In Vitro Metabolic Engineering for the Production of Α-Ketoglutarate

Total Page:16

File Type:pdf, Size:1020Kb

In Vitro Metabolic Engineering for the Production of Α-Ketoglutarate Author’s Accepted Manuscript In vitro metabolic engineering for the production of α-ketoglutarate Barbara Beer, André Pick, Volker Sieber www.elsevier.com/locate/ymben PII: S1096-7176(16)30293-2 DOI: http://dx.doi.org/10.1016/j.ymben.2017.02.011 Reference: YMBEN1225 To appear in: Metabolic Engineering Received date: 30 December 2016 Revised date: 16 February 2017 Accepted date: 21 February 2017 Cite this article as: Barbara Beer, André Pick and Volker Sieber, In vitro metabolic engineering for the production of α-ketoglutarate, Metabolic Engineering, http://dx.doi.org/10.1016/j.ymben.2017.02.011 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. In vitro metabolic engineering for the production of α-ketoglutarate Barbara Beera, André Picka, Volker Siebera,b* aChair of Chemistry of Biogenic Resources, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany bCatalysis Research Center, Technical University of Munich, Ernst-Otto-Fischer-Str. 1, 85748 Garching, Germany *Corresponding author. Prof. Dr. Volker Sieber, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany, [email protected] Abstract α-Ketoglutarate (aKG) represents a central intermediate of cell metabolism. It is used for medical treatments and as a chemical building block. Enzymatic cascade reactions have the potential to sustainably synthesize this natural product. Here we report a systems biocatalysis approach for an in vitro reaction set- up to produce aKG from glucuronate using the oxidative pathway of uronic acids. Because of two dehydrations, a decarboxylation, and reaction conditions favoring oxidation, the pathway is driven thermodynamically towards complete product formation. The five enzymes (including one for cofactor recycling) were first investigated individually to define optimal reaction conditions for the cascade reaction. Then, the kinetic parameters were determined under these conditions and the inhibitory effects of substrate, intermediates, and product were evaluated. As cofactor supply is critical for the cascade reaction, various set-ups were tested: increasing concentrations of the recycling enzyme, different initial NAD+ concentrations, as well as the use of a bubble reactor for faster oxygen diffusion. Finally, we were 1 able to convert 10 g/L glucuronate with 92% yield of aKG within 5 h. The maximum productivity of 2.8 g L−1 h−1 is the second highest reported in the biotechnological synthesis of aKG. Abbreviations: AbC, ammonium bicarbonate; aKG, α-ketoglutarate; GlucD, glucarate dehydratase; Kdg, 5- keto-4-deoxyglucarate; KdgD, Kdg dehydratase; Kgsa, α-ketoglutaric semialdehyde; KgsalDH, Kgsa dehydrogenase; KP, potassium phosphate; NOX, NADH oxidase; UDH, uronate dehydrogenase Keywords: In vitro reaction, enzyme cascade reaction, α-ketoglutarate, bubble reactor, systems biocatalysis 1. Introduction α-Ketoglutaric acid (aKG) is an important intermediate of the tricarboxylic acid cycle and amino acid metabolism. Additionally, aKG plays a central role in nitrogen assimilation and storage. Besides its importance in cell metabolism, it is of particular industrial interest due to its broad range of applications, namely, as a dietary supplement, component of infusion solutions or wound healing compounds, and as a building block for the chemical synthesis of heterocycles (Chernyavskaya et al., 2000; Huang et al., 2006; Stottmeister et al., 2005; Verseck et al., 2009). D-glutamic acid, a pharmaceutical for bowel disorder, can be produced from aKG using D-aminotransferases (Taylor et al., 1998). In addition, it is used together with 