Nano-Solutions for the 21St Century
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Meso/Micro/Nano Scale Technologies
Meso/Micro/Nano Scale Technologies Clayton Teague, Chief, APTD, MEL John Evans, Chief, ISD, MEL June 8, 1999 Contents of Presentation • What we (MEL) have done in meso-scale area • What is nanotechnology • Nanotechnology is important • Principal message • Why is it important to industry and NIST? – Examples of industry/NIST work at all scales • Challenges for NIST • Long term needs at the nano-scale • Short term needs at the meso/micro-scales • Priorities • Ideas • Discussion topics Background • During past 9 months, MEL has explored measurements and standards needs of meso and micro-scale manufacturing • Visited 20 companies • Conducted and participated in three workshops jointly sponsored with DARPA and NSF • Organized informal NIST-wide co-ordinating group for meso/micro/nano scale activities • All feedback from these efforts points toward an exploding growth of nanotechnology • We see a continuum of needs for NIST efforts from the macro-scale to the nano-scale What is Nanotechnology? • Technology on the scale of atoms -100 pm- up to biomolecular systems as large as cells - 10’s mm • “Top-down” - achieving increased miniaturization through extension of existing microfabrication schemes • “Bottom-up” - capability to construct functional components, devices, and systems from building blocks of atoms and molecules Nanotechnology Strategies Nanotechnology is important! • “We’ve got to learn how to build machines, materials, and devices with the ultimate finesse that life has always used: atom by atom, on the same nanometer scale as the machinery in living cells.” Richard Smalley, Nobel Laureate, 1995 • “I believe nanoscience and nanotechnology will be central to the next epoch of the information age …” John Armstrong, formerly Chief Scientist of IBM, 1991 • “If I were asked for an area of science and engineering that will most likely produce the breakthroughs of tomorrow, I would point to nanoscale science and engineering.” Neal Lane, Director OSTP, 1998 • “Nanotechnology has given us the tools to make contact with the world of the molecule and the atom. -
Bottom-Up Synthesis and Sensor Applications of Biomimetic Nanostructures
materials Review Bottom-Up Synthesis and Sensor Applications of Biomimetic Nanostructures Li Wang 1,*, Yujing Sun 2, Zhuang Li 2, Aiguo Wu 3 and Gang Wei 4,* Received: 25 November 2015; Accepted: 7 January 2016; Published: 18 January 2016 Academic Editor: Erik Reimhult 1 College of Chemistry, Jilin Normal University, Haifeng Street 1301, Siping 136000, China 2 State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China; [email protected] (Y.S.); [email protected] (Z.L.) 3 Key Laboratory of Magnetic Materials and Devices & Division of Functional Materials and Nanodevices, Ningbo Institute of Material Technology and Engineering, Chinese Academy Sciences, Ningbo 315201, China; [email protected] 4 Faculty of Production Engineering, University of Bremen, Am Fallturm 1, D-28359 Bremen, Germany * Correspondence: [email protected] (L.W.); [email protected] (G.W.); Tel.: +86-139-4441-1011 (L.W.); +49-421-2186-4581 (G.W.) Abstract: The combination of nanotechnology, biology, and bioengineering greatly improved the developments of nanomaterials with unique functions and properties. Biomolecules as the nanoscale building blocks play very important roles for the final formation of functional nanostructures. Many kinds of novel nanostructures have been created by using the bioinspired self-assembly and subsequent binding with various nanoparticles. In this review, we summarized the studies on the fabrications and sensor applications of biomimetic nanostructures. The strategies for creating different bottom-up nanostructures by using biomolecules like DNA, protein, peptide, and virus, as well as microorganisms like bacteria and plant leaf are introduced. -
Diamondoid Mechanosynthesis Prepared for the International Technology Roadmap for Productive Nanosystems
