have slightly increased reproductive capacity. b. Retain many morphological characters that permit free-living existence. Euplatyhelminth Systematics 3 Parasitic Platyhelminthes Old Scheme Characters: 1. Tegumental cell extensions 2. Prohaptor 3. Opisthaptor Superclass Neodermata a. Loss of characters associated with free-living existence. 1. Ciliated larval epidermis, adult epidermis is syncitial. Superclass Neodermata b. Major Classes - will consider each in detail: 1. Class Trematoda a. Subclass Aspidobothrea b. Subclass Digenea 2. Class Monogenea 3. Class Cestoidea 4 Euplatyhelminth Systematics Euplatyhelminth Systematics Class Cestoidea Two Subclasses: a. Subclass Cestodaria 1. Order Gyrocotylidea 2. Order Amphilinidea b. Subclass Eucestoda 5 Euplatyhelminth Systematics Parasitic Flatworms a. Relative abundance related to variety of parasitic habitats. b. Evidence that such characters lead to great speciation c. isolated populations, unique selective environments. Parasitic Flatworms d. Also, very good organisms for examination of: 1. Complex life cycles; selection favoring them 2. -
Eucestoda: Tetraphyllidea
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 6-1988 Rhinebothrium devaneyi n. sp. (Eucestoda: Tetraphyllidea) and Echinocephalus overstreeti Deardorff and Ko, 1983 (Nematoda: Gnathostomatidae) in a Thorny Back Ray, Urogymnus asperrimus, from Enewetak Atoll, with Phylogenetic Analysis of Both Species Groups Daniel R. Brooks University of Toronto, [email protected] Thomas L. Deardorff United States Food and Drug Administration Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Brooks, Daniel R. and Deardorff, Thomas L., "Rhinebothrium devaneyi n. sp. (Eucestoda: Tetraphyllidea) and Echinocephalus overstreeti Deardorff and Ko, 1983 (Nematoda: Gnathostomatidae) in a Thorny Back Ray, Urogymnus asperrimus, from Enewetak Atoll, with Phylogenetic Analysis of Both Species Groups" (1988). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 240. https://digitalcommons.unl.edu/parasitologyfacpubs/240 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. J. Parasit., 74(3), 1988, pp. 459-465 ? American Society -
Luth Wfu 0248D 10922.Pdf
SCALE-DEPENDENT VARIATION IN MOLECULAR AND ECOLOGICAL PATTERNS OF INFECTION FOR ENDOHELMINTHS FROM CENTRARCHID FISHES BY KYLE E. LUTH A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADAUTE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Biology May 2016 Winston-Salem, North Carolina Approved By: Gerald W. Esch, Ph.D., Advisor Michael V. K. Sukhdeo, Ph.D., Chair T. Michael Anderson, Ph.D. Herman E. Eure, Ph.D. Erik C. Johnson, Ph.D. Clifford W. Zeyl, Ph.D. ACKNOWLEDGEMENTS First and foremost, I would like to thank my PI, Dr. Gerald Esch, for all of the insight, all of the discussions, all of the critiques (not criticisms) of my works, and for the rides to campus when the North Carolina weather decided to drop rain on my stubborn head. The numerous lively debates, exchanges of ideas, voicing of opinions (whether solicited or not), and unerring support, even in the face of my somewhat atypical balance of service work and dissertation work, will not soon be forgotten. I would also like to acknowledge and thank the former Master, and now Doctor, Michael Zimmermann; friend, lab mate, and collecting trip shotgun rider extraordinaire. Although his need of SPF 100 sunscreen often put our collecting trips over budget, I could not have asked for a more enjoyable, easy-going, and hard-working person to spend nearly 2 months and 25,000 miles of fishing filled days and raccoon, gnat, and entrail-filled nights. You are a welcome camping guest any time, especially if you do as good of a job attracting scorpions and ants to yourself (and away from me) as you did on our trips. -
1 Curriculum Vitae Stephen S. Curran, Ph.D. Department of Coastal