5-hydroxymethylfurfural for the production of an agent that protects humans and animals from oxidative stress by increasing the antioxidant capacity (Moser et al., 2007). A potential application in biomedicine was described by Barrett and Yousaf (2008). By thermal polycondensation of aKG and one of the triols, glycerol, 1,2,4-butanetriol, or 1,2,6-hexanetriol, elastomers [poly(triol-α-ketoglutarate)] with a wide range of mechanical and chemical properties were provided, which could potentially be used for tissue engineering or drug delivery. Currently, aKG is chemically synthesized from succinic acid and oxalic acid diethyl esters with cyanohydrines with a yield of 75% or by hydrolysis of acyl cyanides (Stottmeister et al., 2005). These multi-step synthetic processes have numerous disadvantages, such as the use of hazardous chemicals 2 (e.g., cyanides), generation of toxic waste, presence and disposal of a catalyst containing copper, or low product selectivity due to the formation of various side products such as glycine and other organic acids (Cooper et al., 1983; Evans and Wiselogle, 1945; Stottmeister et al., 2005; Verseck et al., 2009). Biocatalysis has emerged as an alternative to chemical synthesis due to reduced environmental pollution and the availability of different starting materials. So far, the focus for aKG production has been on fermentation-based techniques. In particular, the yeast Yarrowia lipolytica has been studied and metabolically engineered for the production of aKG since the 1960s (Otto et al., 2011; Tsugawa et al., 1969a; Tsugawa et al., 1969b; Tsugawa and Okumura, 1969). Although great progress has been made in recent decades, cultivation conditions to achieve aKG overproduction have to be adjusted very carefully with respect to thiamine and nitrogen concentration, pH, and aeration (Guo et al., 2014; Otto et al., 2011; Yovkova et al., 2014). Nonetheless, by-products, especially pyruvate and other organic acids, hamper the industrial production of aKG using a whole-cell catalyst (Guo et al., 2014; Holz et al., 2011; Otto et al., 2012). These disadvantages of cell-based synthesis, namely, a large number of metabolic pathways with many options to adjust and alter without knowledge of the consequences for the cell’s energetics, metabolic bypasses, or improvement of product formation (Petzold et al., 2015; Zadran and Levine, 2013), are not new. Therefore, many researchers have focused on in vitro metabolic pathways, also called “systems biocatalysis” (Fessner, 2015; Guterl et al., 2012; Krutsakorn et al., 2013; Myung et al., 2014; Tessaro et al., 2015; Zhu and Zhang, 2016) Here, the reaction route can be set up according to natural metabolic pathways, but it can also be completely artificial. The simpler the pathway, the more easily it can be adjusted and improved. Therefore, the number of enzymes, mandatory cofactors for enzyme activity, and cofactor balance as well as thermodynamic equilibrium of the reaction have to be considered, when developing an in vitro metabolic pathway. During route scouting, the substrate also plays a critical role. It should be readily available, cheaper than the product, and, with the goal of making industrial processes more sustainable, derived from a renewable resource. Among the vast number of natural metabolic pathways, the oxidative pathway of C6 uronic acids holds potential for α-ketoglutarate synthesis in an in vitro-system. The number of enzymes involved is low (four enzymes), only one cofactor is needed (NAD+) and the substrate could be obtained from industrial wastes of renewable resources. The pathway has been identified in various Pseudomonas species and Agrobacterium tumefaciens (Aghaie et al., 2008; Andberg et al., 2012) and