Provenance and Sediment Dispersal of Mississippian Sandstones in the Black Warrior Basin, Ne Mississippi

Total Page:16

File Type:pdf, Size:1020Kb

Provenance and Sediment Dispersal of Mississippian Sandstones in the Black Warrior Basin, Ne Mississippi PROVENANCE AND SEDIMENT DISPERSAL OF MISSISSIPPIAN SANDSTONES IN THE BLACK WARRIOR BASIN, NE MISSISSIPPI By PATRICK MICHAEL O’CONNOR Bachelor of Science, 2012 Ohio University Athens, Ohio Submitted to the Graduate Faculty of The College of Science and Engineering Texas Christian University In partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 2015 Copyright By Patrick Michael O’Connor 2015 ACKNOWLEDGEMENTS First, I would like to thank the Mississippi Department of Environmental Quality in Jackson, MS for graciously allowing me to sample their core for this project. I also want to thank Mark Pecha and the team at the University of Arizona LaserChron Center for their assistance with the processing of detrital LA-ICPMS. Also, thank you to the University of Texas at Dallas for allowing me to use their rock crushing lab, and Dr. Majie Fan for the use of the mineral separation lab at University of Texas at Arlington. Secondly, I need to recognize Dr. Xiangyang “Cheyenne” Xie for his significant role in my graduate school experience. Cheyenne’s determination to provide all the necessary resources and accommodations for me to complete my thesis was above and beyond what I could have ever expected from a graduate advisor. Cheyenne exhibited an extreme willingness to always be available, not only as a thesis advisor, but also as a friend throughout my graduate experience. I am very grateful to have had Cheyenne as my advisor and to have built a relationship with him. Additionally, I would like to thank Dr. Alsleben and Dr. Holbrook for all their help. Dr. Alsleben’s thorough evaluation and attention to detail along with Dr. Holbrook’s insightful teaching were crucial to my completion of this degree. I am appreciative to have spent these two years in the TCU Geology Department. It is because of their financial support through the Adkins Fund, and easily accessible resources that I was able to complete my Masters. Finally, I would like to thank my mom, dad, and brother for always being there for me, and providing me with guidance throughout my time in graduate school. I wouldn’t have been able to get here or make it through this without their love. Regardless of their extreme lack of geological knowledge, I dedicate this thesis to them. ii TABLE OF CONTENTS Acknowledgements List of Figures List of Tables 1. INTRODUCTION & GEOLOGIC SETTING ................................................................. 1 1.1 Geological Setting .......................................................................................... 5 1.2 Stratigraphy .................................................................................................... 7 2. SANDSTONE MODAL ANALYSIS ............................................................................ 11 2.1 Point Counting Methods ............................................................................... 11 2.2 Point Counting Results & Ternary Diagrams ................................................ 18 3. U-PB DETRITAL ZIRCON GEOCHRONOLOGY ...................................................... 29 3.1 Geochronology Methods .............................................................................. 29 3.2 Geochronology Results ................................................................................ 34 3.2.2 K-S Similarity Analyses .............................................................................. 48 4. POTENTIAL SOURCE TERRANES .......................................................................... 50 5. DISCUSSION ............................................................................................................ 54 5.1 Comparison of BWb and Appalachian Foreland Geochronology Results.....54 5.2 Model One: Previous Interpretations for a Northern Source ......................... 57 5.3 Model Two: Previous Interpretations for a Proximal but Controversial sediment source from the Ouachita Orogenic Belt ............................................. 60 5.4 A New Model: Deposition from the North of Recycled Appalachian Foreland Sediment with Minor and Later Influence from the Ouachita Orogenic Belt ....... 64 6. CONCLUSIONS ........................................................................................................ 69 REFERENCES .............................................................................................................. 70 APPENDICES ............................................................................................................... 81 iii Appendix I: General information about conventional core used for thin sections Appendix II: Data from BW1, BW2, BW3 U-Pb detrital zircon geochronology VITA ABSTRACT iv LIST OF FIGURES 1. Map of Mississippi with outline of Black Warrior Basin ......................................... 3 2. Previously proposed sediment dispersal paths for Chesterian deposition ........... 4 3. Outline of Ouachita fold/thrust belt ...................................................................... 