Geology and Ore Deposits of the ' Creede District, Colorado

Total Page:16

File Type:pdf, Size:1020Kb

Geology and Ore Deposits of the ' Creede District, Colorado UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Bulletin 718 GEOLOGY AND ORE DEPOSITS OF THE ' CREEDE DISTRICT, COLORADO BY WILLIAM H. EMMONS AND ESPER S. LARSEN WASHINGTON GOVERNMENT PRINTING OFFICE 1923 ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OP DOCUMENTS GOVnRNMENT PRINTING OFFICE WASHINGTON, D. C. AT 40 CENTS PEE COPY PURCHASER AGREES NOT TO RESELL OB DISTRIBUTE THI3 COPT FOB PROFIT. PUB. BBS. 67, APPROVED MAY 11, 1922 CONTENTS. Page. Chapter I. Introduction.................................................. 1 Location and topography............................................. 1 Field work and acknowledgments...................................... 2 Hifltorj.............................................................. 3 Mining and treatment of ores.......................................... 6 General conditions................................................ 6 Humphreys mill.................................................. 6 Amethyst mill................................................... 7 Solomon mill.................................................... 7 Ridge mill....................................................... 8 Production.......................................................... 8 Bibliography......................................................... 11 Chapter II. Outline of the geology......................................... 12 Age of the rocks. ..................................................... 12 Potosi volcanic series................................................. 13 Alboroto group.................................................. 13 Piedra group..................................................... 13 Creede formation...................................................... 14 Fisher quartz latite.................................................. 15 Intrusive rocks........................................................ 15 Quaternary deposits................................................... 15 Geologic structure..................................................... 16 Chapter III. Rocks of the Alboroto group................................. 17 General features..................................................... 17 Outlet Tunnel quartz latite........................................... 18 General character and occurrence.................................. 18 Petrography...................................................... 18 Weathering and outcrops......................... '. ................ 19 Willow Creek rhyolite................................................ 19 General character and distribution................................. 19 Petrography...................................................... 20 Chemical composition;............................................ 23 Structure........................................................ 24 Weathering and alteration........................................ 24 Topography and scenery......................................... 25 Campbell Mountain rhyolite........................................... 25 General character and distribution................................. 25 Contacts........................................................ 26 Petrography...................................................... 27 Weathering and outcrops.......................................... 28 Distinction from other rhyolites................................... 29 Phoenix Park quartz latite........................................... 30 General character and distribution................................. 30 Petrography...................................................... 30 Outcrops and weathering......................................... 31 in IV CONTENTS. Chapter III. Rocks of the Alboroto group Continued. Page. Equity quartz latite................................................... 32 General character and occurrence.................................. 32 Contacts.......................................................... 32 Petrography...................................................... 32 Weathering and outcrops.......................................... 34 Chapter IV. Rocks of the Piedra group.................................... 35 General features..................................................... 35 Hornblende-quartz latite...................................... -^.... 36 General character and distribution................................. 36 Thickness....................................................... 36 Petrography...................................................... 37 Weathering and outcrops.......................................... 38 Windy Gulch rhyolite breccia......................................... 38 General character and distribution................................. 38 Petrography...................................................... 39 Weathering and outcrops.......................................... 40 Comparison with Campbell Mountain rhyolite...................... 40 Mammoth Mountain rhyolite......................................... .40 General character and distribution................................. 40 Character of contacts and thickness............................... 40 Petrography.. ...................................................... 41 Weathering and outcrops.......................................... 42 Comparison with Campbell Mountain rhyolite...................... 43 Rhyolite tuff......................................................... 44 General character and distribution................................. 44 Petrography...................................................... 44 Tridymite latite....................................................... 45 General character and occurrence.................................. 45 Thickness....................................................... 46 Petrography...................................................... 46 Tridymite, quartz, and cristobalite in volcanic rocks................ 47 Chemical composition............................................. 49 Flow near mouth of Deerhorn Creek................................ 49 Outcrops, weathering, and alteration............................... 50 Andesite............................................................. 51 General character and distribution................................... 51 Petrography...................................................... 51 Alteration and topography......................................... 