is similar to an alternative 3 utilization of C5-carbohydrate as identified for xylose, arabinose, and lyxonate (Stephens et al., 2007; Watanabe et al., 2006a; Watanabe et al., 2006b). C6 uronic acids such as glucuronate and galacturonate are omnipresent sugar derivatives. They constitute monomeric building blocks of structural polysaccharides such as hemicellulose and pectin (Saha, 2003). They are also present in seaweed macroalgae and microalgae, which are considered as feedstock of third-generation biorefineries (Jung et al., 2013; Lahaye and Robic, 2007). Additionally, they are components of extracellular polymeric substances responsible for microbial biofilm formation (Sutherland, 2001). The pathway toward aKG includes the following steps: First, the uronic acid, namely, glucuronic acid, is oxidized by an NAD+-dependent uronate dehydrogenase (UDH) to yield glucarate. The aldaric acid is dehydrated to 5-keto-4-deoxyglucarate (Kdg), which is then converted by Kdg dehydratase, a decarboxylating dehydratase that gives α-ketoglutaric semialdehyde (Kgsa). The final step is another NAD+-dependent oxidation by α-ketoglutaric semialdehyde dehydrogenase (KgsalDH). The thermodynamic equilibrium of the reaction strongly favors the product due to the irreversible decarboxylation and the essentially irreversible oxidation of two aldehyde groups to carboxylic acids. To balance the NAD+ consumption in an in vitro system, an NADH oxidase, preferably a water-forming one, has to be included in the process (Kroutil et al., 2004; Nowak et al., 2015; Ödman et al., 2004). In total, five enzymes, one cofactor, and a catalytic amount of Magnesium-ions are necessary to convert the renewable resource glucuronic acid to the industrially relevant compound α-ketoglutarate. We investigated whether this
Recommended publications
  • Enhancing the Thermostability and Activity of Uronate Dehydrogenase from Agrobacterium Tumefaciens LBA4404 by Semi-Rational Engi
    Su et al. Bioresour. Bioprocess. (2019) 6:36 https://doi.org/10.1186/s40643-019-0267-3 RESEARCH Open Access Enhancing the thermostability and activity of uronate dehydrogenase from Agrobacterium tumefaciens LBA4404 by semi-rational engineering Hui‑Hui Su1†, Fei Peng1†, Pei Xu1, Xiao‑Ling Wu1, Min‑Hua Zong1, Ji‑Guo Yang2 and Wen‑Yong Lou1* Abstract Background: Glucaric acid, one of the aldaric acids, has been declared a “top value‑added chemical from biomass”, and is especially important in the food and pharmaceutical industries. Biocatalytic production of glucaric acid from glucuronic acid is more environmentally friendly, efcient and economical than chemical synthesis. Uronate dehydro‑ genases (UDHs) are the key enzymes for the preparation of glucaric acid in this way, but the poor thermostability and low activity of UDH limit its industrial application. Therefore, improving the thermostability and activity of UDH, for example by semi‑rational design, is a major research goal. Results: In the present work, three UDHs were obtained from diferent Agrobacterium tumefaciens strains. The three UDHs have an approximate molecular weight of 32 kDa and all contain typically conserved UDH motifs. All three UDHs showed optimal activity within a pH range of 6.0–8.5 and at a temperature of 30 °C, but the UDH from A. tume- 1 1 faciens (At) LBA4404 had a better catalytic efciency than the other two UDHs (800 vs 600 and 530 s− mM− ). To fur‑ ther boost the catalytic performance of the UDH from AtLBA4404, site‑directed mutagenesis based on semi‑rational design was carried out. An A39P/H99Y/H234K triple mutant showed a 400‑fold improvement in half‑life at 59 °C, a 10 5 °C improvement in T50 value and a 2.5‑fold improvement in specifc activity at 30 °C compared to wild‑type UDH.
