Carbonates, Et Al

Total Page:16

File Type:pdf, Size:1020Kb

Carbonates, Et Al GEOL 332 Lab 3 Sedimentary Rock Identification II. Name: _____________________________________________ Date: _______________ Sedimentary Rocks: Carbonates, et al. Lab Equipment List: hand lens, ruler, pencil, and eraser. Objectives 1) to become familiar with the properties important in recognizing and classifying sedimentary rocks 2) to become familiar with the textures characteristic of sedimentary rocks; Carbonate Sedimentary Rock Classification In a simple model for the evolution of sedimentary rocks we find that if weathering, transportation, and sorting go to completion all that remains are three end member rock compositions. Siliciclastic Rocks: Quartz Arenite / Shale Carbonate Rocks: Limestone / Dolomite Limestones are not single composition rocks but a group of related rocks all composed of CaCO3 and reacting with dilute HCl acid. Limestone [CaCO3] is also chemically related to Dolomite [CaMg (CO3)2]. Because all these rocks have CO3 in common they are called the Carbonates. The composition of most Carbonates is derived from a combination of biological and chemical components. Two Carbonate classification systems are used today, one by R.L. Folk and the second by R.J. Dunham. The Dunham system is based on depositional texture (that is, the amount of matrix surrounding the grains at the time of deposition). It uses such names as Mudstone, wackestone, packstone, grainstone, and boundstone. Carbonate rock names (Limestones and Dolomites) consist of a conjunction of two names, one describing the ALLOCHEMS, the large pieces, the other describing the INTERSTITIAL MATERIAL. Allochems are equivalent to gravel, sand, lithics or feldspars in the siliciclastics. Interstitial material is equivalent to Clay or cements in clastics. There are four kinds of allochems: 1. Fossils ‐ may be whole fossils, or broken and abraded fossils; all are called "bio" fragments 2. Oolites ‐ small spheres 3. Pellets ‐ fecal Pellets produced by invertebrate animals; look superficially like Oolites but are dull 4. Intraclasts ‐ chunks of eroded Limestone deposited as a Conglomerate 1 | Page GEOL 332 Lab 3 Sedimentary Rock Identification II. Interstitial Material Micrite is "lime mud", the dense, dull‐looking sediment made of Clay sized crystals of CaCO3. Micrite forms from the breakdown of calcareous algae skeletons. It is not clear if all ancient Micrites formed in the same way. Many Carbonates are composed of nearly 100% Micrite. Such rocks are simply called Micrites. With Carbonates containing allochems the question is whether Micrite is present or absent as an interstitial material, and if present, by how much. If Micrite is present during deposition then it fills the spaces between the allochems and the rock will be given a name which describes the allochems in a Micrite matrix. For example, a rock with fossil fragments embedded in Micrite is called a "Biomicrite". If the depositional environment has strong currents, only allochems may be deposited. If we could see the sediment during deposition and all the allochems would be loose, like a pure sand or gravel. This is analogous to a 100% siliciclastic sand on a beach with no silt or Clay. In this case, Micrite would be clay‐ sized and would be washed away. The rock formed is then composed only of allochems, held together by clear to translucent Calcite crystals with rhombohedral cleavage (called SPAR or SPARITE) acting as a cement. The spar is precipitated from fresh or marine water percolating through the sediment after deposition, but before final cementation. Classification of Carbonates The classification of Carbonates using the allochem/interstitial material system (the Folk System) is very systematic and straight forward. The allochem name is combined with the interstitial name (Micrite or spar). The table below shows the major categories of Carbonate rocks based on their allochems and interstitial material. But what happens if there is more than one allochem in the rock, or there is a mixture of Micrite and spar? You can easily build your own descriptive rock names. The name is built up by stringing together 2 | Page GEOL 332 Lab 3 Sedimentary Rock Identification II. all the allochem names in order from least to most abundant, and then adding the interstitial material name ("matrix" below for short). For example, a rock like this: Oolites + Fossils + Spar matrix = Oo bio sparite o The name is written as one word, Oobiosparite. Another example (again allochems from least to most abundant): Pellets + Oolites + Fossils + Micrite matrix = pel oo bio Micrite o The name is written as one word, Peloobiomicrite. But what if there is both Micrite and spar matrix? The system is the same; just list them from least to most abundant. Fossils + Spar matrix + Micrite matrix = bio spar Micrite This system goes through other levels of refinement, such as in the table below where the abundance of allochems is indicated. Other modifiers may deal with different sizes of allochems. A classification such as this one works well if you want to construct rock