Curriculum vitae Stephen S. Curran, Ph.D. Department of Coastal Sciences The University of Southern Mississippi Gulf Coast Research Laboratory 703 East Beach Drive Phone: (228) 238-0208 Ocean Springs, MS 39564 Email: [email protected] Research and Teaching Interests: I am an organismal biologist interested in the biodiversity of metazoan parasitic animals. I study their taxonomy using traditional microscopic and histological techniques and their genetic interrelationships and systematics using ribosomal DNA sequences. I also investigate the effects of extrinsic factors on aquatic environments by using parasite prevalence and abundance as a proxy for total biodiversity in aquatic communities and for assessing food web dynamics. I am also interested in the epidemiology of viral diseases of crustaceans. University Teaching Experience: •Instructor for Parasites of Marine Animals Summer class, University of Southern Mississippi, Gulf Coast Research Laboratory (2011-present). •Co-Instructor (with Richard Heard) for Marine Invertebrate Zoology, University of Southern Mississippi, Gulf Coast Research Laboratory (2007). •Intern Mentor, Gulf Coast Research Laboratory. I’ve instructed 16 interns during (2003, 2007- present). •Graduate Teaching Assistant for Animal Parasitology, Department of Ecology and Evolutionary Biology, University of Connecticut (Spring 1995). •Graduate Teaching Assistant for Introductory Biology for Majors, Department of Ecology and Evolutionary Biology, University of Connecticut (Fall 1994). Positions: •Assistant Research -
Broad Tapeworms (Diphyllobothriidae)
IJP: Parasites and Wildlife 9 (2019) 359–369 Contents lists available at ScienceDirect IJP: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw Broad tapeworms (Diphyllobothriidae), parasites of wildlife and humans: T Recent progress and future challenges ∗ Tomáš Scholza, ,1, Roman Kuchtaa,1, Jan Brabeca,b a Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic b Natural History Museum of Geneva, PO Box 6434, CH-1211, Geneva 6, Switzerland ABSTRACT Tapeworms of the family Diphyllobothriidae, commonly known as broad tapeworms, are predominantly large-bodied parasites of wildlife capable of infecting humans as their natural or accidental host. Diphyllobothriosis caused by adults of the genera Dibothriocephalus, Adenocephalus and Diphyllobothrium is usually not a life-threatening disease. Sparganosis, in contrast, is caused by larvae (plerocercoids) of species of Spirometra and can have serious health consequences, exceptionally leading to host's death in the case of generalised sparganosis caused by ‘Sparganum proliferum’. While most of the definitive wildlife hosts of broad tapeworms are recruited from marine and terrestrial mammal taxa (mainly carnivores and cetaceans), only a few diphyllobothriideans mature in fish-eating birds. In this review, we provide an overview the recent progress in our understanding of the diversity, phylogenetic relationships and distribution of broad tapeworms achieved over the last decade and outline the prospects of future research. The multigene family-wide phylogeny of the order published in 2017 allowed to propose an updated classi- fication of the group, including new generic assignment of the most important causative agents of human diphyllobothriosis, i.e., Dibothriocephalus latus and D. -
Cestodes of the Fishes of Otsego Lake and Nearby Waters
Cestodes of the fishes of Otsego Lake and nearby waters Amanda Sendkewitz1, Illari Delgado1, and Florian Reyda2 INTRODUCTION This study of fish cestodes (i.e., tapeworms) is part of a survey of the intestinal parasites of fishes of Otsego Lake and its tributaries (Cooperstown, New York) from 2008 to 2014. The survey included a total of 27 fish species, consisting of six centrarchid species, one ictalurid species, eleven cyprinid species, three percid species, three salmonid species, one catostomid species, one clupeid species, and one esocid species. This is really one of the first studies on cestodes in the area, although one of the first descriptions of cestodes was done on the Proteocephalus species Proteocephalus ambloplitis by Joseph Leidy in Lake George, NY in 1887; it was originally named Taenia ambloplitis. Parasite diversity is a large component of biodiversity, and is often indicative of the health and stature of a particular ecosystem. The presence of parasitic worms in fish of Otsego County, NY