6 4. Stratigraphic column of Mississippian age strata in the Black Warrior Basin ........ 8 5. Photomicrograph of Qm, Qp, and calcite matrix .................................................. 14 6. Photomicrograph of Fk, Qm, silica-rich matrix, and calcite matrix ........................ 15 7. Photomicrograph of Fp, Lm+s, and Qm ................................................................. 16 8. Photomicrograph of a mica fragment, a heavy mineral, Lm+s, and porosity ........ 17 9. QFL diagram of sandstone nomenclature based on Folk classification .............. 26 10. QFL diagram of sandstone provenance based on Dickinson classification ........ 27 11. QmFLt diagram of sandstone provenance based on Dickinson classification .... 28 12. Selected backscattered electron image of Lewis Sandstone zircons ................. 32 13. Selected backscattered electron image of Sanders Sandstone zircons ............. 32 14. Selected backscattered electron image of Carter Sandstone zircons ................ 33 15. U-Pb composite normalized age probability distribution of BWb samples .......... 36 16. Relative age probability plot of the Lewis Sandstone ......................................... 38 17. U-Pb Concordia normal distribution plot of the Lewis Sandstone ....................... 39 18. U-Pb Concordia Tera-Wasserburg plot of the Lewis Sandstone ........................ 40 19. Relative age probability plot of the Sanders Sandstone ..................................... 41 20. U-Pb Concordia normal distribution plot of the Sanders Sandstone ................... 43 21. U-Pb Concordia Tera-Wasserburg plot of the Sanders Sandstone .................... 44 22. Relative age probability plot of the Carter Sandstone ......................................... 45 23. U-Pb Concordia normal distribution plot of the Carter Sandstone ...................... 47 24. U-Pb Concordia Tera-Wasserburg plot of the Carter Sandstone........................ 58 25. Location of the BWb relative to Precambrian and Phanerozoic belts ................. 51 26. U-Pb composite normalized age curves for Ouachita, Appalachian, and BWb .. 55 27. Proposed model of sediment dispersal during Mississippian time in BWb ......... 68 v LIST OF TABLES 1. Petrographic point counting parameters and nomenclature ............................... 13 2. Raw point counting data for sandstone samples from the Lewis Sandstone ...... 20 3. Recalculated point counting data for sandstone samples from the Lewis Sandstone .......................................................................................................... 20 4. Raw point counting data for sandstone samples from the Evans Sandstone ..... 21 5. Recalculated point counting data for sandstone samples from the Evans Sandstone .......................................................................................................... 21 6. Raw point counting data for sandstone samples from the Sanders Sandstone .. 22 7. Recalculated point counting data for sandstone samples from the Sanders Sandstone .......................................................................................................... 23 8. Raw point counting data for sandstone samples from the Carter Sandstone ..... 24 9. Recalculated point counting data for sandstone samples from the Carter Sandstone .......................................................................................................... 25 10. Interpreted source terranes along with detrital zircon age data from Lewis, Sanders, and Carter sandstones (by raw number and percentage) ................... 35 11. K-S results for the Lewis, Sanders, and Carter sandstones ............................... 49 vi 1. INTRODUCTION The Black Warrior basin (BWb) is a triangular shaped foreland basin located in Alabama and Mississippi (Figure 1) (Mellen, 1947; Kugler and Pashin, 1992). From west to east the basin province spans approximately 220 miles (~350 km), from Tallahatchie County, Mississippi, to Cullman County, Alabama. From north to south the basin spans approximately 190 miles (~305 km), from Tishomingo County, Mississippi, to Sumter County, Alabama (Hatch and Pawlewicz, 2007). Historically, the BWb province has been of economic importance due to its reserves in oil, gas, coal, and coal-bed methane gas (Thomas, 1988). The basin contains various pay zones at relatively shallow depth, multiple reservoirs, and stratigraphic and structural traps that contribute to reduced costs in drilling and completions (Bearden, 1985). Several of the reservoirs are Mississippian
Recommended publications