53 Quartz latite tuff...................................................... 54 General character and occurrence.................................... 54 Thickness......................................................... 55 Petrography...................................................... 55 Massive rock in the tuff............................................ 55 Weathering and outcrops............................................ 57 Rat Creek quartz latite................................................ 57 General character and distribution................................... 57 Thickness......................................................... 58 Petrography...................................................... 58 Weathering, outcrops, and topography.............................. 59 Nelson Mountain quartz latite.......................................... 59 General character and distribution................................... 59 Thickness......................................................... 59 Petrography...................................................... 59 Weathering and outcrops............................................ 60 CONTENTS. Chapter V. Creede formation............................................... 61 Name, general character, and occurrence................................. 61 Structure and thickness. ............................................... 62 Subdivisions.......................................................... 62 Lower member......................................................... 63 General character................................................. 63 Petrography...................................................... 63 Interbedded travertine................................................. 64 Character and distribution......................................... 64 Origin............................................................ 64 Upper member........................................................ 65 General character and distribution................................... 65 Petrography...................................................... 66 Massive rocks..................................................... 66 Weathering and topography............................................ 68 Origin................................................................ 68 Position in the section................................................. 69 Age................................................................... 69 Chapter VI. Fisher quartz latite............................................ 71 General relations....................................................... 71 General character and distribution....................................... 72 Thickness............................................................. 72 Petrography.......^............................i..................... 72 Weathering and outcrops................................................ 73 Chapter VII. Intrusive rocks............................................... 74 Types................................................................ 74 Rhyolite porphyry....................................................
Recommended publications
  • The Dependence of the Sio Bond Length on Structural Parameters in Coesite, the Silica Polymorphs, and the Clathrasils
    American Mineralogist, Volume 75, pages 748-754, 1990 The dependence of the SiO bond length on structural parameters in coesite, the silica polymorphs, and the clathrasils M. B. BOISEN, JR. Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, U.S.A. G. V. GIBBS, R. T. DOWNS Department of Geological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, U.S.A. PHILIPPE D' ARCO Laboratoire de Geologie, Ecole Normale Superieure, 75230 Paris Cedex OS, France ABSTRACT Stepwise multiple regression analyses of the apparent R(SiO) bond lengths were com- pleted for coesite and for the silica polymorphs together with the clathrasils as a function of the variables};(O), P (pressure), f,(Si), B(O), and B(Si). The analysis of 94 bond-length data recorded for coesite at a variety of pressures and temperatures indicates that all five of these variables make a significant contribution to the regression sum of squares with an R2 value of 0.84. A similar analysis of 245 R(SiO) data recorded for silica polymorphs and clathrasils indicate that only three of the variables (B(O), };(O), and P) make a signif- icant contribution to the regression with an R2 value of 0.90. The distribution of B(O) shows a wide range of values from 0.25 to 10.0 A2 with nearly 80% of the observations clustered between 0.25 and 3.0 A2 and the remaining values spread uniformly between 4.5 and 10.0 A2. A regression analysis carried out for these two populations separately indicates, for the data set with B(O) values less than three, that };(O) B(O), P, and };(Si) are all significant with an R2 value of 0.62.
    [Show full text]
  • Crystalline Silica, Cristobalite (CAS No
    Crystalline Silica, Quartz (CAS No. 14808-60-7) Crystalline Silica, Cristobalite (CAS No. 14464-46-1) Crystalline Silica, Tridymite (CAS No. 15468-32-3) Diatomaceous earth (CAS No. 61790-53-2) This dossier on crystalline silica, quartz, cristobalite and tridymite and diatomaceous earth presents the most critical studies pertinent to the risk assessment of these substances in their use in drilling muds and cement additives. This dossier does not represent an exhaustive or critical review of all available data. The majority of information presented in this dossier was obtained from the ECHA database that provides information on chemicals that have been registered under the EU REACH (ECHA). Where possible, study quality was evaluated using the Klimisch scoring system (Klimisch et al., 1997). For the purpose of this dossier, crystalline silica, quartz (CAS No. 14808-60-7) has been reviewed as representative of crystalline silica cristobalite and tridymite. Crystalline silica, quartz is also considered representative of diatomaceous earth, as they both consist mainly of silicon dioxide. Screening Assessment Conclusion – Crystalline silica, quartz, cristobalite and tridymite and diatomaceous earth are classified as tier 1 chemicals and require a hazard assessment only. 1 BACKGROUND Crystalline silica is a common mineral found in the earth's crust. Materials like sand, stone, concrete and mortar contain crystalline silica. It is also used to make products such as glass, pottery, ceramics, bricks and artificial stone. Silica, in the form of sand, is used as the main ingredient in sand casting for the manufacture of metallic components in engineering and other applications. The high melting point of silica enables it to be used in such applications.
