Rain Cloud in Alexandrite Conichalcite in Quartz Chalcedony

Total Page:16

File Type:pdf, Size:1020Kb

Rain Cloud in Alexandrite Conichalcite in Quartz Chalcedony Editor Nathan Renfro Contributing Editors Elise A. Skalwold and John I. Koivula Rain Cloud in Alexandrite An example of nature imitating nature was seen in a 0.73 ct faceted alexandrite showcasing an inclusion reminiscent of a rain cloud (figure 1). The “cloud” was composed of white particles oriented as parallel bands that displayed a cloud-like silhouette when viewed at an angle. The “rain” was composed of fine oriented reflective needles com- monly referred to as silk. Fiber-optic lighting allowed for a concentration of white light to be seen under the cloud, creating an appearance of lightning. The inclusion scene observed in this gem is an interesting novelty that any gemologist can appreciate. Britni LeCroy GIA, Carlsbad Figure 1. An alexandrite seen with fine milky parti- cles and bands of silk resembling a rain cloud. Photo- micrograph by Britni LeCroy; field of view 2.90 mm. Conichalcite in Quartz Chalcedony An interesting greenish blue cabochon of chalcedony was examined to determine the identity of some peculiar yel- Conichalcite, CaCu(AsO )(OH), is a member of the lowish green inclusions. The bodycolor offered some clues, 4 adelite-descloizite group and occurs in colors from domi- as the greenish blue variety of chalcedony, known as “gem nantly green to dominantly yellow, with either a yellow or silica,” is commonly attributed to the copper mineral green modifier. Conichalcite is reported to occur with chrysocolla. Therefore, it was not a surprise when Raman chrysocolla from deposits in the United States (Utah, Ari- spectrometry identified the yellowish green inclusions as zona, and California), Germany, Peru, and Australia. This another mineral that contained a significant amount of particular gem was reportedly from Concepcion Del Oro, copper: conichalcite (figure 2). Zacatecas, Mexico. These vibrant inclusions were quite visually striking when seen along with their greenish blue host chalcedony. About the banner: Fibers of actinolite radiate from a core crystal of This is the first time the authors have identified inclusions chromite in a Russian demantoid garnet. These “horsetail” inclusions are of conichalcite in chalcedony. common in demantoid from Russia. Photomicrograph by Nathan Renfro; Nathan Renfro and John I. Koivula field of view 1.53 mm. Courtesy of the John Koivula Inclusion Collection. GIA, Carlsbad Editors’ note: Interested contributors should contact Nathan Renfro at [email protected] for submission information. Emerald in Rock Crystal Quartz GEMS &G EMOLOGY,V OL. 55, NO. 3, pp. 426–433. Rock crystal is a transparent and colorless macrocrystalline © 2019 Gemological Institute of America variety of quartz (SiO ) that often has cavities containing liq- 2 426 MICRO-WORLD G EMS & GEMOLOGY F ALL 2019 this is the first time the author has examined a gem-quality rock crystal quartz cabochon with a perfectly hexagonal emerald crystal inclusion. Nattida Ng-Pooresatien GIA, Bangkok Iolite-Sunstone Intergrowth and Inclusions At the GIA Carlsbad laboratory, the authors recently ex- amined a cabochon of “bloodshot” iolite (containing red, eye-visible platelets of hematite) intergrown with a sun- stone (figure 4). This material was reportedly sourced from Figure 2. Raman spectrometry identified the yellow- India. Cordierite (iolite) and plagioclase feldspar is a com- ish green inclusions in this chalcedony host as the mon metamorphic mineral assemblage, and similar mate- copper mineral conichalcite. Photomicrograph by rial reportedly from India has been documented in the past Nathan Renfro; field of view 7.20 mm. (Winter 1991 Gem News, pp. 261–262). This “double” gem specimen displays a mixture of an attractive bluish violet dichroic color with red hematite platelet inclusions in the iolite half, combined with an or- ange aventurescence effect from numerous tiny copper-col- uid and gas