names from observations. The system, however, does not lend itself well to constructing keys for classification. A key requires the establishment of arbitrary categories of rocks, and a system like the one above deals with all the myriad combinations that are possible. Most limestones are classified by Folk allochemical rocks if they contain over l0% allochems (transported carbonate grains). Based on the percentage of interstitial material, the rocks may be further subdivided into two groups: sparry allochemical limestones (containing a sparry calcite cement of clear coarsely crystalline mosaic calcite crystals) and microcrystalline allochemical limestone (containing microcrystalline calcite mud, micrite, which is subtranslucent grayish or brownish particles less than about 5 microns in size). Further subdivision is based on the allochem ratios of Folk (1962) are shown in Scholle & Ulmer‐Scholle (2003). Thus Folk's classification is most suited for thin section study. Remember that he terms rocks with appreciable matrix as micrites while matrix‐free rocks that contain sparry calcite cement are termed sparites. As you can see sparites and micrites are further subdivided by means of their most common grains. 3 | Page GEOL 332 Lab 3 Sedimentary Rock Identification II. In contrast, Dunham's classification (figures above) and its modification by Embry and Klovan (1971) and James (1984) deals with depositional texture. For this reason, his scheme may be better suited for rock descriptions that employ a hand lens or binocular microscope. For example, if the grains of a limestone are touching one another and the sediment contains no mud, then the sediment is called a grainstone. If the carbonate is grain supported but contains a small percentage of mud, then it is known as a packstone. If the sediment is mud supported but contains more than 10 percent grains, then it is known as a wackestone, and if it contains less than 10 percent grains and is mud supported, it is known as a mudstone. If one compares the two classifications, a rock rich in carbonate mud is termed a micrite by Folk and a mudstone or wackestone by Dunham. Moreover, a rock containing little matrix is termed a sparite by Folk and a grainstone or packstone by Dunham. The wide range of percentage of mud matrix that a carbonate may have and still be termed a packstone by Dunham sometimes reduces the utility of this classification. Embry has modified Dunham's classification and Klovan (1971) to include coarse grained carbonates (above figure). In their revised scheme, a wackestone in which the grains are greater than 2mm in size is termed a floatstone and a coarse grainstone is called a rudstone. Both terms are extremely useful in description of limestones. Embry and Klovan to more graphically reflect the role that the organisms performed during deposition also modified the boundstone classification of Dunham. Terms such as bafflestone, bindstone, and framestone are useful in concept but are extremely difficult to apply to ancient limestones where diagenesis and sample size limit one’s ability to assess an organism’s function. The last two pages of this lab includes a key to identify rocks based on their allochems and interstitial material. Just be aware that its main weakness is that there are always rocks that do not fit easily into its simple categories. There is also a chemical and biochemical rock identification key. 4 | Page GEOL 332 Lab 3 Sedimentary Rock Identification II. Folk Sedimentary Rock Classification: Folk’s (1959, 1962) classification of limestones, which uses prefixes to indicate the framework grains present (bio‐ for fossils, pel‐ for peloids, oo‐ for Ooids, and intra‐ for intraclasts) and stems to indicate whether the interstitial calcite is micritic or sparry. If the rock is originally bound together (as in a reef rock), it is a biolithite. 5 | Page GEOL 332 Lab 3 Sedimentary Rock Identification II. Textural maturity classification of limestones proposed by Folk (1962). Textural maturity classes are based on the percentage of allochems present, their degree of sorting, and the extent of rounding (a function of abrasion history). (Folk, 1965) The Dunham classification of carbonate sedimentary rocks (Dunham 1962) with modifications by Embry & Klovan (1971). This scheme is the most commonly used for description of limestones in the field and in hand specimen. Rock Identification Step 1, fill out the table for the known sedimentary rock samples. (15 pts) Step 3, fill out the table for the unknown sedimentary rock samples. (15 pts) 6 | Page GEOL 332 Lab 3 Sedimentary Rock Identification II. (Dunham, 1962) 7 | Page GEOL 332 Lab 3 Sedimentary Rock Identification II. 8 | Page GEOL 332 Lab 3 Sedimentary Rock Identification II. References: Dunham, R. J., 1962, Classification of carbonate rocks according to depositional texture. In: Ham, W. E. (ed.), Classification of carbonate rocks: American Association of Petroleum Geologists Memoir, p. 108‐ 121. Embry, AF, and Klovan, JE, 1971, A Late Devonian reef tract on Northeastern Banks Island, NWT: Canadian Petroleum Geology Bulletin, v.