has been investigated over the course of a multi-year survey, with the intention of observing, identifying, and recording the diversity of cestode (tapeworm) species present in its many fish species. The majority of the fish species examined harbored cestodes, representing three different orders: Caryophyllidea, Proteocephalidea, and Bothriocephalidea. METHODS The fish utilized in this survey were collected through hook and line, gill net, electroshock, or seining methods throughout the year from 2008-2014. Cestodes were collected in sixteen sites throughout Otsego County. These sites included Beaver Pond at Rum Hill, the Big Pond at Thayer Farm, Canadarago Lake, a pond at College Camp, the Delaware River, Hayden Creek, LaPilusa Pond, Mike Schallart’s Pond in Schenevus, Moe Pond, a pond in Morris, NY, Oaks Creek, Paradise Pond, Shadow Brook, the Susquehanna River, the Wastewater Treatment Wetland (Cooperstown), and of course Otsego Lake. -
Reporting a New Caryophyllidean Worm from a Freshwater Clarias Batrachus
© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162) REPORTING A NEW CARYOPHYLLIDEAN WORM FROM A FRESHWATER CLARIAS BATRACHUS 1Khushal Bhavsar, 2Avinash Bhangale and 3Ajit Kalse, 1Researcher, 2Associate Professor, & 3Professor Helminth Research Laboratory, P.G. Department of Zoology, Nanasaheb Y. N. Chavan ASC College, Chalisgaon Dist. Jalgaon-424101, (M.S.) Abstract: Present study deals with reporting of a Caryophyllidean tapeworm Lytocestus sahayi n. sp. collected from intestine of freshwater catfish Clarias batrachus (Linneus, 1758) from Mundkhede Dam near Chalisgaon (M.S.) India. Worm comes closer to all known species of the genus Lytocestus, in general topography of organs, but differs due to long head, tapering anteriorly, well-marked off from body. Testes oval to rounded, 500- 530 in number, unevenly distributed. Cirrus pouch large, oval, preovarian, vertically placed, cirrus thin, straight, vas deferens short, thin, coiled. Ootype is small, oval. Vagina long, thin tube, coiled. Ovary bilobed, ‘Butterfly’ shaped, with 25-28 ovarian follicles, situated in posterior region of the worm. Eggs are oval, operculated. Vitellaria are granular, arranged in two rows. Index Terms- Cestode, Clarias batrachus, Lytocestus, Mundkhede. INTRODUCTION Cohn, 1908 erected the genus Lytocestus with its type species L. adhaerens from edible cat fish Clarias fuscus at HongKong. This genus was first confirmed by Woodland, 1926 that included four more species in addition to the type species. They are L. filiformis Woodland, 1923 in Mormyrus caschive, Egyptian Sudan; L. chalmersius Woodland, 1924; L. cunningtoni Fuhrmann and Baer, 1925 and L. indicus Moghe, 1925 (Syn. Caryophyllaeces indicus) from Clarias batrachus in India. Later, Hunter, 1927 placed the genus in subfamily of its own, viz. -
Checklists of Parasites of Fishes of Salah Al-Din Province, Iraq
Vol. 2 (2): 180-218, 2018 Checklists of Parasites of Fishes of Salah Al-Din Province, Iraq Furhan T. Mhaisen1*, Kefah N. Abdul-Ameer2 & Zeyad K. Hamdan3 1Tegnervägen 6B, 641 36 Katrineholm, Sweden 2Department of Biology, College of Education for Pure Science, University of Baghdad, Iraq 3Department of Biology, College of Education for Pure Science, University of Tikrit, Iraq *Corresponding author: [email protected] Abstract: Literature reviews of reports concerning the parasitic fauna of fishes of Salah Al-Din province, Iraq till the end of 2017 showed that a total of 115 parasite species are so far known from 25 valid fish species investigated for parasitic infections. The parasitic fauna included two myzozoans, one choanozoan, seven ciliophorans, 24 myxozoans, eight trematodes, 34 monogeneans, 12 cestodes, 11 nematodes, five acanthocephalans, two annelids and nine crustaceans. The infection with some trematodes and nematodes occurred with larval stages, while the remaining infections were either with trophozoites or adult parasites. Among the inspected fishes, Cyprinion macrostomum was infected with the highest number of parasite species (29 parasite species), followed by Carasobarbus luteus (26 species) and Arabibarbus grypus (22 species) while six fish species (Alburnus caeruleus, A. sellal, Barbus lacerta, Cyprinion kais, Hemigrammocapoeta elegans and Mastacembelus mastacembelus) were infected with only one parasite species each. The myxozoan Myxobolus oviformis was the commonest parasite species as it was reported from 10 fish species, followed by both the myxozoan M. pfeifferi and the trematode Ascocotyle coleostoma which were reported from eight fish host species each and then by both the cestode Schyzocotyle acheilognathi and the nematode Contracaecum sp. -