two-phase inclusions. Many different minerals ored hematite platelets in the sunstone half. also form as inclusions within rock crystal quartz. Typical varieties of included quartz for gem use are rutilated quartz, tourmalinated quartz, and strawberry quartz. Specimens may also contain several other types of mineral inclusions. Recently, the author examined a 10.95 ct rock crystal Figure 4. An iolite-sunstone overgrowth crystal speci- quartz cabochon that contained elongate rod-shaped green men. Photo by Kevin Schumacher. crystals (figure 3). The green crystals showed hexagonal cross-section and were identified by Raman spectroscopy as beryl. Ultraviolet/visible/near-infrared (UV-Vis-NIR) spectroscopy showed a chromium (Cr) spectrum, which confirmed that the green crystals were emerald. This amazing inclusion has been previously reported in a rock crystal quartz specimen (Fall 2008 Lab Notes, p. 258), but Figure 3. A prismatic emerald crystal within a rock crystal quartz. Photomicrograph by Nattida Ng- Pooresatien; field of view 12.5 mm. MICRO-WORLD G EMS & GEMOLOGY F ALL 2019 427 inclusions were also observed inside the same specimen. Nevertheless, the anthophyllite crystal was conclusively identified by Raman microspectrometry analysis. The an- thophyllite crystal inclusion showed a bladed prismatic crystal form, orangy yellow color, transparency, and several cleavage planes. Although amphibole mineral inclusions have been doc- umented extensively, distinct prismatic anthophyllite crystal inclusions are very rare and few references are found in the literature. Anthophyllite is more common in lamellar or fibrous form, classified as asbestos. This combination iolite-sunstone specimen and its in- clusions offer a unique visual composition that makes it a Figure 5. This colorful inclusion scene showcases an desirable piece for a gem collection. anthophyllite crystal inclusion, which exhibits high transparency, several cleavage planes, and a thin/ Jonathan Muyal and Paul Mattlin bladed prismatic crystal form. Photomicrograph by GIA, Carlsbad Jonathan Muyal; field of view 2.34 mm. Merelaniite in Gem Diopside from Merelani, Tanzania Viewing the stone under magnification offers an in- A recent Micro-World entry (Summer 2018 G&G, pp. 226– clusion scene with a variety of well-formed hematite 227) described merelaniite occurring as dense inclusions platelets, crystals, and liquid inclusions. Of particular in- in a tanzanite cabochon and as inclusions in two gem tan- terest was a fine elongated single-crystal inclusion of an- zanite crystals. While the Merelani tanzanite mines have thophyllite (figure 5). also become well known for green diopside in recent years, The crystal shape of the anthophyllite could easily be in July 2019 the authors observed, for the first time, dense mistaken for phlogopite, which has been documented in inclusions of fine merelaniite whiskers in gem-quality yel- cordierite (E.J. Gübelin and J.I. Koivula, Photoatlas of Inclu- low-green, prismatic diopside crystals (figure 6, left). sions in Gems, Vol. 1, ABC Edition, Zurich, 1986, p. 268). Seven merelaniite-included diopside crystals, reportedly In fact, several greenish brown prismatic phlogopite crystal mined in 2018 and obtained by one of the authors (WR), Figure 6. Left: Prismatic diopside crystal (1.5 cm tall) included with abun- dant merelaniite whiskers, associated with graphite at the termination, and aggre- gates of radiating white aci- cular mesolite crystals on some prism faces. Photo by Tom Stephan. Top right: Close-up of the merelaniite inclusion (field of view ~8 mm), viewed through one polarizer to reduce the ef- fects of diopside’s birefrin- gence. Bottom right: Detail of some of the merelaniite inclusions showing spindle structures due to non-uni- form layer growth around the whisker axes (field of view 1.5 mm). Photomicro- graphs by J.A. Jaszczak. 