  • The Geologic Evolution of the Black Warrior Detrital Basin. Robert Ehrlich Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1965 The Geologic Evolution of the Black Warrior Detrital Basin. Robert Ehrlich Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Ehrlich, Robert, "The Geologic Evolution of the Black Warrior Detrital Basin." (1965). LSU Historical Dissertations and Theses. 1070. https://digitalcommons.lsu.edu/gradschool_disstheses/1070 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has heen microfilmed exactly as received 66-726 EHRLICH, Robert, 1936— THE GEOLOGIC EVOLUTION OF THE BLACK WARRIOR DETRITAL BASIN. Louisiana State University, Ph.D., 1965 G eology University Microfilms, Inc., Ann Arbor, Michigan THE GEOLOGIC EVOLUTION OF THE BLACK WARRIOR DETRITAL BASIN A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of philosophy in The Department of Geology by Robert Ehrlich B.A., University of Minnesota, 1958 M.S., Louisiana State University, 1961 August, 1965 ACKNOWLEDGMENTS So many persons have given aid and encouragement during the progress of this problem that I approach these acknow­ ledgments with trepidations concerning possible omissions. Conspicuous, however, is the importance of the teaching and advice of Dr. John C. Ferm who, besides being respon­ sible for that which is worthwhile in my training as a sedimentologist, has provided me with a model of high pro­ fessional integrity.
    [Show full text]
  • OCTOBER 14, 2005 BLM Eastern States, Milwaukee Field Office
    MISSISSIPPI NATIONAL FORESTS REASONABLE FORESEEABLE DEVELOPMENT SCENARIO FINAL REPORT: OCTOBER 14, 2005 BLM Eastern States, Milwaukee Field Office TABLE OF CONTENTS: A. Summary ....................................................................................................................................1 B. Introduction ................................................................................................................................1 C. Basis of Analysis ........................................................................................................................2 D. Description of Geology ..............................................................................................................2 E. Past and Present Fluid Mineral Exploration Activity .................................................................7 F. Past and Present Fluid Mineral Development Activity ...............................................................7 G. Future Fluid Mineral Development Potential .............................................................................8 H. Reasonable Foreseeable Development Scenario Assumptions & Discussion ............................10 I. Selected Bibliography .................................................................................................................14 J. Appendices ..................................................................................................................................15 K. Accompanying Maps .................................................................................................................15
    [Show full text]
  • Department of the Interior U.S
    DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Oil and Gas Resources of the Black Warrior Basin, Alabama and Mississippi Robert T. Ryder1 Open-File Report 87-450X This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature ''U.S. Geological Survey, Reston, VA 22092 TABLE OF CONTENTS INTRODUCTION............................................................ 1 Basin location and size........................................... 1 Structural setting................................................ 1 Stratigraphic framework........................................... 1 Source rocks...................................................... 6 Burial history, thermal maturation, timing of migration, and entrapment....................................... 9 Hydrocarbon occurrence........................................... 10 PRINCIPAL PLAYS........................................................ 13 Play identification.............................................. 13 Upper Mississippian (Chesterian) sandstone play.................. 14 REFERENCES ........................................................... 18 LIST OF ILLUSTRATIONS Figure 1. Tectonic map of Alabama, Mississippi, and adjacent states showing the Black Warrior basin............................................................. 3 Figure 2. Geologic cross section through the Black Warrior basin..................................................... 5 Figure 3. Stratigraphic correlation chart for Phanerozoic and
    [Show full text]
  • Executive Summary—Assessment of Undiscovered Oil and Gas Resources of the Black Warrior Basin Province of Alabama and Mississippi
    Chapter 1 Executive Summary—Assessment of Undiscovered Oil and Gas Resources of the Black Warrior Basin Province of Alabama and Mississippi Volume Title Page By U.S. Geological Survey Black Warrior Basin Province Assessment Team Chapter 1 of Geologic Assessment of Undiscovered Oil and Gas Resources of the Black Warrior Basin Province, Alabama and Mississippi Compiled by Joseph R. Hatch and Mark J. Pawlewicz U.S. Geological Survey Digital Data Series DDS–69–I U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2007 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1–888–ASK–USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone:1–888–ASK–USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: U.S. Geological Survey Black Warrior Basin Province Assessment Team, 2007, Executive Summary—Assessment of undiscovered oil and gas resources of the Black Warrior Basin Province of Alabama and Mississippi, in Hatch, Joseph,R., and Pawlewicz, Mark J., compilers, Geologic assessment of undiscovered oil and gas resources of the Black Warrior Basin Province, Alabama and Mis- sissippi: U.S.