    [Show full text]
  • Minnesota's Mineral Resources
    CHAPTER • 9 Minnesota's Mineral Resources IN MINNESOTA the production of iron ore is far more valuable economically than the total of all other mineral products, but im­ portant industries are based on Minnesota's other geological forma­ tions as well. Architectural, monumental, and structural stone are produced from granite, limestone, dolomite, and other Minnesota rocks. Gravel and sand are excavated and processed, and clay is used for many ceramic products. :Manganese in important amounts occurs in the iron ores of the Cuyuna district. Finally, although they are often not thought of as mineral products, two of our most im­ portant mineral resources are water and soil. The iron ores and mining operations of the Mesabi, Vermilion, and Cuyuna iron-bearing districts and of the southeastern lYlinnesota counties will be discussed in detail in later chapters, but a few sta­ tistics on Minnesota's iron ore industry may remind us how impor­ tant this geological heritage is. The following is an estimate of Min­ nesota's iron ore reserves, made on lYlay 1, 1961: Gross Tons Mesabi Range 500,799,179 Vermilion Range 9,755,974 Cuyuna Range 36,530,000 Fillmore County 'il,860,337 Total iron ore 549,945,490 172 MI NESOTA'S MINERAL RESOURCES The total production of iron ore in Minne ota to January 1, 1962, was 2,529,737,553 tons. Total taxes paid on iron ore to January 1, 1961 , were approximately $1,257,448,400, a very important source of funds for the state government. Slightly over 60 per cent of the total iron ore produced in the United States has come from l\1inne- ota.
    [Show full text]
  • Symposium on Agate and Cryptocrystalline Quartz
    Symposium on Agate and Cryptocrystalline Quartz September 10 – 13, 2005 Golden, Colorado Sponsored by Friends of Mineralogy, Colorado Chapter; Colorado School of Mines Geology Museum; and U.S. Geological Survey 2 Cover Photos {top left} Fortification agate, Hinsdale County, Colorado, collection of the Geology Museum, Colorado School of Mines. Coloration of alternating concentric bands is due to infiltration of Fe with groundwater into the porous chalcedony layers, leaving the impermeable chalcedony bands uncolored (white): ground water was introduced via the symmetric fractures, evidenced by darker brown hues along the orthogonal lines. Specimen about 4 inches across; photo Dan Kile. {lower left} Photomicrograph showing, in crossed-polarized light, a rhyolite thunder egg shell (lower left) a fibrous phase of silica, opal-CTLS (appearing as a layer of tan fibers bordering the rhyolite cavity wall), and spherulitic and radiating fibrous forms of chalcedony. Field of view approximately 4.8 mm high; photo Dan Kile. {center right} Photomicrograph of the same field of view, but with a 1 λ (first-order red) waveplate inserted to illustrate the length-fast nature of the chalcedony (yellow-orange) and the length-slow character of the opal CTLS (blue). Field of view about 4.8 mm high; photo Dan Kile. Copyright of articles and photographs is retained by authors and Friends of Mineralogy, Colorado Chapter; reproduction by electronic or other means without permission is prohibited 3 Symposium on Agate and Cryptocrystalline Quartz Program and Abstracts September 10 – 13, 2005 Editors Daniel Kile Thomas Michalski Peter Modreski Held at Green Center, Colorado School of Mines Golden, Colorado Sponsored by Friends of Mineralogy, Colorado Chapter Colorado School of Mines Geology Museum U.S.