Recommended publications
  • Calcite Cementation of Sixty-Five-Year-Old Aragonite Sand Dredge Pile
    University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 2011 Calcite Cementation of Sixty-Five-Year-Old Aragonite Sand Dredge Pile Nathan M. Snyder Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Geology Commons Recommended Citation Snyder, Nathan M., "Calcite Cementation of Sixty-Five-Year-Old Aragonite Sand Dredge Pile" (2011). Electronic Theses and Dissertations. 269. https://egrove.olemiss.edu/etd/269 This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. CALCITE CEMENTATION OF SIXTY-FIVE-YEAR-OLD ARAGONITE SAND DREDGE PILE A Thesis presented in partial fulfillment of requirements for the degree of Master of Science in the Department of Geology and Geological Engineering The University of Mississippi by NATHANIAL M. SNYDER May 2011 Copyright Nathanial M. Snyder ALL RIGHTS RESERVED ABSTRACT Dredging of the harbor at Stocking Island, Bahamas (23°31’45”N, 75°49’41”W) in 1942 produced four dredge piles of cross-bedded aragonite skeletal sand. The spoils piles are on the leeward (western) shore of the island, where they are subject to minimal wave energy. Collectively they are 350 x 50 m in plan view and 2 m high. The surface is very well cemented, which requires a hammer and chisel for sampling. Samples were collected from six sites at various locations of the dredge pile. Samples were analyzed for both chemical and physical properties using thin-section examination, X-ray diffraction, X-ray fluorescence, bulk density measurements, isotopic analyses, and scanning electron microscopy.
    [Show full text]
  • Hydrogeology of Wales
    Hydrogeology of Wales N S Robins and J Davies Contributors D A Jones, Natural Resources Wales and G Farr, British Geological Survey This report was compiled from articles published in Earthwise on 11 February 2016 http://earthwise.bgs.ac.uk/index.php/Category:Hydrogeology_of_Wales BRITISH GEOLOGICAL SURVEY The National Grid and other Ordnance Survey data © Crown Copyright and database rights 2015. Hydrogeology of Wales Ordnance Survey Licence No. 100021290 EUL. N S Robins and J Davies Bibliographical reference Contributors ROBINS N S, DAVIES, J. 2015. D A Jones, Natural Rsources Wales and Hydrogeology of Wales. British G Farr, British Geological Survey Geological Survey Copyright in materials derived from the British Geological Survey’s work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail [email protected]. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract. Maps and diagrams in this book use topography based on Ordnance Survey mapping. Cover photo: Llandberis Slate Quarry, P802416 © NERC 2015. All rights reserved KEYWORTH, NOTTINGHAM BRITISH GEOLOGICAL SURVEY 2015 BRITISH GEOLOGICAL SURVEY The full range of our publications is available from BGS British Geological Survey offices shops at Nottingham, Edinburgh, London and Cardiff (Welsh publications only) see contact details below or BGS Central Enquiries Desk shop online at www.geologyshop.com Tel 0115 936 3143 Fax 0115 936 3276 email [email protected] The London Information Office also maintains a reference collection of BGS publications, including Environmental Science Centre, Keyworth, maps, for consultation.