    [Show full text]
  • Supporting Information High-Throughput Virtual Screening
    Supporting Information High-Throughput Virtual Screening of Proteins using GRID Molecular Interaction Fields Simone Sciabola, Robert V. Stanton, James E. Mills, Maria M. Flocco, Massimo Baroni, Gabriele Cruciani, Francesca Perruccio and Jonathan S. Mason Contents Table S1 S2-S21 Figure S1 S22 * To whom correspondence should be addressed: Simone Sciabola, Pfizer Research Technology Center, Cambridge, 02139 MA, USA Phone: +1-617-551-3327; Fax: +1-617-551-3117; E-mail: [email protected] S1 Table S1. Description of the 990 proteins used as decoy for the Protein Virtual Screening analysis. PDB ID Protein family Molecule Res. (Å) 1n24 ISOMERASE (+)-BORNYL DIPHOSPHATE SYNTHASE 2.3 1g4h HYDROLASE 1,3,4,6-TETRACHLORO-1,4-CYCLOHEXADIENE HYDROLASE 1.8 1cel HYDROLASE(O-GLYCOSYL) 1,4-BETA-D-GLUCAN CELLOBIOHYDROLASE I 1.8 1vyf TRANSPORT PROTEIN 14 KDA FATTY ACID BINDING PROTEIN 1.85 1o9f PROTEIN-BINDING 14-3-3-LIKE PROTEIN C 2.7 1t1s OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 2.4 1t1r OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 2.3 1q0q OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 1.9 1jcy LYASE 2-DEHYDRO-3-DEOXYPHOSPHOOCTONATE ALDOLASE 1.9 1fww LYASE 2-DEHYDRO-3-DEOXYPHOSPHOOCTONATE ALDOLASE 1.85 1uk7 HYDROLASE 2-HYDROXY-6-OXO-7-METHYLOCTA-2,4-DIENOATE 1.7 1v11 OXIDOREDUCTASE 2-OXOISOVALERATE DEHYDROGENASE ALPHA SUBUNIT 1.95 1x7w OXIDOREDUCTASE 2-OXOISOVALERATE DEHYDROGENASE ALPHA SUBUNIT 1.73 1d0l TRANSFERASE 35KD SOLUBLE LYTIC TRANSGLYCOSYLASE 1.97 2bt4 LYASE 3-DEHYDROQUINATE DEHYDRATASE
    [Show full text]
  • Supplementary Information
    Supplementary information (a) (b) Figure S1. Resistant (a) and sensitive (b) gene scores plotted against subsystems involved in cell regulation. The small circles represent the individual hits and the large circles represent the mean of each subsystem. Each individual score signifies the mean of 12 trials – three biological and four technical. The p-value was calculated as a two-tailed t-test and significance was determined using the Benjamini-Hochberg procedure; false discovery rate was selected to be 0.1. Plots constructed using Pathway Tools, Omics Dashboard. Figure S2. Connectivity map displaying the predicted functional associations between the silver-resistant gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S3. Connectivity map displaying the predicted functional associations between the silver-sensitive gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S4. Metabolic overview of the pathways in Escherichia coli. The pathways involved in silver-resistance are coloured according to respective normalized score. Each individual score represents the mean of 12 trials – three biological and four technical. Amino acid – upward pointing triangle, carbohydrate – square, proteins – diamond, purines – vertical ellipse, cofactor – downward pointing triangle, tRNA – tee, and other – circle.
    [Show full text]
  • Global Regulation of Differential Gene Expression by C-Abl/Arg Oncogenic
    LAB/IN VITRO RESEARCH e-ISSN 1643-3750 © Med Sci Monit, 2017; 23: 2625-2635 DOI: 10.12659/MSM.904888 Received: 2017.04.16 Accepted: 2017.05.08 Global Regulation of Differential Gene Published: 2017.05.30 Expression by c-Abl/Arg Oncogenic Kinases Authors’ Contribution: ABCE 1 Qincai Dong* 1 Laboratory of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, Study Design A BC 2 Chenggong Li* P.R. China Data Collection B 2 Institute of Health Sciences, Anhui University, Hefei, Anhui, P.R. China Statistical Analysis C BC 3 Xiuhua Qu 3 Center of Basic Medical Sciences, Navy General Hospital of PLA, Beijing, Data Interpretation D AFG 1 Cheng Cao P.R. China Manuscript Preparation E AEG 1 Xuan Liu Literature Search F Funds Collection G * These 2 authors contributed equally to this work Corresponding Authors: Xuan Liu, e-mail: [email protected], Cheng Cao, e-mail: [email protected] Source of support: This work was supported by the National Natural Science Foundation of China [31070674] Background: Studies have found that c-Abl oncogenic kinases may regulate gene transcription by RNA polymerase II phos- phorylation or by direct regulation of specific transcription factors or coactivators. However, the global regu- lation of differential gene expression by c-Abl/Arg is largely unknown. In this study, differentially expressed genes (DEGs) regulated by c-Abl/Arg were identified, and related cellular functions and associated pathways were investigated. Material/Methods: RNA obtained from wild-type and c-Abl/Arg gene-silenced MCF-7 cells was analyzed by RNA-Seq. DEGs were identified using edgeR software and partially validated by qRT-PCR.