    [Show full text]
  • Petrography of Middle Jurassic to Early
    Chaudhuri et al. Journal of Palaeogeography (2018) 7:2 https://doi.org/10.1186/s42501-018-0002-6 Journal of Palaeogeography RESEARCH Open Access Petrography of Middle Jurassic to Early Cretaceous sandstones in the Kutch Basin, western India: Implications on provenance and basin evolution Angana Chaudhuri1, Santanu Banerjee1* and Emilia Le Pera2 Abstract This paper investigates the provenance of Middle Jurassic to Early Cretaceous sediments in the Kutch Basin, western India, on the basis of mineralogical investigations of sandstones composition (Quartz–Feldspar–Lithic (QFL) fragment), Zircon–Tourmaline–Rutile (ZTR) index, and mineral chemistry of heavy detrital minerals of the framework. The study also examines the compositional variation of the sandstone in relation to the evolution of the Kutch Basin, which originated as a rift basin during the Late Triassic and evolved into a passive margin basin by the end Cretaceous. This study analyzes sandstone samples of Jhumara, Jhuran and Bhuj Formations of Middle Jurassic, Upper Jurassic and Lower Cretaceous, respectively, in the Kutch Mainland. Sandstones record a compositional evolution from arkosic to subarkosic as the feldspar content decreases from 68% in the Jhumara Formation to 27% in the Bhuj Formation with intermediate values in the Jhuran Formation. The QFL modal composition indicates basement uplifted and transitional continental settings at source. Heavy mineral content of these sandstones reveals the occurrence of zircon, tourmaline, rutile, garnet, apatite, monazite and opaque minerals. Sub-rounded to well-rounded zircon grains indicate a polycyclic origin. ZTR indices for samples in Jhumara, Jhuran and Bhuj Formations are 25%, 30% and 50% respectively. Chemistry of opaque minerals reveals the occurrence of detrital varieties such as ilmenite, rutile, hematite/magnetite and pyrite, in a decreasing order of abundances.