    [Show full text]
  • Strength Developed from Carbonate Cementation in Silica-Carbonate Base Course Materials
    24 TRANSPORTATION RESEARCH RECORD 1190 Strength Developed from Carbonate Cementation in Silica-Carbonate Base Course Materials ROBIN E. GRAVES, JAMES L. EADES, AND LARRY L. SMITH Strength increases resulting Crom carbonate cementalion in are depleted, new sources must be found to accommodate compacted sands and cemented coquina highway base course the transportation needs of the state's rapidly expanding materials or variable quartz-calcite composition were investi­ population. Materials obtained from the newer quarries gated lhrough the use of limerock-bearing-ratio (LBR) le ting. often have a different mineralogical composition because Q uart~ and calcite sands were mixed in various proportion , of the great variability of geologic conditions affecting their compacted into LBR mold , oaked for time periods from 2 deposition. days up to 60 days, and tested to determine stt·ength increase with time. For comparison, cemented coquina highway base This has been the case with cemented coquina base course course materials of variable quartz-calcite composition were materials in Florida (3). Currently mined cemented coquina also compacted soaked, and tested. Jn addition duplicate sets contains abundant quartz sand, often resulting in carbon­ or specimens were te tcd that had 1 percent Ca(OH}i, (hydrated ate compositions below the 50 percent required by FDOT. lime) mixed with the dry materials before compacting and The quartz occurs in two forms. Some is incorporated into soaking. This was done to provide a om·ce of' CaH ions for cemented limestone rock, but most exists as unconsoli­ formation of additional calcium carbonate cement. Re ul~ of the LBR testing program showed that more strength developed dated quartz sand.
    [Show full text]
  • Geometry of Calcite Cemented Zones in Shallow Marine Sandstones
    '’W 4 PROFIT RF-^/w 1990-1994 PROJECT SUMMARY REPORTS RESERVOIR CHARACTERIZATION NEAR WELL FLOW Program for Research On Field Oriented Improved Recovery Technology oismsunoN of ihb documeot is iwumiteo % Edited by: Jem Olsen, Snorre Olaussen, Trond B. Jensen, Geir Helge Landa, Leif Hinderaker Norwegian Petroleum Directorate Stavanger 1995 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document PROFIT - RESERVOIR CHARACTERIZATION Geometry of calcite cemented zones in shallow marine sandstones Olav Walderhaug, Edward Prestholm and Ingrid E.L0xnevad Rogaland Research, Stavanger Abstract thought to belong to concretions. The difference between the geometry of calcite Calcite cementation in the Jurassic shallow cementation in the Ula Formation and in the marine sandstones of the Bearreraig Formation, Bridport Sands is thought to be due to a the Valtos Formation, the Bridport Sands and relatively uniform rate of siliciclastic deposition the Bencliff Grit occurs as continuously for the Ula Formation having led to a more cemented layers, as stratabound concretions and uniform distribution of biogenic carbonate as scattered concretions. All three geometrical compared to the Bridport Sands where laterally forms of calcite cementaton may occur within extensive layers of biogenic carbonate formed the same formation, whereas in other cases a during periods of very low siliciclastic formation may be dominated by only one or deposition. Based on the results of the core and two of these modes of calcite cementation. outcrop studies, a tentative identification key Calcite cemented layers and layers of for calcite cemented zones encountered in cores stratabound concretions in the studied is suggested.
    [Show full text]
  • A) Conglomerate B) Dolostone C) Siltstone D) Shale 1. Which
    1. Which sedimentary rock would be composed of 7. Which process could lead most directly to the particles ranging in size from 0.0004 centimeter to formation of a sedimentary rock? 0.006 centimeter? A) metamorphism of unmelted material A) conglomerate B) dolostone B) slow solidification of molten material C) siltstone D) shale C) sudden upwelling of lava at a mid-ocean ridge 2. Which sedimentary rock could form as a result of D) precipitation of minerals from evaporating evaporation? water A) conglomerate B) sandstone 8. Base your answer to the following question on the C) shale D) limestone diagram below. 3. Limestone is a sedimentary rock which may form as a result of A) melting B) recrystallization C) metamorphism D) biologic processes 4. The dot below is a true scale drawing of the smallest particle found in a sample of cemented sedimentary rock. Which sedimentary rock is shown in the diagram? What is this sedimentary rock? A) conglomerate B) sandstone C) siltstone D) shale A) conglomerate B) sandstone C) siltstone D) shale 9. Which statement about the formation of a rock is best supported by the rock cycle? 5. Which sequence of events occurs in the formation of a sedimentary rock? A) Magma must be weathered before it can change to metamorphic rock. A) B) Sediment must be compacted and cemented before it can change to sedimentary rock. B) C) Sedimentary rock must melt before it can change to metamorphic rock. C) D) Metamorphic rock must melt before it can change to sedimentary rock. D) 6. Which sedimentary rock formed from the compaction and cementation of fragments of the skeletons and shells of sea organisms? A) shale B) gypsum C) limestone D) conglomerate Base your answers to questions 10 and 11 on the diagram below, which is a geologic cross section of an area where a river has exposed a 300-meter cliff of sedimentary rock layers.