    [Show full text]
  • Supplementary Informations SI2. Supplementary Table 1
    Supplementary Informations SI2. Supplementary Table 1. M9, soil, and rhizosphere media composition. LB in Compound Name Exchange Reaction LB in soil LBin M9 rhizosphere H2O EX_cpd00001_e0 -15 -15 -10 O2 EX_cpd00007_e0 -15 -15 -10 Phosphate EX_cpd00009_e0 -15 -15 -10 CO2 EX_cpd00011_e0 -15 -15 0 Ammonia EX_cpd00013_e0 -7.5 -7.5 -10 L-glutamate EX_cpd00023_e0 0 -0.0283302 0 D-glucose EX_cpd00027_e0 -0.61972444 -0.04098397 0 Mn2 EX_cpd00030_e0 -15 -15 -10 Glycine EX_cpd00033_e0 -0.0068175 -0.00693094 0 Zn2 EX_cpd00034_e0 -15 -15 -10 L-alanine EX_cpd00035_e0 -0.02780553 -0.00823049 0 Succinate EX_cpd00036_e0 -0.0056245 -0.12240603 0 L-lysine EX_cpd00039_e0 0 -10 0 L-aspartate EX_cpd00041_e0 0 -0.03205557 0 Sulfate EX_cpd00048_e0 -15 -15 -10 L-arginine EX_cpd00051_e0 -0.0068175 -0.00948672 0 L-serine EX_cpd00054_e0 0 -0.01004986 0 Cu2+ EX_cpd00058_e0 -15 -15 -10 Ca2+ EX_cpd00063_e0 -15 -100 -10 L-ornithine EX_cpd00064_e0 -0.0068175 -0.00831712 0 H+ EX_cpd00067_e0 -15 -15 -10 L-tyrosine EX_cpd00069_e0 -0.0068175 -0.00233919 0 Sucrose EX_cpd00076_e0 0 -0.02049199 0 L-cysteine EX_cpd00084_e0 -0.0068175 0 0 Cl- EX_cpd00099_e0 -15 -15 -10 Glycerol EX_cpd00100_e0 0 0 -10 Biotin EX_cpd00104_e0 -15 -15 0 D-ribose EX_cpd00105_e0 -0.01862144 0 0 L-leucine EX_cpd00107_e0 -0.03596182 -0.00303228 0 D-galactose EX_cpd00108_e0 -0.25290619 -0.18317325 0 L-histidine EX_cpd00119_e0 -0.0068175 -0.00506825 0 L-proline EX_cpd00129_e0 -0.01102953 0 0 L-malate EX_cpd00130_e0 -0.03649016 -0.79413596 0 D-mannose EX_cpd00138_e0 -0.2540567 -0.05436649 0 Co2 EX_cpd00149_e0
    [Show full text]
  • Supplemental Table 7. Every Significant Association
    Supplemental Table 7. Every significant association between an individual covariate and functional group (assigned to the KO level) as determined by CPGLM regression analysis. Variable Unit RelationshipLabel See also CBCL Aggressive Behavior K05914 + CBCL Emotionally Reactive K05914 + CBCL Externalizing Behavior K05914 + K15665 K15658 CBCL Total K05914 + K15660 K16130 KO: E1.13.12.7; photinus-luciferin 4-monooxygenase (ATP-hydrolysing) [EC:1.13.12.7] :: PFAMS: AMP-binding enzyme; CBQ Inhibitory Control K05914 - K12239 K16120 Condensation domain; Methyltransferase domain; Thioesterase domain; AMP-binding enzyme C-terminal domain LEC Family Separation/Social Services K05914 + K16129 K16416 LEC Poverty Related Events K05914 + K16124 LEC Total K05914 + LEC Turmoil K05914 + CBCL Aggressive Behavior K15665 + CBCL Anxious Depressed K15665 + CBCL Emotionally Reactive K15665 + K05914 K15658 CBCL Externalizing Behavior K15665 + K15660 K16130 KO: K15665, ppsB, fenD; fengycin family lipopeptide synthetase B :: PFAMS: Condensation domain; AMP-binding enzyme; CBCL Total K15665 + K12239 K16120 Phosphopantetheine attachment site; AMP-binding enzyme C-terminal domain; Transferase family CBQ Inhibitory Control K15665 - K16129 K16416 LEC Poverty Related Events K15665 + K16124 LEC Total K15665 + LEC Turmoil K15665 + CBCL Aggressive Behavior K11903 + CBCL Anxiety Problems K11903 + CBCL Anxious Depressed K11903 + CBCL Depressive Problems K11903 + LEC Turmoil K11903 + MODS: Type VI secretion system K01220 K01058 CBCL Anxiety Problems K11906 + CBCL Depressive
    [Show full text]