428 MICRO-WORLD G EMS & GEMOLOGY F ALL 2019 Figure 7. Left: A 1.35 ct faceted gem diopside containing merelaniite inclusions. Photo by Diego Sanchez. Right: Close-up of wheel and whisker morphology of the included merelaniite. Photomicrograph by Nathan Ren- fro; field of view 1.03 mm. Stone courtesy of Bill Vance. ranged in size from approximately 1 to 5 cm long. Apart Dravite from Mozambique with an Abundance of from the merelaniite inclusions, all but the largest had ex- Pyrite Inclusions cellent clarity, although one 1.7 cm crystal was so densely In the summer of 2017, author JP encountered a parcel of filled with merelaniite that half of the sample appeared very transparent yellow to brownish yellow tourmalines at the dark. Similar to the inclusions observed in tanzanite, the gemstone market in Chanthaburi, Thailand. The six merelaniite inclusions in diopside were predominantly faceted tourmalines shown in figure 8 revealed properties cylindrical whiskers with metallic luster and variable diam- consistent with tourmaline. LA-ICP-MS analysis was per- eters and lengths. The longest whiskers in the largest diop- formed to determine their major chemical components, side spanned up to 2 cm (figure 6, top right), and many which were: 11.56–12.31% MgO, 9.98–10.34% B O , 2.62– extended to the surface, where they terminated. Some of the 2 3 merelaniite whiskers showed a spindle- or wheel-type struc- ture with diameter that varied along the axis of even a single whisker (figure 6, bottom right). Some ribbon-like inclusions Figure 8. Six yellow to brownish yellow faceted also occurred that were likely merelaniite. All of the diop- dravite tourmalines (0.47–2.8 ct) from Mozambique, sides were also associated with white spheroidal clusters of many of which contained distinct metallic inclusions radiating acicular mesolite crystals, while several crystals of pyrite. Photo by Weizhi Huang. were associated with graphite and one was associated with a transparent blue fluorapatite crystal. While reviewing an earlier version of this report, GIA’s Nathan Renfro made the connection between these in- cluded diopside crystals and a faceted Merelani diopside gemstone (figure 7, left) containing dark whisker inclusions. Author JIK obtained that diopside from Bill Vance, the stone’s cutter, in approximately 2012. The whiskers in this 1.35 ct stone, some of which were surrounded by remark- able dark circular growths (figure 7, right), have also been confirmed by Raman spectroscopy as merelaniite.
Recommended publications
  • Phase Equilibria and Thermodynamic Properties of Minerals in the Beo
    American Mineralogist, Volwne 71, pages 277-300, 1986 Phaseequilibria and thermodynamic properties of mineralsin the BeO-AlrO3-SiO2-H2O(BASH) system,with petrologicapplications Mlnx D. B.qnroN Department of Earth and SpaceSciences, University of California, Los Angeles,Los Angeles,California 90024 Ansrru,cr The phase relations and thermodynamic properties of behoite (Be(OH)r), bertrandite (BeoSirOr(OH)J, beryl (BerAlrSiuO,r),bromellite (BeO), chrysoberyl (BeAl,Oo), euclase (BeAlSiOo(OH)),and phenakite (BerSiOo)have been quantitatively evaluatedfrom a com- bination of new phase-equilibrium, solubility, calorimetric, and volumetric measurements and with data from the literature. The resulting thermodynamic model is consistentwith natural low-variance assemblagesand can be used to interpret many beryllium-mineral occurTences. Reversedhigh-pressure solid-media experimentslocated the positions of four reactions: BerAlrSiuO,,: BeAlrOo * BerSiOo+ 5SiO, (dry) 20BeAlSiOo(OH): 3BerAlrsi6or8+ TBeAlrOo+ 2BerSiOn+ l0HrO 4BeAlSiOo(OH)+ 2SiOr: BerAlrSiuO,,+ BeAlrOo+ 2H2O BerAlrSiuO,,+ 2AlrSiOs : 3BeAlrOa + 8SiO, (water saturated). Aqueous silica concentrationswere determined by reversedexperiments at I kbar for the following sevenreactions: 2BeO + H4SiO4: BerSiOo+ 2H2O 4BeO + 2HoSiOo: BeoSirO'(OH),+ 3HrO BeAlrOo* BerSiOo+ 5H4Sio4: Be3AlrSiuOr8+ loHro 3BeAlrOo+ 8H4SiO4: BerAlrSiuOrs+ 2AlrSiO5+ l6HrO 3BerSiOo+ 2AlrSiO5+ 7H4SiO4: 2BerAlrSiuOr8+ l4H2o aBeAlsioloH) + Bersio4 + 7H4sio4:2BerAlrsiuors + 14Hro 2BeAlrOo+ BerSiOo+ 3H4SiOo: 4BeAlSiOr(OH)+ 4HrO.