    [Show full text]
  • Lite Geology 14
    Winter 1995 L I T E NewMexico Bureau ~.~, .~,..,.~ "~ ~,,~..~,~.~.,..~,~ of .............. ¯ Mines and Mineral .’..:. .i .,.."".. Resources (NMBM&MR) A quarterly publication for educators arid the public- contemporary geological topics~ issues and events EadhBriefs "Concretions, Bombs, and Ground Water Peter S. Mozley Departmentof Earth and EnVironmental Science, NewMexico Tech Concretions are hard masses of sedimentary and, more rarely, volcanic rock that form by the preferential precipitation of minerals (cementation) in localized portions of the rock. They are commonlysubspherical, but frequently form a variety of other shapes, including disks, grape-like aggregates, and complex shapes that defy description (Figs. 1, 2, and 3). Concretions are usually very noticeable features, because they have a strikingly. different color and/or hardness than the rest of the rock. In someareas this is unfortunate, as the concretions have attracted the unwanted attention of local graffiti artists. Commonly, when you break open concretions you will find that they have formed around a nucleus, such as a fossil fragment or piece of organic matter. For a variety of reasons, this nucleus created a more favorable site for cement precipitation than other sites in therock. ~erhapsthe mostunusual concretion "[ spent too much time in thesame place in the back swamp .nucleiarefound in a modemcoastal’ and the clanged concretion went and nucleated on me." saltmarsh in England.Siderite (FeCOa) concretionsin the marshformed aroundWorld-War-II era military shells,bombs, and associated shrapnel, ThisIssue: includingsome large unexploded shells(AI-Agha et al.,1995). A British Earth Briefs--how does Nature conceal Reptiles’onthe Rocks--someunique geologiststudying these concretions bombs and record ancient water-flow photosof homedlizards in New realizedthis only after striking a large pathways? Mexico unexplodedshell repeatedly with his rockhammer (yes, he livedto tellabout Have you ever wondered..
    [Show full text]
  • Hydrogeological Properties of Fault Zones in a Karstified Carbonate Aquifer (Northern Calcareous Alps, Austria)
    Hydrogeol J DOI 10.1007/s10040-016-1388-9 PAPER Hydrogeological properties of fault zones in a karstified carbonate aquifer (Northern Calcareous Alps, Austria) H. Bauer1 & T. C. Schröckenfuchs 1 & K. Decker1 Received: 17 July 2015 /Accepted: 14 February 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract This study presents a comparative, field-based impermeable fault cores only very locally have the potential hydrogeological characterization of exhumed, inactive fault to create barriers. zones in low-porosity Triassic dolostones and limestones of the Hochschwab massif, a carbonate unit of high economic Keywords Fractured rocks . Carbonate rocks . Fault zones . importance supplying 60 % of the drinking water of Austria’s Hydrogeological properties . Austria capital, Vienna. Cataclastic rocks and sheared, strongly cemented breccias form low-permeability (<1 mD) domains along faults. Fractured rocks with fracture densities varying by Introduction a factor of 10 and fracture porosities varying by a factor of 3, and dilation breccias with average porosities >3 % and per- Fault zones in the upper crust produce permeability heteroge- meabilities >1,000 mD form high-permeability domains. With neities that have a large impact on subsurface fluid migration respect to fault-zone architecture and rock content, which is and storage patterns (e.g. Agosta et al. 2010, 2012; Caine et al. demonstrated to be different for dolostone and limestone, four 1996;Faulkneretal.2010;Jourdeetal.2002; Mitchell and types of faults are presented. Faults with single-stranded mi- Faulkner 2012; Shipton and Cowie 2003; Shipton et al. 2006; nor fault cores, faults with single-stranded permeable fault Wibberley and Shimamoto 2003; Wibberley et al.