(Schyzocotyle Acheilognathi) from an Endemic Cichlid Fish In
©2018 Institute of Parasitology, SAS, Košice DOI 10.1515/helm-2017-0052 HELMINTHOLOGIA, 55, 1: 84 – 87, 2018 Research Note The fi rst record of the invasive Asian fi sh tapeworm (Schyzocotyle acheilognathi) from an endemic cichlid fi sh in Madagascar T. SCHOLZ1,*, A. ŠIMKOVÁ2, J. RASAMY RAZANABOLANA3, R. KUCHTA1 1Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic, E-mail: *[email protected]; [email protected]; 2Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, E-mail: [email protected]; 3Department of Animal Biology, Faculty of Science, University of Antananarivo, BP 906 Antananarivo 101, Madagascar, E-mail: [email protected] Article info Summary Received August 8, 2017 The Asian fi sh tapeworm, Schyzocotyle acheilognathi (Yamaguti, 1934) (Cestoda: Bothriocepha- Accepted September 21, 2017 lidea), is an invasive parasite of freshwater fi shes that have been reported from more than 200 fresh- water fi sh worldwide. It was originally described from a small cyprinid, Acheilognathus rombeus, in Japan but then has spread, usually with carp, minnows or guppies, to all continents including isolated islands such as Hawaii, Puerto Rico, Cuba or Sri Lanka. In the present account, we report the fi rst case of the infection of a native cichlid fi sh, Ptychochromis cf. inornatus (Perciformes: Cichlidae), endemic to Madagascar, with S. acheilognathi. The way of introduction of this parasite to the island, which is one of the world’s biodiversity hotspots, is briefl y discussed. Keywords: Invasive parasite; new geographical record; Cestoda; Cichlidae; Madagascar Introduction fi sh tapeworm, Schyzocotyle acheilognathi (Yamaguti, 1934) (syn. -
Species Status Assessment Report for the Sharpnose Shiner (Notropis Oxyrhynchus) and Smalleye Shiner (N
Species Status Assessment Report For the Sharpnose Shiner (Notropis oxyrhynchus) And Smalleye Shiner (N. buccula) Prepared by the Arlington, Texas Ecological Services Field Office U.S. Fish and Wildlife Service Date of last revision: June 10, 2014 EXECUTIVE SUMMARY This species status assessment reports the results of the comprehensive status review for the sharpnose shiner (Notropis oxyrhynchus) and smalleye shiner (N. buccula) and provides a thorough account of the species’ overall viability and, conversely, extinction risk. Sharpnose and smalleye shiners are small minnows currently restricted to the contiguous river segments of the upper Brazos River basin in north-central Texas. In conducting our status assessment we first considered what the two shiners need to ensure viability. We generally define viability as the ability of the species to persist over the long term and, conversely, to avoid extinction. We then evaluated whether those needs currently exist and the repercussions to the species when those needs are missing, diminished, or inaccessible. We next consider the factors that are causing the species to lack what it needs, included historical, current, and future factors. Finally, considering the information reviewed, we evaluated the current status and future viability of the species in terms of resiliency, redundancy, and representation. Resiliency is the ability of the species to withstand stochastic events and, in the case of the shiners, is best measured by the extent of suitable habitat in terms of stream length. Redundancy is the ability of a species to withstand catastrophic events by spreading the risk and can be measured through the duplication and distribution of resilient populations across its range.