    [Show full text]
  • Age and Origin of Silicocarbonate Pegmatites of the Adirondack Region
    minerals Article Age and Origin of Silicocarbonate Pegmatites of the Adirondack Region Jeffrey Chiarenzelli 1,*, Marian Lupulescu 2, George Robinson 1, David Bailey 3 and Jared Singer 4 1 Department of Geology, St. Lawrence University, Canton, NY 13617, USA 2 New York State Museum, Research and Collections, Albany, NY 12230, USA 3 Geosciences Department, Hamilton College, Clinton, NY 13323, USA 4 Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Rensselaer, NY 12180, USA * Correspondence: [email protected]; Tel.: +1-315-229-5202 Received: 24 July 2019; Accepted: 19 August 2019; Published: 23 August 2019 Abstract: Silicocarbonate pegmatites from the southern Grenville Province have provided exceptionally large crystal specimens for more than a century. Their mineral parageneses include euhedral calc–silicate minerals such as amphibole, clinopyroxene, and scapolite within a calcite matrix. Crystals can reach a meter or more in long dimension. Minor and locally abundant phases reflect local bedrock compositions and include albite, apatite, perthitic microcline, phlogopite, zircon, tourmaline, titanite, danburite, uraninite, sulfides, and many other minerals. Across the Adirondack Region, individual exposures are of limited aerial extent (<10,000 m2), crosscut metasedimentary rocks, especially calc–silicate gneisses and marbles, are undeformed and are spatially and temporally associated with granitic pegmatites. Zircon U–Pb results include both Shawinigan (circa 1165 Ma) and Ottawan (circa 1050 Ma) intrusion ages, separated by the Carthage-Colton shear zone. Those of Shawinigan age (Lowlands) correspond with the timing of voluminous A-type granitic magmatism, whereas Ottawan ages (Highlands) are temporally related to orogenic collapse, voluminous leucogranite and granitic pegmatite intrusion, iron and garnet ore development, and pervasive localized hydrothermal alteration.
    [Show full text]
  • The Wittelsbach-Graff and Hope Diamonds: Not Cut from the Same Rough
    THE WITTELSBACH-GRAFF AND HOPE DIAMONDS: NOT CUT FROM THE SAME ROUGH Eloïse Gaillou, Wuyi Wang, Jeffrey E. Post, John M. King, James E. Butler, Alan T. Collins, and Thomas M. Moses Two historic blue diamonds, the Hope and the Wittelsbach-Graff, appeared together for the first time at the Smithsonian Institution in 2010. Both diamonds were apparently purchased in India in the 17th century and later belonged to European royalty. In addition to the parallels in their histo- ries, their comparable color and bright, long-lasting orange-red phosphorescence have led to speculation that these two diamonds might have come from the same piece of rough. Although the diamonds are similar spectroscopically, their dislocation patterns observed with the DiamondView differ in scale and texture, and they do not show the same internal strain features. The results indicate that the two diamonds did not originate from the same crystal, though they likely experienced similar geologic histories. he earliest records of the famous Hope and Adornment (Toison d’Or de la Parure de Couleur) in Wittelsbach-Graff diamonds (figure 1) show 1749, but was stolen in 1792 during the French T them in the possession of prominent Revolution. Twenty years later, a 45.52 ct blue dia- European royal families in the mid-17th century. mond appeared for sale in London and eventually They were undoubtedly mined in India, the world’s became part of the collection of Henry Philip Hope. only commercial source of diamonds at that time. Recent computer modeling studies have established The original ancestor of the Hope diamond was that the Hope diamond was cut from the French an approximately 115 ct stone (the Tavernier Blue) Blue, presumably to disguise its identity after the that Jean-Baptiste Tavernier sold to Louis XIV of theft (Attaway, 2005; Farges et al., 2009; Sucher et France in 1668.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • 2018 Collection Look Book Martha Seely Design Is a Small Design Studio That Creates One-Of-A-Kind and Custom Crafted Fine Production Jewelry