    [Show full text]
  • 8. Carbonate and Evaporite Environments
    8. Carbonate and Evaporite Environments Sequence Stratigraphy Institute of Geophysics National Central Univ., Taiwan Prepared by Dr. Andrew T. Lin 8. Carbonate and Evaporite Environments 8.1 Introduction 8.2 Carbonate Shelf (nonreef) Environments • Depositional setting • Sedimentation processes Chemical and biochemical processes Physical processes • Skeletal and sediment characteristics of carbonate deposits • Examples of modern carbonate platforms • Examples of ancient carbonate shelf successions Isolated platforms Rimmed shelves Ramps Epeiric platforms Sequence Stratigraphy Institute of Geophysics National Central Univ., Taiwan Prepared by Dr. Andrew T. Lin 8.3 Slope/Basin Carbonates 8.4 Organic Reef Environments • Modern reefs and reef environments Depositional setting Reef organisms Reef deposits Low-energy reef facies • Ancient Reefs Reef deposits Occurrence of ancient reefs 8.5 Mixed Carbonate-Siliciclastic Systems 8.6 Evaporite Environments • Modern evaporite environment Nonmarine environment Shallow marine environment Deep-water environment • Ancient evaporite environment Nonmarine environment Sequence Stratigraphy Institute of Geophysics Marine environment National Central Univ., Taiwan Prepared by Dr. Andrew T. Lin Carbonate depositional settings • Shelf margin • Shelf – Outer more normal marine – Inner restricted • Margin slope and base of slope • Basin Sequence Stratigraphy Institute of Geophysics National Central Univ., Taiwan Prepared by Dr. Andrew T. Lin Sequence Stratigraphy Institute of Geophysics National Central Univ.,
    [Show full text]
  • Investigating the Variations in Depositional Facies by Investigating the Accuracy of the Neural Network Model Within the St
    INVESTIGATING THE VARIATIONS IN DEPOSITIONAL FACIES BY INVESTIGATING THE ACCURACY OF THE NEURAL NETWORK MODEL WITHIN THE ST. LOUIS LIMESTONE, KEARNY COUNTY, KANSAS By CHANCE REECE B.S., Kansas State University, 2014 A THESIS Submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Geology College of Arts and Sciences KANSAS STATE UNIVERSITY Manhattan, Kansas 2016 Approved by: Major Professor Dr. Matt Totten Copyright CHANCE REECE 2016 Abstract The Mississippian-aged St. Louis Limestone has been a major producer of oil, and natural gas for years in Kearny County, Kansas. Since 1966 two major fields in the County, the Lakin, and Lakin South fields, have produced over 4,405,800 bbls of oil. The St. Louis can be subdivided into six different depositional facies, all with varying lithologies and porosities. Only one of these facies is productive, and the challenge of exploration in this area is the prediction of the productive facies distribution. A previous study by Martin (2015) used a neural network model using well log data, calibrated with established facies distributed within a cored well, to predict the presence of these facies in adjacent wells without core. It was assumed that the model’s prediction accuracy would be strongest near the cored wells, with increasing inaccuracy as you move further from the cored wells used for the neural network model. The aim of this study was to investigate the accuracy of the neural network model predictions. Additionally, is the greater accuracy closest to the cored wells used to calibrate the model, with a corresponding decrease in predictive accuracy as you move further away? Most importantly, how well did the model predict the primary producing unit (porous ooid grainstone) within the St.
    [Show full text]
  • Petrography, Modal Composition and Tectonic Provenance of Some
    Open Geosci. 2018; 10:821–833 Research Article Open Access Priscilla Chima*, Christopher Baiyegunhi, Kuiwu Liu, and Oswald Gwavava Petrography, modal composition and tectonic provenance of some selected sandstones from the Molteno, Elliot and Clarens Formations, Karoo Supergroup, in the Eastern Cape Province, South Africa https://doi.org/10.1515/geo-2018-0064 1 Introduction Received November 16, 2017; accepted March 16, 2018 Abstract: The Late Triassic - Early Jurassic non marine clas- Sedimentary rocks, particularly sandstones, are com- tic sediments of the Molteno, Elliot and Clarens Forma- monly used to construe provenance and to identify an- tions were studied to deduce their mineralogy and tectonic cient tectonic settings since clastic detrital components provenance. The study is based on road-cut exposures preserve detailed information on the provenance, sedi- of the formations in the Eastern Cape Province of South ments transportion and the interaction of physical and Africa. Petrographic studies based on quantitative analy- chemical processes [1, 2]. Petrography of sandstones reveal sis of the detrital minerals shows that the clastic sediments more on the provenance of the detritus despite the fact that (mostly sandstones) are predominantly made up of quartz, their original compositions are influenced by processes feldspars, and metamorphic and igneous rock fragments. such as weathering, transportation and diagenesis [3]. [4] Among the main detrital framework grains, quartz con- documented that other factors like source area charac- stitutes about 62-91%, feldspar 6-24% and 3-19% of lithic teristics, orogenesis, multicycling, storage pathways and/ fragments. The sandstones can be classified as both sub- or leaching also contribute to the formation of clastic litharenite and subarkose.