    [Show full text]
  • Journal of the Russell Society, Vol 4 No 2
    JOURNAL OF THE RUSSELL SOCIETY The journal of British Isles topographical mineralogy EDITOR: George Ryba.:k. 42 Bell Road. Sitlingbourn.:. Kent ME 10 4EB. L.K. JOURNAL MANAGER: Rex Cook. '13 Halifax Road . Nelson, Lancashire BB9 OEQ , U.K. EDITORrAL BOARD: F.B. Atkins. Oxford, U. K. R.J. King, Tewkesbury. U.K. R.E. Bevins. Cardiff, U. K. A. Livingstone, Edinburgh, U.K. R.S.W. Brai thwaite. Manchester. U.K. I.R. Plimer, Parkvill.:. Australia T.F. Bridges. Ovington. U.K. R.E. Starkey, Brom,grove, U.K S.c. Chamberlain. Syracuse. U. S.A. R.F. Symes. London, U.K. N.J. Forley. Keyworth. U.K. P.A. Williams. Kingswood. Australia R.A. Howie. Matlock. U.K. B. Young. Newcastle, U.K. Aims and Scope: The lournal publishes articles and reviews by both amateur and profe,sional mineralogists dealing with all a,pecI, of mineralogy. Contributions concerning the topographical mineralogy of the British Isles arc particularly welcome. Not~s for contributors can be found at the back of the Journal. Subscription rates: The Journal is free to members of the Russell Society. Subsc ription rates for two issues tiS. Enquiries should be made to the Journal Manager at the above address. Back copies of the Journal may also be ordered through the Journal Ma nager. Advertising: Details of advertising rates may be obtained from the Journal Manager. Published by The Russell Society. Registered charity No. 803308. Copyright The Russell Society 1993 . ISSN 0263 7839 FRONT COVER: Strontianite, Strontian mines, Highland Region, Scotland. 100 mm x 55 mm.
    [Show full text]
  • (Quartz) Silica, Sio2, Is a White Or Colorless Crystalline Compound
    Silica (quartz) Silica, SiO2, is a white or colorless crystalline compound found mainly as quartz, sand, flint, and many other minerals. Silica is an important ingredient to manufacture a wide variety of materials. Quartz; Quartz is the most abundant silica mineral. Pure Quartz is colorless and transparent. It occurs in most igneous and practically all metamorphic and sedimentary rocks. It is used as a component of numerous industrial materials. Silicon (Si) has the atomic number 14 and is closely related to carbon. It is a relatively inert metalloid. Silicon is often used for microchips, glass, cement, and pottery. Silica is the most abundant mineral found in the crust of the earth. One of the most common uses of silica quarts is the manufacturer of glass. Silica is the fourteenth element on the periodic table. It can sometimes be found as the substance, quartz which is usually used in jewelry, test tubes, and when placed under pressure, generates an electrical charge. Quartz is the second most abundant mineral in the Earth's crust. It is a clear, glossy mineral with a hardness of 7 on the MOHS scale. Silica, Sa,is a component of glass and concrete. A form of Silica commonly known as quartz, Silica tetrahedra, is the second most common mineral in the earth's crust, it comes in many different forms. Silica is a compound of silicon and oxygen. Earth's outer crust contains 59% of this material. It has three major rock forms, which are quartz, tridymite, and cristobalite. Silica, commonly known in the form of quartz, is the dioxide form of silicon, SiO2.
    [Show full text]
  • Winter 2003 Gems & Gemology
    Winter 2003 VOLUME 39, NO. 4 EDITORIAL _____________ 267 Tomorrow’s Challenge: CVD Synthetic Diamonds William E. Boyajian FEATURE ARTICLES _____________ 268 Gem-Quality Synthetic Diamonds Grown by a Chemical Vapor Deposition (CVD) Method Wuyi Wang, Thomas Moses, Robert C. Linares, James E. Shigley, Matthew Hall, and James E. Butler pg. 269 Description and identifying characteristics of Apollo Diamond Inc.’s facetable, single-crystal type IIa CVD-grown synthetic diamonds. 284 Pezzottaite from Ambatovita, Madagascar: A New Gem Mineral Brendan M. Laurs, William B. (Skip) Simmons, George R. Rossman, Elizabeth P. Quinn, Shane F. McClure, Adolf Peretti, Thomas Armbruster, Frank C. Hawthorne, Alexander U. Falster, Detlef Günther, Mark A. Cooper, and Bernard Grobéty A look at the history, geology, composition, and properties of this new cesium-rich member of the beryl group. 302 Red Beryl from Utah: A Review and Update James E. Shigley, Timothy J. Thompson, and Jeffrey D. Keith A report on the geology, history, and current status of the world’s only known occurrence of gem-quality red beryl. pg. 299 REGULAR FEATURES _____________________ 314 Lab Notes • Chrysocolla “owl” agate • Red coral • Coated diamonds • Natural emerald with nail-head spicules • Emerald with strong dichroism • High-R.I. glass imitation of tanzanite • Large clam “pearl” • Blue sapphires with unusual color zoning • Spinel with filled cavities 322 Gem News International • Comparison of three historic blue diamonds • Natural yellow diamond with nickel-related optical centers