  • Functional and Physiological Discovery in the Mannonate Dehydratase Subgroup of the Enolase Superfamily
    FUNCTIONAL AND PHYSIOLOGICAL DISCOVERY IN THE MANNONATE DEHYDRATASE SUBGROUP OF THE ENOLASE SUPERFAMILY BY DANIEL JOSEPH WICHELECKI DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biochemistry in the Graduate College of the University of Illinois at Urbana-Champaign, 2014 Urbana, Illinois Doctoral Committee: Professor John Gerlt, Chair Professor John Cronan Professor Scott Silverman Professor Wilfred van der Donk ABSTRACT In the current post-genomic world, the exponential amassing of protein sequences is overwhelming the scientific community’s ability to experimentally assign each protein’s function. The use of automated, homology-based annotations has allowed a reprieve from this efflux of data, but has led to widespread misannotation and nonannotation in protein sequence databases. This dissertation details the functional and physiological characterization of the mannonate dehydratase subgroup (ManD) of the enolase superfamily (ENS). The outcome affirms the dangers of homology-based annotations while discovering novel metabolic pathways. Furthermore, the experimental verification of these pathways ( in vitro and in vivo ) has provided a platform to test the general strategies for improved functional and metabolic characterization being developed by the Enzyme Function Initiative (EFI). Prior to this study, one member of the ManD subgroup had been characterized and was shown to dehydrate D-mannonate to 2-keto-3-deoxy-D-gluconate. Forty-two additional members of the ManD, selected from across the sequence space of the subgroup, were screened for activity and kinetic constants were determined. The members of the once isofunctional subgroup were found to differ in both catalytic efficiency and substrate specificity: 1) high 3 4 -1 -1 efficiency (k cat /K M = 10 to 10 M s ) dehydration of D-mannonate, 2) low efficiency (k cat /K M = 10 1 to 10 2 M-1s-1) dehydration of D-mannonate and/or D-gluconate, and 3) no-activity with either D-mannonate or D-gluconate (or any other acid sugar tested).
    [Show full text]
  • Supplementary Table S1. the Key Enzymes for Autotrophic Growth in C
    Electronic Supplementary Material (ESI) for Metallomics. This journal is © The Royal Society of Chemistry 2015 Supplementary Table S1. The key enzymes for autotrophic growth in C. metallidurans Name Rmet-number Spec. Predicted Mass, (kDa) Determined Mass, (kDa) Activity HOS Rmet_1522 to Rmet_1525 28.7 65.2, 25.4, 23.4, 52.8 = 166.8 62.4±1.8, 26.4±1.3, 24.0±0.6, 54.1±2.5, =235±20a HOP Rmet_1297, Rmet_1298, 67.0 69.0 + 38.6 = 108 148±24a CAX Rmet_1500, Rmet_1501 2.82 8 * (13.6 + 52.5) = 529 475±36a PRK Rmet_1512 0.994 8 * 32.4 = 259 256±11a aMean value of masses determined by S300 size exclusion chromatography and sucrose gradient centrifugation. HOS, NAD-reducing soluble hydrogenase; HOP, membrane-bound hydrogenase; CAX, ribulose-bis-phosphate carboxylase/oxygenase; PRK, phosphoribulokinase. Specific activity in U/mg protein. Supplementary Table S2. Genes expressed differently in AE104 compared to CH34 wild typea Operon Region Name Gene Q D Description UP Op1321r Rmet_4594 zntA 1.72 2.88 Q1LEH0 Heavy metal translocating P -type ATPase Op1322f Rmet_4595 czcI2 2.03 2.92 Q1LEG9 Putative uncharacterized protein Op1322f Rmet_4596 czcC2 23.34 5.36 Q1LEG8 Outer membrane efflux protein Op1322f Rmet_4597 czcB2' 15.36 9.68 Q1LEG7 Secretion protein HlyD Op0075f Rmet_0260 - 2.31 2.48 Q1LRT0 Putative transmembrane protein Op0075f Rmet_0261 coxB 2.08 2.49 Q1LRS9 Cytochrome c oxidase subunit 2 Adjacent to CMGI-7 Op0335f Rmet_1171 tnpA 7.03 21.74 Q9F8S6 Transposase (Transposase, IS4 family) CMGI-2 Op0362r Rmet_1251 tnp 4.08 0.61 Q1LNY9 Putative uncharacterized