    [Show full text]
  • Structure of the Alleghanian Thrust Belt Under the Gulf Coastal Plain of Alabama
    A Publication of the Gulf Coast Association of Geological Societies www.gcags.org STRUCTURE OF THE ALLEGHANIAN THRUST BELT UNDER THE GULF COASTAL PLAIN OF ALABAMA 1 2 1 Delores M. Robinson , Ryan M. Bailey , and Andrew M. Goodliffe 1Department of Geological Sciences, University of Alabama, P.O. Box 870338, Tuscaloosa, Alabama 35487–0338, U.S.A. 2Anadarko Petroleum Corporation, 1201 Lake Robbins Dr., The Woodlands, Texas 77380, U.S.A. ABSTRACT Mesozoic and Tertiary sedimentary rock of the Gulf coastal plain covers the Paleozoic Appalachian orogen in central Ala- bama, obscuring the intersection of the northwest-trending Ouachita thrust belt and the northeast-trending Alleghanian thrust belt. Direct observation of the thrust belt system is not possible, and few studies exist because of the lack of well control and limited public availability of seismic reflection profiles. This study uses existing multichannel seismic reflection data and well log data to clarify the subsurface structures and estimate the amount of shortening in the Alleghanian thrust belt in west- central Alabama under the Gulf coastal plain. The seismic line extends 34.2 mi in a nearly north-south direction, perpendicular to the thrust belt, from the Black Warrior basin in the north to near the Talladega slate belt in the south. To correct the two-way travel times of the seismic sections to depth, we built a synthetic seismogram from a nearby deep well, constructed two velocity models, and interpreted and balanced two cross sections. In west-central Alabama, the thrust belt is forward propagating and hinterland dipping, with thrust sheets that range in length from ~5–17 mi and have thicknesses between 11,000–14,500 ft.
    [Show full text]
  • Petrography and Tectonic Provenance of the Cretaceous Sandstones of the Bredasdorp Basin, Off the South Coast of South Africa: Evidence from Framework Grain Modes
    geosciences Article Petrography and Tectonic Provenance of the Cretaceous Sandstones of the Bredasdorp Basin, off the South Coast of South Africa: Evidence from Framework Grain Modes Temitope Love Baiyegunhi 1,*, Kuiwu Liu 1,*, Oswald Gwavava 1 and Christopher Baiyegunhi 2 1 Department of Geology, University of Fort Hare, Private Bag X1314, Alice 5700, Eastern Cape Province, South Africa; [email protected] 2 Department of Geology and Mining, University of Limpopo, Private Bag X1106, Sovenga 0727, Limpopo Province, South Africa; [email protected] * Correspondence: [email protected] (T.L.B.); [email protected] (K.L.) Received: 8 May 2020; Accepted: 3 June 2020; Published: 28 August 2020 Abstract: The Cretaceous sandstones of the Bredasdorp Basin were investigated to recognize their composition, provenance, and tectonic setting. Ninety-two samples of sandstones from exploration wells E-AH1, E-AJ1, E-BA1, E-BB1, and E-D3 were investigated using both petrographic and X-ray diffraction (XRD) methods. Petrographic studies based on quantitative investigation of the detrital framework grain shows that the Bredasdorp sandstones chiefly consist of quartz (52.2–68.0%), feldspar (10.0–18.0%), and lithic fragments (5.0–10.2%). These sandstones are mostly fine grained, moderately well-sorted, and subrounded to rounded. The modal composition data shows that the sandstones could be classified as subarkosic arenite and lithic arkose. Such a composition of the sandstones perhaps indicates the interplay of pulses of fast uplift of the source area and rapid subsidence of the Bredasdorp Basin, with subsequent periods of calmness within the transgressive-regressive sequence in a rift tectonic regime.