    [Show full text]
  • Silicic Volcanism on Mars Evidenced by Tridymite in High-Sio2 Sedimentary Rock at Gale Crater Richard V
    Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater Richard V. Morrisa,1, David T. Vanimanb, David F. Blakec, Ralf Gellertd, Steve J. Chiperae, Elizabeth B. Rampef, Douglas W. Minga, Shaunna M. Morrisong, Robert T. Downsg, Allan H. Treimanh, Albert S. Yeni, John P. Grotzingerj,1, Cherie N. Achillesg, Thomas F. Bristowc, Joy A. Crispi, David J. Des Maraisc, Jack D. Farmerk, Kim V. Fendrichg, Jens Frydenvangl,m, Trevor G. Graffn, John-Michael Morookiani, Edward M. Stolperj, and Susanne P. Schwenzerh,o aNASA Johnson Space Center, Houston, TX 77058; bPlanetary Science Institute, Tucson, AZ 85719; cNASA Ames Research Center, Moffitt Field, CA 94035; dDepartment of Physics, University of Guelph, Guelph, ON, Canada N1G 2W1; eChesapeake Energy, Oklahoma City, OK 73118; fAerodyne Industries, Houston, TX 77058; gDepartment of Geosciences, University of Arizona, Tucson, AZ 85721; hLunar and Planetary Institute, Houston, TX 77058; iJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109; jDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125; kSchool of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287; lLos Alamos National Laboratory, Los Alamos, NM 87545; mNiels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark; nJacobs, Houston, TX 77058; and oDepartment of Environment, Earth and Ecosystems, The Open University, Milton Keynes MK7 6AA, United Kingdom Contributed by John P. Grotzinger, May 5, 2016 (sent for review March 18, 2016); reviewed by Jon Blundy, Robert M. Hazen, and Harry Y. McSween) Tridymite, a low-pressure, high-temperature (>870 °C) SiO2 poly- (1), where three drill samples were analyzed by CheMin [Confi- morph, was detected in a drill sample of laminated mudstone (Buck- dence Hills, Mojave2, and Telegraph Peak (2)].
    [Show full text]
  • Gempet: E E the Geoscience, Minerals and Petroleum E Thesaurus E
    e e e e e e GeMPeT: e e The Geoscience, Minerals and Petroleum e Thesaurus e -e e e e e e - e Edited by: Jane Edinger and Tracy Barker e Charted Information Services e e e e e e GeMPeT : the geoscience, minerals and petroleum thesaurus. e Includes index. ISBN 0 9750776 0 0 1. Geology- Terminology. 2. Earth sciences- Terminology. 3. Subject headings- Geology. 4. Subject headings- Earth sciences. I. Edinger, Jane. II. Barker, Tracy Anne. e 025.49551 e e Cover illustration: North East Shaded Reduced to Pole Aeromagnetic Image of the Red October Area, Lake carey, Western Australia. e Image supplied courtesy of Sons of Gwalia. Copyright2003 e Jane Edinger and Tracy Barker Charted Information Services e 166 Whatley Crescent Maylands WA 6051 Australia e Telephone: +61 8 9272 1267 e Facsimile: +61 8 9471 8567 E-mail: [email protected] WWW: www.chartedinfo.com.au/thesaurus.html e e e e e e e e e Acknowledgements e e We would like to acknowledge our colleagues e who worked on the Australian Geoscience, Minerals and Petroleum Thesaurus. Without your previous hard work there would be no GeM PeT. e We would also like to thank our families e for their support of our vision during the creation of GeM PeT. e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e Contents e e e Introduction vii e References xi e e SECTION 1: e Alphabetical Listing 1 e SECTION 2: e Hierarchical Listing 239 e e SECTION 3: e KWIC (Permuted) Listing 291 e e e e v e e e e e e e e e e e e e e e e e e e e e e e e e e e e Introduction e GeMPet had its genesis in the now defunct Australian Mineral Foundation's Australian e Geoscience, Minerals and Petroleum Thesaurus.