    [Show full text]
  • Petrography of Middle Jurassic to Early
    Chaudhuri et al. Journal of Palaeogeography (2018) 7:2 https://doi.org/10.1186/s42501-018-0002-6 Journal of Palaeogeography RESEARCH Open Access Petrography of Middle Jurassic to Early Cretaceous sandstones in the Kutch Basin, western India: Implications on provenance and basin evolution Angana Chaudhuri1, Santanu Banerjee1* and Emilia Le Pera2 Abstract This paper investigates the provenance of Middle Jurassic to Early Cretaceous sediments in the Kutch Basin, western India, on the basis of mineralogical investigations of sandstones composition (Quartz–Feldspar–Lithic (QFL) fragment), Zircon–Tourmaline–Rutile (ZTR) index, and mineral chemistry of heavy detrital minerals of the framework. The study also examines the compositional variation of the sandstone in relation to the evolution of the Kutch Basin, which originated as a rift basin during the Late Triassic and evolved into a passive margin basin by the end Cretaceous. This study analyzes sandstone samples of Jhumara, Jhuran and Bhuj Formations of Middle Jurassic, Upper Jurassic and Lower Cretaceous, respectively, in the Kutch Mainland. Sandstones record a compositional evolution from arkosic to subarkosic as the feldspar content decreases from 68% in the Jhumara Formation to 27% in the Bhuj Formation with intermediate values in the Jhuran Formation. The QFL modal composition indicates basement uplifted and transitional continental settings at source. Heavy mineral content of these sandstones reveals the occurrence of zircon, tourmaline, rutile, garnet, apatite, monazite and opaque minerals. Sub-rounded to well-rounded zircon grains indicate a polycyclic origin. ZTR indices for samples in Jhumara, Jhuran and Bhuj Formations are 25%, 30% and 50% respectively. Chemistry of opaque minerals reveals the occurrence of detrital varieties such as ilmenite, rutile, hematite/magnetite and pyrite, in a decreasing order of abundances.
    [Show full text]
  • Integrated Geological, Geophysical, and Hydrological Study of Field-Scale Fault-Zone Cementation and Permeability, Loma Blanca Fault Central New Mexico
    Integrated geological, geophysical, and hydrological study of field-scale fault-zone cementation and permeability, Loma Blanca Fault Central New Mexico By Johnny Ray Hinojosa, Geology MSC Candidate Peter Mozley, Professor of Sedimentology TECHNICAL PROGRESS REPORT Sub Award Q01864 June 2017 Funded by: New Mexico Water Resources Research Institute National Science Foundation DISCLAIMER The New Mexico Water Resource Research Institute and affiliated institutions make no warranties, express or implied, as to the use of the information obtained from this data product. All information included with this product is provided without warranty or any representation of accuracy and timeliness of completeness. Users should be aware that changes may have occurred since this data set was collected and that some parts of these data may no longer represent actual conditions. This information may be updated without notification. Users should not use these data for critical applications without a full awareness of its limitations. This product is for informational purposes only and may not be suitable for legal, engineering, or surveying purposes. The New Mexico Water Resource Research Institute and affiliated institutions shall not be liable for any activity involving these data, installation, fitness of the data for a particular purpose, its use, or analyses results. i ABSTRACT The Loma Blanca fault is a Pliestocene age normal fault located within the Sevilleta National Wildlife Refuge in central New Mexico. The normal fault is an extensional feature of the Rio Grande Rift. It is believed that the fault is a barrier to subsurface fluid flow moving down-gradient towards the Rio Grande River. Previous work under a National Science Foundation grant conducted geophysical measurements in an attempt to visualize groundwater impoundment on the footwall (up-gradient) side of the fault.