    [Show full text]
  • 8-Barrel Enzymes John a Gerlt and Frank M Raushely
    252 Evolution of function in (b/a)8-barrel enzymes John A Gerltà and Frank M Raushely The (b/a)8-barrel is the most common fold in structurally closed, parallel b-sheet structure of the (b/a)8-barrel is characterized enzymes. Whether the functionally diverse formed from eight parallel (b/a)-units linked by hydrogen enzymes that share this fold are the products of either divergent bonds that form a cylindrical core. Despite its eightfold or convergent evolution (or both) is an unresolved question that pseudosymmetry, the packing within the interior of the will probably be answered as the sequence databases continue barrel is better described as four (b/a)2-subdomains in to expand. Recent work has examined natural, designed, and which distinct hydrophobic cores are located between the directed evolution of function in several superfamilies of (b/a)8- b-sheets and flanking a-helices [2]. barrel containing enzymes. The active sites are located at the C-terminal ends of the Addresses b-strands. So placed, the functional groups surround the ÃDepartments of Biochemistry and Chemistry, University of Illinois at active site and are structurally independent: the ‘old’ and Urbana-Champaign, 600 South Mathews Avenue, Urbana, ‘new’ enzymes retain functional groups at the ends of Illinois 61801, USA e-mail: [email protected] some b-strands, but others are altered to allow the ‘new’ yDepartment of Chemistry, Texas A&M University, PO Box 30012, activity [3]. With this blueprint, the (b/a)8-barrel is opti- College Station, Texas 77842-3012, USA mized for evolution of new functions.
    [Show full text]
  • Wo 2008/127291 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 23 October 2008 (23.10.2008) WO 2008/127291 A2 (51) International Patent Classification: Jeffrey, J. [US/US]; 106 Glenview Drive, Los Alamos, GOlN 33/53 (2006.01) GOlN 33/68 (2006.01) NM 87544 (US). HARRIS, Michael, N. [US/US]; 295 GOlN 21/76 (2006.01) GOlN 23/223 (2006.01) Kilby Avenue, Los Alamos, NM 87544 (US). BURRELL, Anthony, K. [NZ/US]; 2431 Canyon Glen, Los Alamos, (21) International Application Number: NM 87544 (US). PCT/US2007/021888 (74) Agents: COTTRELL, Bruce, H. et al.; Los Alamos (22) International Filing Date: 10 October 2007 (10.10.2007) National Laboratory, LGTP, MS A187, Los Alamos, NM 87545 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY,BZ, CA, CH, (30) Priority Data: CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, 60/850,594 10 October 2006 (10.10.2006) US ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, (71) Applicants (for all designated States except US): LOS LR, LS, LT, LU, LY,MA, MD, ME, MG, MK, MN, MW, ALAMOS NATIONAL SECURITY,LLC [US/US]; Los MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, Alamos National Laboratory, Lc/ip, Ms A187, Los Alamos, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, NM 87545 (US).