    DESIGN MARTHA SEELY DESIGN MARTHA SEELY 2018 Collection Look Book Martha Seely Design is a small design studio that creates one-of-a-kind and custom crafted fine production jewelry. The studio is pleased to customize the jewelry for individual retailers, using various karats and colors of precious metals, as well as providing selective choices of gemstones. INSPIRO Abstract Orbiting Spirals marthaseely.com 978-287-4628 When universes come together…. Simple, abstract spirals that move freely surrounding lustrous pearls and gemstones Ceres Spiral Earrings with diamonds Articulating 2-tone necklace Ceres Spiral Earrings not to scale with sapphires some items enlarged to show detail. The Delicate Collection – fresh and youthful Delicate Spiral Necklaces with 1,3 or 5 spirals with diamonds Delicate Dangle Earrings with Rutilated quartz not to scale some items enlarged to show detail. Delicate Spiral Link Bracelet Transition Unexpected twists, curves, with the fashion-forward use of pearls marthaseely.com 978-287-4628 Unexpected twists, curves, with the fashion-forward use of pearls Artisanal, hand-fabricated pieces that epitomize that time of year when the world is transforming and metamorphosis takes place. Transition Bangle in sterling silver with a white Akoya Pearl not to scale some items enlarged to show detail. Transition Bangle – 2-tone With gold and sterling silver And a riveted white Akoya pearl Transition Hoop Earrings in sterling silver With riveted Akoya pearl. CIRRUS This simple spiral expression is an updated and renewed classic design with pearls and diamonds. marthaseely.com 978-287-4628 Updated, Renewed Classic Designs Tahitian Pearl Post Earrings with Diamonds Tahitian Pearl Pendant with Diamonds Seed Pearl Necklaces in white and grey with 12mm white freshwater pearl.
    [Show full text]
  • Tourmaline Composition of the Kışladağ Porphyry Au Deposit, Western Turkey: Implication of Epithermal Overprint
    minerals Article Tourmaline Composition of the Kı¸slada˘gPorphyry Au Deposit, Western Turkey: Implication of Epithermal Overprint Ömer Bozkaya 1,* , Ivan A. Baksheev 2, Nurullah Hanilçi 3, Gülcan Bozkaya 1, Vsevolod Y. Prokofiev 4 , Yücel Özta¸s 5 and David A. Banks 6 1 Department of Geological Engineering, Pamukkale University, 20070 Denizli, Turkey; [email protected] 2 Department of Geology, Moscow State University, Leninskie Gory, 119991 Moscow, Russia; [email protected] 3 Department of Geological Engineering, Istanbul University-Cerrahpa¸sa,Avcılar, 34320 Istanbul, Turkey; [email protected] 4 Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences, 119017 Moscow, Russia; [email protected] 5 TÜPRAG Metal Madencilik, Ovacık Mevki Gümü¸skolKöyü, Ulubey Merkez, 64902 U¸sak,Turkey; [email protected] 6 School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; [email protected] * Correspondence: [email protected]; Tel.: +90-258-296-3442 Received: 13 August 2020; Accepted: 4 September 2020; Published: 7 September 2020 Abstract: The Kı¸slada˘gporphyry Au deposit occurs in a middle Miocene magmatic complex comprising three different intrusions and magmatic-hydrothermal brecciation related to the multiphase effects of the different intrusions. Tourmaline occurrences are common throughout the deposit, mostly as an outer alteration rim around the veins with lesser amounts disseminated in the intrusions, and are associated with every phase of mineralization. Tourmaline mineralization has developed as a tourmaline-rich matrix in brecciated zones and tourmaline-quartz and/or tourmaline-sulfide veinlets within the different intrusive rocks. Tourmaline was identified in the tourmaline-bearing breccia zone (TBZ) and intrusive rocks that had undergone potassic, phyllic, and advanced argillic alteration.