    [Show full text]
  • 8. Carbonate and Evaporite Environments
    8. Carbonate and Evaporite Environments Sequence Stratigraphy Institute of Geophysics National Central Univ., Taiwan Prepared by Dr. Andrew T. Lin 8. Carbonate and Evaporite Environments 8.1 Introduction 8.2 Carbonate Shelf (nonreef) Environments • Depositional setting • Sedimentation processes Chemical and biochemical processes Physical processes • Skeletal and sediment characteristics of carbonate deposits • Examples of modern carbonate platforms • Examples of ancient carbonate shelf successions Isolated platforms Rimmed shelves Ramps Epeiric platforms Sequence Stratigraphy Institute of Geophysics National Central Univ., Taiwan Prepared by Dr. Andrew T. Lin 8.3 Slope/Basin Carbonates 8.4 Organic Reef Environments • Modern reefs and reef environments Depositional setting Reef organisms Reef deposits Low-energy reef facies • Ancient Reefs Reef deposits Occurrence of ancient reefs 8.5 Mixed Carbonate-Siliciclastic Systems 8.6 Evaporite Environments • Modern evaporite environment Nonmarine environment Shallow marine environment Deep-water environment • Ancient evaporite environment Nonmarine environment Sequence Stratigraphy Institute of Geophysics Marine environment National Central Univ., Taiwan Prepared by Dr. Andrew T. Lin Carbonate depositional settings • Shelf margin • Shelf – Outer more normal marine – Inner restricted • Margin slope and base of slope • Basin Sequence Stratigraphy Institute of Geophysics National Central Univ., Taiwan Prepared by Dr. Andrew T. Lin Sequence Stratigraphy Institute of Geophysics National Central Univ.,
    [Show full text]
  • The Genesis Model of Carbonate Cementation in the Tight Oil Reservoir
    Open Geosciences 2020; 12: 1105–1115 Research Article Shutong Li*, Shixiang Li, Xinping Zhou, Xiaofeng Ma, Ruiliang Guo*, Jiaqiang Zhang, and Junlin Chen The genesis model of carbonate cementation in the tight oil reservoir: A case of Chang 6 oil layers of the Upper Triassic Yanchang Formation in the western Jiyuan area, Ordos Basin, China https://doi.org/10.1515/geo-2020-0123 The development degree of carbonate cementation affects received April 17, 2020; accepted September 21, 2020 the physical properties of reservoir. Abstract: Carbonate cementation is one of the significant Keywords: carbonate cementation, Yanchang formation, tightness factors in Chang 6 reservoir of the western genesis model, Ordos Basin, tight oil reservoir Jiyuan (WJY) area. Based on the observation of core and thin sections, connecting-well profile analysis as well as carbon and oxygen isotope analysis, it is found that fer- rocalcite is the main carbonate cements in the Chang 6 1 Introduction reservoir of the WJY area. The single sand body controls fi the development of carbonate cements macroscopically. Carbonate cementation is a signi cant diagenesis type in [ – ] - Both carbonate cements and calcite veins hold similar the clastic reservoir 1 3 . It is the product of the interac fl diagenetic conditions: the dissolution of plagioclase is tion between rock and geological uid in the diagenesis - the main calcium source and the de-acidification of or- process under the changes of physical and chemical con [ – ] - ganic acids is the main carbon source. The diagenetic ditions such as temperature and pressure 1,4 6 . The con stage is identified as the mesogenetic A stage.
    [Show full text]
  • Investigating the Variations in Depositional Facies by Investigating the Accuracy of the Neural Network Model Within the St
    INVESTIGATING THE VARIATIONS IN DEPOSITIONAL FACIES BY INVESTIGATING THE ACCURACY OF THE NEURAL NETWORK MODEL WITHIN THE ST. LOUIS LIMESTONE, KEARNY COUNTY, KANSAS By CHANCE REECE B.S., Kansas State University, 2014 A THESIS Submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Geology College of Arts and Sciences KANSAS STATE UNIVERSITY Manhattan, Kansas 2016 Approved by: Major Professor Dr. Matt Totten Copyright CHANCE REECE 2016 Abstract The Mississippian-aged St. Louis Limestone has been a major producer of oil, and natural gas for years in Kearny County, Kansas. Since 1966 two major fields in the County, the Lakin, and Lakin South fields, have produced over 4,405,800 bbls of oil. The St. Louis can be subdivided into six different depositional facies, all with varying lithologies and porosities. Only one of these facies is productive, and the challenge of exploration in this area is the prediction of the productive facies distribution. A previous study by Martin (2015) used a neural network model using well log data, calibrated with established facies distributed within a cored well, to predict the presence of these facies in adjacent wells without core. It was assumed that the model’s prediction accuracy would be strongest near the cored wells, with increasing inaccuracy as you move further from the cored wells used for the neural network model. The aim of this study was to investigate the accuracy of the neural network model predictions. Additionally, is the greater accuracy closest to the cored wells used to calibrate the model, with a corresponding decrease in predictive accuracy as you move further away? Most importantly, how well did the model predict the primary producing unit (porous ooid grainstone) within the St.
    [Show full text]