    [Show full text]
  • IN MEMORY of ROBERT LOUIS FOLK 30 September 1925 – 4 June 2018
    IN MEMORY OF ROBERT LOUIS FOLK 30 September 1925 – 4 June 2018 Robert Folk in a marble quarry in Lipari, Italy. IN MEMORY OF ROBERT LOUIS FOLK Compiled by Murray Felsher, Miles Hayes, Lynton Land, Earle McBride, and Kitty Milliken Produced by Joe Holmes, Research Planning, Inc. Murray Felsher, Ph.D. 1971 FOLKLORE – FIRST CONTACT Having never met him, I knew Robert L. Folk only by reputation. I had left Amherst MA and the University of Massachusetts, where I had undertaken my M.S. work. It was August 1961, and I was married two months earlier. I had spent the summer as a Carnegie College Teaching Intern teaching an Introductory Geology class at CCNY, where I had earned my B.S. As a native New Yorker, I rarely traveled west of the Hudson, and had never been west of the Mississippi. Gathering meager funds and overloading our VW Beetle with all our belongings, we were to be strangers in a strange land, wherein lived strange people who spoke a strangely attractive version of English. I had earlier applied to only two schools for my Ph.D. --- the Massachusetts Institute of Technology and the University of Texas at Austin, and was accepted by both. When I approached H.T.U. Smith --- chairman of the UMass Geology Department, for whom I served as a Graduate Teaching Assistant during my years there --- for his advice on where I should pursue my doctorate, he unhesitatingly said “Texas. Bob Folk is there. Without question, Texas.” But I did have a question or two, and H.T.U.
    [Show full text]
  • Depositional Environment and Facies Analyses of the Owl Mountain Province, Fort Hood Military Installation, Bell and Coryell Counties, Texas
    Stephen F. Austin State University SFA ScholarWorks Electronic Theses and Dissertations 12-2018 DEPOSITIONAL ENVIRONMENT AND FACIES ANALYSES OF THE OWL MOUNTAIN PROVINCE, FORT HOOD MILITARY INSTALLATION, BELL AND CORYELL COUNTIES, TEXAS Jacob Meinerts [email protected] Follow this and additional works at: https://scholarworks.sfasu.edu/etds Part of the Geology Commons, Geomorphology Commons, Hydrology Commons, and the Sedimentology Commons Tell us how this article helped you. Repository Citation Meinerts, Jacob, "DEPOSITIONAL ENVIRONMENT AND FACIES ANALYSES OF THE OWL MOUNTAIN PROVINCE, FORT HOOD MILITARY INSTALLATION, BELL AND CORYELL COUNTIES, TEXAS" (2018). Electronic Theses and Dissertations. 222. https://scholarworks.sfasu.edu/etds/222 This Thesis is brought to you for free and open access by SFA ScholarWorks. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of SFA ScholarWorks. For more information, please contact [email protected]. DEPOSITIONAL ENVIRONMENT AND FACIES ANALYSES OF THE OWL MOUNTAIN PROVINCE, FORT HOOD MILITARY INSTALLATION, BELL AND CORYELL COUNTIES, TEXAS Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This thesis is available at SFA ScholarWorks: https://scholarworks.sfasu.edu/etds/222 DEPOSITIONAL ENVIRONMENT AND FACIES ANALYSES OF THE OWL MOUNTAIN PROVINCE, FORT HOOD MILITARY INSTALLATION, BELL AND CORYELL COUNTIES, TEXAS By Jacob Allan Meinerts, B.S Presented to the Faculty of the Graduate School of Stephen F. Austin State University In Partial Fulfillment Of the Requirements For the Degree of Masters of Science STEPHEN F. AUSTIN STATE UNIVERSITY December 2018 Depositional Environment and Facies Analyses of the Owl Mountain Province, Fort Hood Military Installation, Bell and Coryell Counties, Texas By JACOB ALLAN MEINERTS, B.S.
    [Show full text]