    [Show full text]
  • Structural Geology of the Upper Rock Creek Area, Inyo County, California, and Its Relation to the Regional Structure of the Sierra Nevada
    Structural geology of the upper Rock Creek area, Inyo County, California, and its relation to the regional structure of the Sierra Nevada Item Type text; Dissertation-Reproduction (electronic); maps Authors Trent, D. D. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 27/09/2021 06:38:23 Link to Item http://hdl.handle.net/10150/565293 STRUCTURAL GEOLOGY OF THE UPPER ROCK CREEK AREA, INYO COUNTY, CALIFORNIA, AND ITS RELATION TO THE REGIONAL STRUCTURE OF THE SIERRA NEVADA by Dee Dexter Trent A Dissertation Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 3 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE I hereby recommend that this dissertation prepared under my direction by __________ Dee Dexter Trent______________________ entitled Structural Geology of the Upper Rock Creek Area . Tnvo County, California, and Its Relation to the Regional Structure of the Sierra Nevada ________________ be accepted as fulfilling the dissertation requirement of the degree of ____________Doctor of Philosophy_________ ___________ P). /in /'-/7. 3 Dissertation Director fJ Date After inspection of the final copy of the dissertation, the following members of the Final Examination Committee concur in its approval and recommend its acceptance:* f t M m /q 2 g ££2 3 This approval and acceptance is contingent on the candidate's adequate performance and defense of this dissertation at the final oral examination.
    [Show full text]
  • Heat Capacities and Thermodynamic Functions for Beryl, Beralrsiuotr
    American Mineralogist, Volume 7I, pages 557-568, 1986 Heat capacitiesand thermodynamicfunctions for beryl, BerAlrSiuOtr, phenakite, BerSiOn,euclase, BeAlSiOo(OH)' bertranditeo BeoSirOt(OH)r,and chrysoberyl' BeAl2Oa B. S. HnluNcw.q,Y U.S. GeologicalSurvey, Reston, Y irgrnia22092 M. D. B.nnroN Departmentof Earthand SpaceSciences, University of California,Los Angeles,Los Angeles,California 90024 R. A. Ronrn, H. T. HLsnr.roN, Jn. U.S. GeologicalSurvey, Reston, Y irginia22092 Ansrru,cr The heat capacities of beryl, phenakite, euclase,and bertrandite have been measured betweenabout 5 and 800 K by combined quasi-adiabaticcryogenic calorimetry and dif- ferential scanningcalorimetry. The heat capacitiesof chrysoberylhave beenmeasured from 340 to 800 K. The resulting data have been combined with solution and phase-equilibrium experimentaldata and simultaneouslyfit using the program pHAS2oto provide an internally consistent set of thermodynamic properties for several important beryllium phases.The experimentalheat capacitiesand tablesof derived thermodynamic propertiesare presented in this report. The derived thermodynamic properties at I bar and 298.15 K for the stoichiometric beryllium phasesberyl, phenakite, euclase,and bertrandite are entropies of 346.7 + 4.7, 63.37+0.27,89.09+0.40, andl72.l+0.77 J/(mol'K),respectively,andGibbsfree energiesof formation(elements) of -8500.36 + 6.39, -2028.39 + 3.78, -2370.17 + 3.04, and -4300.62 + 5.45 kJlmol, respectively,and, -2176.16 + 3.18kJ/mol for chrysoberyl. The coefficientscr to c, of the heat-capacityfunctions are as follows: valid phase ct c2 c, x 105 c4 c, x 10-6 range beryl 1625.842 -0.425206 12.0318 -20 180.94 6.82544 200-1800K phenakite 428.492 -0.099 582 1.9886 -5 670.47 2.0826 200-1800K euclase 532.920 -0.150729 4.1223 -6726.30 2.1976 200-1800K bertrandite 825.336 -0.099 651 -10 570.31 3.662r7200-1400 K chrysoberyl 362.701 -0.083 527 2.2482 -4033.69 -6.7976 200-1800K whereC!: cr * ctT + crT2 * coT-os* crT-2and Zisinkelvins.
    [Show full text]
  • Compilation of Reported Sapphire Occurrences in Montana
    Report of Investigation 23 Compilation of Reported Sapphire Occurrences in Montana Richard B. Berg 2015 Cover photo by Richard Berg. Sapphires (very pale green and colorless) concentrated by panning. The small red grains are garnets, commonly found with sapphires in western Montana, and the black sand is mainly magnetite. Compilation of Reported Sapphire Occurrences, RI 23 Compilation of Reported Sapphire Occurrences in Montana Richard B. Berg Montana Bureau of Mines and Geology MBMG Report of Investigation 23 2015 i Compilation of Reported Sapphire Occurrences, RI 23 TABLE OF CONTENTS Introduction ............................................................................................................................1 Descriptions of Occurrences ..................................................................................................7 Selected Bibliography of Articles on Montana Sapphires ................................................... 75 General Montana ............................................................................................................75 Yogo ................................................................................................................................ 75 Southwestern Montana Alluvial Deposits........................................................................ 76 Specifi cally Rock Creek sapphire district ........................................................................ 76 Specifi cally Dry Cottonwood Creek deposit and the Butte area ....................................