IMM White Paper Scanning Probe Diamondoid Mechanosynthesis Prepared for the International Technology Roadmap for Productive Nanosystems 1 August 2007 D.R. Forrest, R. A. Freitas, N. Jacobstein One proposed pathway to atomically precise manufacturing is scanning probe diamondoid mechanosynthesis (DMS): employing scanning probe technology for positional control in combination with novel reactive tips to fabricate atomically-precise diamondoid components under positional control. This pathway has its roots in the 1986 book Engines of Creation, in which the manufacture of diamondoid parts was proposed as a long-term objective by Drexler [1], and in the 1989 demonstration by Donald Eigler at IBM that individual atoms could be manipulated by a scanning tunelling microscope [2]. The proposed DMS-based pathway would skip the intermediate enabling technologies proposed by Drexler [1a, 1b, 1c] (these begin with polymeric structures and solution-phase synthesis) and would instead move toward advanced DMS in a more direct way. Although DMS has not yet been realized experimentally, there is a strong base of experimental results and theory that indicate it can be achieved in the near term. • Scanning probe positional assembly with single atoms has been successfully demonstrated in by different research groups for Fe and CO on Ag, Si on Si, and H on Si and CNHCH3. • Theoretical treatments of tip reactions show that carbon dimers1 can be transferred to diamond surfaces with high fidelity. • A study on tip design showed that many variations on a design turn out to be suitable for accurate carbon dimer placement. Therefore, efforts can be focused on the variations of tooltips of many kinds that are easier to synthesize. -
A Framework for Web Science
Foundations and TrendsR in Web Science Vol. 1, No 1 (2006) 1–130 c 2006 T. Berners-Lee, W. Hall, J.A. Hendler, K. O’Hara, N. Shadbolt and D.J. Weitzner DOI: 10.1561/1800000001 A Framework for Web Science Tim Berners-Lee1, Wendy Hall2, James A. Hendler3, Kieron O’Hara4, Nigel Shadbolt4 and Daniel J. Weitzner5 1 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology 2 School of Electronics and Computer Science, University of Southampton 3 Department of Computer Science, Rensselaer Polytechnic Institute 4 School of Electronics and Computer Science, University of Southampton 5 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology Abstract This text sets out a series of approaches to the analysis and synthesis of the World Wide Web, and other web-like information structures. A comprehensive set of research questions is outlined, together with a sub-disciplinary breakdown, emphasising the multi-faceted nature of the Web, and the multi-disciplinary nature of its study and develop- ment. These questions and approaches together set out an agenda for Web Science, the science of decentralised information systems. Web Science is required both as a way to understand the Web, and as a way to focus its development on key communicational and representational requirements. The text surveys central engineering issues, such as the development of the Semantic Web, Web services and P2P. Analytic approaches to discover the Web’s topology, or its graph-like structures, are examined. Finally, the Web as a technology is essentially socially embedded; therefore various issues and requirements for Web use and governance are also reviewed. -
Enantioselective Total Synthesis of (-)-Deoxoapodine
Enantioselective total synthesis of (-)-deoxoapodine The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Kang, Taek, et al., "Enantioselective total synthesis of (-)- deoxoapodine." Angewandte Chemie International Edition 56, 44 (Sept. 2017): p. 13857-60 doi 10.1002/anie.201708088 ©2017 Author(s) As Published 10.1002/anie.201708088 Publisher Wiley Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/125957 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Angew Manuscript Author Chem Int Ed Engl Manuscript Author . Author manuscript; available in PMC 2018 October 23. Published in final edited form as: Angew Chem Int Ed Engl. 2017 October 23; 56(44): 13857–13860. doi:10.1002/anie.201708088. Enantioselective Total Synthesis of (−)-Deoxoapodine