    [Show full text]
  • The Regulation of Human Carbonyl Reductase 3 (CBR3) in Epithelial Cell Lines
    Charles university in Prague Faculty of pharmacy in Hradec Kralov´ e´ Department of biochemical sciences Diploma thesis The regulation of human carbonyl reductase 3 (CBR3) in epithelial cell lines Regulace lidske´ karbonylreduktasy 3 v buneˇcnˇ ych´ lini´ıch epithelu Petra Malatkov´ a´ 2009 Supervisors: Prof. Dr. Edmund Maser Dr. Bettina Ebert Christian Albrechts University in Kiel Faculty of Medicine Department of Toxicology and Pharmacology for Natural Scientists Prof. Ing. Vladim´ır Wsol,´ Ph.D. Charles University in Prague Faculty of Pharmacy in Hradec Kralov´ e´ Department of Biochemical Sciences Declaration I declare that this thesis is my original author’s work which I have worked out independently. All literature and other sources, from which I gather during elaboration, are listed in the bibli- ography and properly cited in the work. 4th May 2009 2 Acknowledgements First, I would like to express sincere thanks to Dr. Bettina Ebert for teaching me new techniques and performing cell culture experiments. I thank you for lending your time and providing de- tailed comments. Also, I would like to thank to Prof. Dr. Edmund Maser and Prof. Ing. Vladim´ır Wsol,´ Ph.D. for offering useful advice and, in particular, giving me chance to do the diploma thesis at Department of Toxicology and Pharmacology in Kiel. Next, I would like to thank to Yasser El-Hawari, who helps me with LaTex and contributes to improving my German skills. I would also like to thank to Michael Kisiela for his helpful assistance with any occurred problems. Finally, I would like to extend a big thank to my parents for their love and support.
    [Show full text]
  • The Enolase Superfamily: a General Strategy for Enzyme-Catalyzed Abstraction of the R-Protons of Carboxylic Acids†
    + + Biochemistry 1996, 35, 16489-16501 16489 The Enolase Superfamily: A General Strategy for Enzyme-Catalyzed Abstraction of the R-Protons of Carboxylic Acids† ,‡ §,| ⊥,# Patricia C. Babbitt,* Miriam S. Hasson, Joseph E. Wedekind, David R. J. Palmer,r William C. Barrett,r ⊥ ⊥ § ‡ , George H. Reed, Ivan Rayment, Dagmar Ringe, George L. Kenyon, and John A. Gerlt* r Department of Pharmaceutical Chemistry, UniVersity of California, San Francisco, California 94143-0446, Departments of Biochemistry and Chemistry and Rosenstiel Center for Basic Biomedical Research, Brandeis UniVersity, Waltham, Massachusetts 02154-9110, The Institute for Enzyme Research and Department of Biochemistry, UniVersity of Wisconsin, Madison, Wisconsin 53706, and Department of Biochemistry, UniVersity of Illinois, Urbana, Illinois 61801 ReceiVed July 5, 1996X ABSTRACT: We have discovered a superfamily of enzymes related by their ability to catalyze the abstraction of the R-proton of a carboxylic acid to form an enolic intermediate. Although each reaction catalyzed by these enzymes is initiated by this common step, their overall reactions (including racemization, â-elimination of water, â-elimination of ammonia, and cycloisomerization) as well as the stereochemical consequences (syn Vs anti) of the â-elimination reactions are diverse. Analysis of sequence and structural similarities among these proteins suggests that all of their chemical reactions are mediated by a common active site architecture modified through evolution to allow the enolic intermediates to partition to different products in their respective active sites Via different overall mechanisms. All of these enzymes retain the ability to catalyze the thermodynamically difficult step of proton abstraction. These homologous proteins, designated the “enolase superfamily”, include enolase as well as more metabolically specialized enzymes: mandelate racemase, galactonate dehydratase, glucarate dehydratase, muconate-lactonizing enzymes, N-acylamino acid racemase, â-methylaspartate ammonia-lyase, and o-succinylbenzoate synthase.
    [Show full text]