    [Show full text]
  • Geochemical Journal, Vol. 55 (No. 4), Pp. 209-222, 2021
    Geochemical Journal, Vol. 55, pp. 209 to 222, 2021 doi:10.2343/geochemj.2.0630 10Be/9Be ratios of phenakite and beryl measured via direct Cs sputtering: Implications for selecting suitable Be carrier minerals for the measurement of low-level 10Be ATSUNORI NAKAMURA,1* ATSUYUKI OHTA,1 HIROYUKI MATSUZAKI2 and TAKASHI OKAI1 1Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan 2Micro Analysis Laboratory, Tandem Accelerator (MALT), The University Museum, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan (Received December 23, 2020; Accepted April 29, 2021) Preparing Be carrier solutions with low 10Be/9Be ratios is essential for the applications of in-situ-produced cosmogenic 10Be in geochronology. This is because commercially available Be carriers are non-negligibly contaminated by 10Be. Recently, in-house Be carriers have been successfully applied to samples that contain small amounts of in-situ-produced 10Be. The first step in preparing in-house Be carriers is selecting suitable Be-bearing minerals that contain less 10Be. Here, we present a simple method for selecting appropriate raw minerals for in-house Be carriers. That is, measuring the 10Be/ 9 10 9 Be ratios of Be-bearing minerals by direct Cs sputtering. Analyses of the Be/ Be ratios of phenakite (Be2SiO4) and beryl (Be3Al2Si6O18) obtained from a mineral collection at the Geological Survey of Japan indicate that phenakite gener- ally contains more 10B, interfering isobar of 10Be, than beryl. In addition to the necessity of finding raw materials that contain low 10Be, our results indicate that it is preferable to select a starting material with a low B concentration.
    [Show full text]
  • Mottramite Pbcu(VO4)(OH) C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Orthorhombic
    Mottramite PbCu(VO4)(OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. As crystals, equant or dipyramidal {111}, prismatic [001] or [100], with {101}, {201}, many others, to 3 mm, in drusy crusts, botryoidal, usually granular to compact, massive. Physical Properties: Fracture: Small conchoidal to uneven. Tenacity: Brittle. Hardness = 3–3.5 D(meas.) = ∼5.9 D(calc.) = 6.187 Optical Properties: Transparent to nearly opaque. Color: Grass-green, olive-green, yellow- green, siskin-green, blackish brown, nearly black. Streak: Yellowish green. Luster: Greasy. Optical Class: Biaxial (–), rarely biaxial (+). Pleochroism: Weak to strong; X = Y = canary-yellow to greenish yellow; Z = brownish yellow. Orientation: X = c; Y = b; Z = a. Dispersion: r> v,strong; rarely r< v.α= 2.17(2) β = 2.26(2) γ = 2.32(2) 2V(meas.) = ∼73◦ Cell Data: Space Group: P nma. a = 7.667–7.730 b = 6.034–6.067 c = 9.278–9.332 Z=4 X-ray Powder Pattern: Mottram St. Andrew, England; close to descloizite. 3.24 (vvs), 5.07 (vs), 2.87 (vs), 2.68 (vs), 2.66 (vs), 2.59 (vs), 1.648 (vs) Chemistry: (1) (2) (1) (2) CrO3 0.50 ZnO 0.31 10.08 P2O5 0.24 PbO 55.64 55.30 As2O5 1.33 H2O 3.57 2.23 V2O5 21.21 22.53 insol. 0.17 CuO 17.05 9.86 Total 100.02 100.00 (1) Bisbee, Arizona, USA; average of three analyses. (2) Pb(Cu, Zn)(VO4)(OH) with Zn:Cu = 1:1.
    [Show full text]