Dr. Taek Kang§,a, Dr. Kolby L. White§,a, Tyler J. Mannb, Prof. Dr. Amir H. Hoveydab, and Prof. Dr. Mohammad Movassaghia aDepartment of Chemistry, Massachusetts Institute of Technology Cambridge, MA 02139 (USA) bDepartment of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA) Abstract The first enantioselective total synthesis of (−)-deoxoapodine is described. Our synthesis of this hexacyclic aspidosperma alkaloid includes an efficient molybdenum-catalyzed enantioselective ring-closing metathesis reaction for desymmetrization of an advanced intermediate that introduces the C5-quaternary stereocenter. After C21-oxygenation, the pentacyclic core was accessed via an electrophilic C19-amide activation and transannular spirocyclization. A biogenetically inspired dehydrative C6-etherification reaction proved highly effective to secure the F-ring and the fourth contiguous stereocenter of (−)-deoxoapodine with complete stereochemical control. -
Nanoscience and Nanotechnologies: Opportunities and Uncertainties
ISBN 0 85403 604 0 © The Royal Society 2004 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright, Designs and Patents Act (1998), no part of this publication may be reproduced, stored or transmitted in any form or by any means, without the prior permission in writing of the publisher, or, in the case of reprographic reproduction, in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licenses issued by the appropriate reproduction rights organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to: Science Policy Section The Royal Society 6–9 Carlton House Terrace London SW1Y 5AG email [email protected] Typeset in Frutiger by the Royal Society Proof reading and production management by the Clyvedon Press, Cardiff, UK Printed by Latimer Trend Ltd, Plymouth, UK ii | July 2004 | Nanoscience and nanotechnologies The Royal Society & The Royal Academy of Engineering Nanoscience and nanotechnologies: opportunities and uncertainties Contents page Summary vii 1 Introduction 1 1.1 Hopes and concerns about nanoscience and nanotechnologies 1 1.2 Terms of reference and conduct of the study 2 1.3 Report overview 2 1.4 Next steps 3 2 What are nanoscience and nanotechnologies? 5 3 Science and applications 7 3.1 Introduction 7 3.2 Nanomaterials 7 3.2.1 Introduction to nanomaterials 7 3.2.2 Nanoscience in this area 8 3.2.3 Applications 10 3.3 Nanometrology -
Nanotechnology and Picotechnology to Increase Tissue Growth: a Summary of in Vivo Studies
Nanotechnology and picotechnology to increase tissue growth: a summary of in vivo studies Ece Alpaslan1 and Thomas J Webster1,2 Author information ► Copyright and License information ► Go to: Abstract The aim of tissue engineering is to develop functional substitutes for damaged tissues or malfunctioning organs. Since only nanomaterials can mimic the surface properties (ie, roughness) of natural tissues and have tunable properties (such as mechanical, magnetic, electrical, optical, and other properties), they are good candidates for increasing tissue growth, minimizing inflammation, and inhibiting infection. Recently, the use of nanomaterials in various tissue engineering applications has demonstrated improved tissue growth compared to what has been achieved until today with our conventional micron structured materials. This short report paper will summarize some of the more relevant advancements nanomaterials have made in regenerative medicine, specifically improving bone and bladder tissue growth. Moreover, this short report paper will also address the continued potential risks and toxicity concerns, which need to be accurately addressed by the use of nanomaterials. Lastly, this paper will emphasize a new field, picotechnology, in which researchers are altering electron distributions around atoms to promote surface energy to achieve similar increased tissue growth, decreased inflammation, and inhibited infection without potential nanomaterial toxicity concerns. Keywords: nanomaterials, tissue engineering, toxicity Go to: Introduction Bone tissue and other organ dysfunction can be provoked by poor eating habits, stress, age-related diseases such as osteoarthritis or osteoporosis, as well as accidents.1 To date, common procedures to restore or enhance life expectancy involve medical device insertion or organ transplantation.1 However, due to the low number of donors and its high cost, organ transplantation is limited. -