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • Silica Minerals (More Or Less) Dis- Solved Silica the Many Forms Of
    Railsback's Some Fundamentals of Mineralogy and Geochemistry The many forms of silica (SiO2) I: minerals and solutes Melt Silica minerals (more or less) ~80 kb Stishovite High-temperature silica found in Cristobalite meteorite impacts Lechatelierite highest-temperature form of SiO2, Coesite G = 4.35 with ! and " polymorphs, found in fused silica (silica glass) found in fulgurites found in meteorite siliceous volcanic rocks Siefertite (lightning-strike features) ~20 kb impacts and found in G = 2.32 (!) 2.20 (") and meteorite impacts. eclogite Martian meteorites G = 3.01 Six-fold Gcoordination = 4.3 Cooling Shocked quartz: Four-fold coordination ~1470°C Tridymite quartz with planar deformation features Impact a high-temperature form of resulting from SiO2 with multiple intense pressure polymorphs, found in Moganite siliceous volcanic rocks Quartz low-T low-P form of low-T low-P form of SiO G = 2.22-2.26 2 SiO found with quartz found in igneous, sedi- 2 High-pressure silica in microcrystalline silica mentary, and metamorphic ~870°C deposits such as rocks and other Earth- chalcedony and chert. Dis- surface materials. Of its solved two polymorphs, ! and ", ! Chalcedony: silica Varieties of quartz is the one stable at most fibrous microcrystalline Lussatite: crustal and all surficial quartz with lesser length-slow fibrous distinguished by color: moganite. Orthosilicic acid Rock crystal (clear) conditions. opal-CT Milky quartz (white) G = 2.65 (!) H4SiO4 or Si(OH)4 Rose quartz (pink) 2.53 (") Four-fold coordination Citrine (yellow) Monomer is most Amethyst (purple) Opal Three-fold coordination abundant in dilute Dehydration & Cairngorm (brown) SiO · nH O solutions; dimer is recrystallization 2 2 increasingly abundant Smoky quartz (black) Opal CT G = 2.0-2.3 in concentrated opalline silica yielding solutions.
    [Show full text]
  • Volume 35 / No. 1 / 2016
    GemmologyThe Journal of Volume 35 / No. 1 / 2016 The Gemmological Association of Great Britain Save the date Gem-A Conference Saturday 5 and Sunday 6 November 2016 Visit www.gem-a.com for the latest information Join us. The Gemmological Association of Great Britain, 21 Ely Place, London, EC1N 6TD, UK. T: +44 (0)20 7404 3334 F: +44 (0)20 7404 8843. Registered charity no. 1109555. A company limited by guarantee and registered in England No. 1945780. Registered Office: 3rd Floor, 1-4 Argyll Street, London W1F 7LD. Conference_03-2016_March-April_Save The Date_A4.indd 1 12/04/2016 10:44:17 Contents GemmologyThe Journal of Volume 35 / No. 1 / 2016 COLUMNS p. 22 1 What’s New DiamondDect for diamond identification|Triple D photo kit|Upgraded Diamond- View|Variofoc LED lighting system|AGTA Tucson seminars| Responsible sourcing of coloured stones report|World Gold Council report|GSJ 2015 Annual Meeting abstracts|ICGL Newsletter|Large CVD synthetic diamond seen p. 64 by HRD Antwerp|MAGI diamond type report|SSEF Facette|Updated Journal cumulative index|Wyoming jade report|GemeSquare app and GemePrice 5.0|Historical reading lists|Hyperion inclusion search engine|Gems from the French Crown Jewels exhibit ARTICLES 6 Gem Notes Apatite from Iran|Purple apa- Feature Articles tite from Namibia|Cordierite from Madagascar|Emerald 28 Characterization of Oriented Inclusions in Cat’s-eye, and pyrite mixture from Co- Star and Other Chrysoberyls lombia|Garnet from Mahenge, By Karl Schmetzer, Heinz-Jürgen Bernhardt and H. Albert Gilg Tanzania|Grandidierite from
    [Show full text]