Nanomedicine and Medical Nanorobotics - Robert A
BIOTECHNOLOGY– Vol .XII – Nanomedicine and Medical nanorobotics - Robert A. Freitas Jr. NANOMEDICINE AND MEDICAL NANOROBOTICS Robert A. Freitas Jr. Institute for Molecular Manufacturing, Palo Alto, California, USA Keywords: Assembly, Nanomaterials, Nanomedicine, Nanorobot, Nanorobotics, Nanotechnology Contents 1. Nanotechnology and Nanomedicine 2. Medical Nanomaterials and Nanodevices 2.1. Nanopores 2.2. Artificial Binding Sites and Molecular Imprinting 2.3. Quantum Dots and Nanocrystals 2.4. Fullerenes and Nanotubes 2.5. Nanoshells and Magnetic Nanoprobes 2.6. Targeted Nanoparticles and Smart Drugs 2.7. Dendrimers and Dendrimer-Based Devices 2.8. Radio-Controlled Biomolecules 3. Microscale Biological Robots 4. Medical Nanorobotics 4.1. Early Thinking in Medical Nanorobotics 4.2. Nanorobot Parts and Components 4.3. Self-Assembly and Directed Parts Assembly 4.4. Positional Assembly and Molecular Manufacturing 4.5. Medical Nanorobot Designs and Scaling Studies Acknowledgments Bibliography Biographical Sketch Summary Nanomedicine is the process of diagnosing, treating, and preventing disease and traumatic injury, of relieving pain, and of preserving and improving human health, using molecular tools and molecular knowledge of the human body. UNESCO – EOLSS In the relatively near term, nanomedicine can address many important medical problems by using nanoscale-structured materials and simple nanodevices that can be manufactured SAMPLEtoday, including the interaction CHAPTERS of nanostructured materials with biological systems. In the mid-term, biotechnology will make possible even more remarkable advances in molecular medicine and biobotics, including microbiological biorobots or engineered organisms. In the longer term, perhaps 10-20 years from today, the earliest molecular machine systems and nanorobots may join the medical armamentarium, finally giving physicians the most potent tools imaginable to conquer human disease, ill-health, and aging. -
Breakthrough Technologies
21ST INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED17 21-25 AUGUST 2017, THE UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, CANADA BREAKTHROUGH TECHNOLOGIES: PRINCIPLE FEASIBILITY DEBATES Hein, Andreas Makoto (1); Jankovic, Marija (1); Condat, Hélène (2) 1: CentraleSupélec, Université Paris Saclay, France; 2: Initiative for Interstellar Studies, United Kingdom Abstract Designing new technologies involves creating something that did not exist before. In particular, designing technologies with a low degree of maturity usually involves an assessment of its feasibility or infeasibility. Assessing the feasibility of a technology is of vital importance in many domains such as technology management and policy. Despite its importance, few publications actually deal with the fundamentals of technological feasibility such as feasibility proofs or proposing different feasibility categories. This paper addresses this gap by reviewing the existing literature on the feasibility of low- maturity technologies, proposes a framework for assessing feasibility issues, and reconstructs past and ongoing feasibility debates of four exemplary technologies. For the four technologies analysed, we conclude that sufficient expected performance is a key feasibility criteria to all cases, whereas physical effects and working principles were issues for more speculative technologies. For future work, we propose the further development of feasibility categories for different technologies of different degrees of maturity. Keywords: Systems Engineering (SE), Technology, Conceptual design, Early design phases, Uncertainty Contact: Andreas Makoto Hein CentraleSupélec, Université Paris-Saclay Laboratoire Génie Industriel France [email protected] Please cite this paper as: Surnames, Initials: Title of paper. In: Proceedings of the 21st International Conference on Engineering Design (ICED17), Vol. 2: Design Processes | Design Organisation and Management, Vancouver, Canada, 21.-25.08.2017. -
Biomimetic Total Synthesis of Natural Products
Biomimetic Total Synthesis of Natural Products Thesis submitted for the degree of Doctor of Philosophy Hiu Chun Lam Bsc (Hons.) Chemistry Department of Chemistry University of Adelaide Aug, 2017 To my family II Declaration I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time. I acknowledge the support I have received for my research through the provision of an Australian Government Research Training Program Scholarship Hiu Chun Lam Date III Acknowledgements First, I would like to thank my supervisor Dr. -
Mechanosynthesis of Amides in the Total Absence of Organic Solvent from Reaction to Product Recovery
Mechanosynthesis of amides in the total absence of organic solvent from reaction to product recovery Thomas-Xavier Metro, Julien Bonnamour, Thomas Reidon, Jordi Sarpoulet, Jean Martinez, Frédéric Lamaty To cite this version: Thomas-Xavier Metro, Julien Bonnamour, Thomas Reidon, Jordi Sarpoulet, Jean Martinez, et al.. Mechanosynthesis of amides in the total absence of organic solvent from reaction to product re- covery. Chemical Communications, Royal Society of Chemistry, 2012, 48 (96), pp.11781-11783. 10.1039/c2cc36352f. hal-00784652 HAL Id: hal-00784652 https://hal.archives-ouvertes.fr/hal-00784652 Submitted on 12 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ChemComm Dynamic Article Links Cite this: Chem. Commun., 2012, 48, 11781–11783 www.rsc.org/chemcomm COMMUNICATION Mechanosynthesis of amides in the total absence of organic solvent from reaction to product recoverywz Thomas-Xavier Me´tro,* Julien Bonnamour, Thomas Reidon, Jordi Sarpoulet, Jean Martinez and Fre´de´ric Lamaty* Received 31st August 2012, Accepted 8th October 2012 DOI: 10.1039/c2cc36352f The synthesis of various amides has been realised avoiding the use added-value molecules production. Pursuing our interest in of any organic solvent from activation of carboxylic acids with CDI the development of solvent-free amide bond formation,6 we to isolation of the amides. -
Posttranslational Chemical Installation of Azoles Into Translated Peptides ✉ ✉ Haruka Tsutsumi1,2, Tomohiro Kuroda1,2, Hiroyuki Kimura 1, Yuki Goto 1 & Hiroaki Suga 1
ARTICLE https://doi.org/10.1038/s41467-021-20992-0 OPEN Posttranslational chemical installation of azoles into translated peptides ✉ ✉ Haruka Tsutsumi1,2, Tomohiro Kuroda1,2, Hiroyuki Kimura 1, Yuki Goto 1 & Hiroaki Suga 1 Azoles are five-membered heterocycles often found in the backbones of peptidic natural products and synthetic peptidomimetics. Here, we report a method of ribosomal synthesis of azole-containing peptides involving specific ribosomal incorporation of a bromovinylglycine 1234567890():,; derivative into the nascent peptide chain and its chemoselective conversion to a unique azole structure. The chemoselective conversion was achieved by posttranslational dehydro- bromination of the bromovinyl group and isomerization in aqueous media under fairly mild conditions. This method enables us to install exotic azole groups, oxazole and thiazole, at designated positions in the peptide chain with both linear and macrocyclic scaffolds and thereby expand the repertoire of building blocks in the mRNA-templated synthesis of designer peptides. 1 Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan. 2These authors contributed equally: Haruka Tsutsumi, ✉ Tomohiro Kuroda. email: [email protected]; [email protected] NATURE COMMUNICATIONS | (2021) 12:696 | https://doi.org/10.1038/s41467-021-20992-0 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-20992-0 zoles, such as oxazoles and thiazoles, are five-membered heterocycles often found in the backbone of peptidic UCAG DNA template U A 1,2 Phe Tyr Cys C natural products . Such azole-containing natural pep- U Ser O Leu A tides exhibit a variety of bioactivities, including antitumor, anti- Trp G – His U H2N 3 9 C Leu Pro Arg C OH fungal, antibiotic, and antiviral activities .