How Fish Fins Evolved Just Before the Transition to Land 30 December 2019
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reconstructing Pectoral Appendicular Muscle Anatomy in Fossil Fish and Tetrapods Over the Fins-To-Limbs Transition
Biol. Rev. (2017), pp. 000–000. 1 doi: 10.1111/brv.12386 Reconstructing pectoral appendicular muscle anatomy in fossil fish and tetrapods over the fins-to-limbs transition Julia L. Molnar1,∗ , Rui Diogo2, John R. Hutchinson3 and Stephanie E. Pierce4 1Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY, U.S.A. 2Department of Anatomy, Howard University College of Medicine, 520 W St. NW, Numa Adams Building, Washington, DC 20059, U.S.A. 3Structure and Motion Lab, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK 4Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, U.S.A. ABSTRACT The question of how tetrapod limbs evolved from fins is one of the great puzzles of evolutionary biology. While palaeontologists, developmental biologists, and geneticists have made great strides in explaining the origin and early evolution of limb skeletal structures, that of the muscles remains largely unknown. The main reason is the lack of consensus about appendicular muscle homology between the closest living relatives of early tetrapods: lobe-finned fish and crown tetrapods. In the light of a recent study of these homologies, we re-examined osteological correlates of muscle attachment in the pectoral girdle, humerus, radius, and ulna of early tetrapods and their close relatives. Twenty-nine extinct and six extant sarcopterygians were included in a meta-analysis using information from the literature and from original specimens, when possible. We analysed these osteological correlates using parsimony-based character optimization in order to reconstruct muscle anatomy in ancestral lobe-finned fish, tetrapodomorph fish, stem tetrapods, and crown tetrapods. -
I Ecomorphological Change in Lobe-Finned Fishes (Sarcopterygii
Ecomorphological change in lobe-finned fishes (Sarcopterygii): disparity and rates by Bryan H. Juarez A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Ecology and Evolutionary Biology) in the University of Michigan 2015 Master’s Thesis Committee: Assistant Professor Lauren C. Sallan, University of Pennsylvania, Co-Chair Assistant Professor Daniel L. Rabosky, Co-Chair Associate Research Scientist Miriam L. Zelditch i © Bryan H. Juarez 2015 ii ACKNOWLEDGEMENTS I would like to thank the Rabosky Lab, David W. Bapst, Graeme T. Lloyd and Zerina Johanson for helpful discussions on methodology, Lauren C. Sallan, Miriam L. Zelditch and Daniel L. Rabosky for their dedicated guidance on this study and the London Natural History Museum for courteously providing me with access to specimens. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS ii LIST OF FIGURES iv LIST OF APPENDICES v ABSTRACT vi SECTION I. Introduction 1 II. Methods 4 III. Results 9 IV. Discussion 16 V. Conclusion 20 VI. Future Directions 21 APPENDICES 23 REFERENCES 62 iv LIST OF TABLES AND FIGURES TABLE/FIGURE II. Cranial PC-reduced data 6 II. Post-cranial PC-reduced data 6 III. PC1 and PC2 Cranial and Post-cranial Morphospaces 11-12 III. Cranial Disparity Through Time 13 III. Post-cranial Disparity Through Time 14 III. Cranial/Post-cranial Disparity Through Time 15 v LIST OF APPENDICES APPENDIX A. Aquatic and Semi-aquatic Lobe-fins 24 B. Species Used In Analysis 34 C. Cranial and Post-Cranial Landmarks 37 D. PC3 and PC4 Cranial and Post-cranial Morphospaces 38 E. PC1 PC2 Cranial Morphospaces 39 1-2. -
Tiktaalik—A Fishy 'Missing Link'
Countering the Critics Tiktaalik—a fishy ‘missing link’ Jonathan Sarfati he secularized mainstream media (MSM) are gleefully Is it transitional? promoting a recent find, Tiktaalik roseae (figure 1), as T Clack and others are naturally enthusiastic about Tikta- the end of any creationist or intelligent design idea. Some paleontologists are claiming that this is ‘a link between fishes alik’s transitional status. But this is not surprising—to her, and land vertebrates that might in time become as much of an we are all fishes anyway! She states: evolutionary icon as the proto-bird Archaeopteryx.’1 ‘Although humans do not usually think of So is Tiktaalik real evidence that fish evolved into tetra- themselves as fishes, they nonetheless share several pods (four-limbed vertebrates, i.e. amphibians, reptiles, mam- fundamental characters that unite them inextricably mals and birds)? As will be shown, there are parallels with with their relatives among the fishes … Tetrapods Archaeopteryx, the famous alleged reptile-bird intermediate, did not evolve from sarcopterygians [lobe-finned but not in the way the above quote claims! fishes]; theyare sarcopterygians, just as one would The alleged fish-to-tetrapod evolutionary transition is full of difficulties.2 In this, it parallels the record of dinosaur-to-bird,3 mammal-like reptiles,4 land-mam- mal-to-whale5 and ape-to-human evolution;6 superficially plausible, but when analyzed in depth, it col- lapses, for many parallel reasons. What was found? The above quote comes from two leading European experts in the alleged evolutionary transition from fish to tetrapod, Per Ahlberg and Jennifer Clack. -
Fins to Limbs: What the Fossils Say1
EVOLUTION & DEVELOPMENT 4:5, 390–401 (2002) Fins to limbs: what the fossils say1 Michael I. Coates,a,* Jonathan E. Jeffery,b and Marcello Rutaa aDepartment of Organismal Biology and Anatomy, University of Chicago, 1027 E57th Street, Chicago, IL 60637, USA bInstitute of Evolutionary and Ecological Sciences, Leiden University, Kaiserstraat 63, Postbus 9516, 2300 RA Leiden, The Netherlands *Author for correspondence (email: [email protected]) 1From the symposium on Starting from Fins: Parallelism in the Evolution of Limbs and Genitalia. SUMMARY A broad phylogenetic review of fins, limbs, and highlight a large data gap in the stem group preceding the first girdles throughout the stem and base of the crown group is appearance of limbs with digits. It is also noted that the record needed to get a comprehensive idea of transformations unique of morphological diversity among stem tetrapods is somewhat to the assembly of the tetrapod limb ground plan. In the lower worse than that of basal crown group tetrapods. The pre-limbed part of the tetrapod stem, character state changes at the pecto- evolution of stem tetrapod paired fins is marked by a gradual re- ral level dominate; comparable pelvic level data are limited. In duction in axial segment numbers (mesomeres); pectoral fins of more crownward taxa, pelvic level changes dominate and re- the sister group to limbed tetrapods include only three. This re- peatedly precede similar changes at pectoral level. Concerted duction in segment number is accompanied by increased re- change at both levels appears to be the exception rather than gional specialization, and these changes are discussed with the rule. -
Tinkering and the Origins of Heritable Anatomical Variation in Vertebrates
biology Review Tinkering and the Origins of Heritable Anatomical Variation in Vertebrates Jonathan B. L. Bard Department of Anatomy, Physiology & Genetics, University of Oxford, Oxford OX313QX, UK; [email protected] Received: 9 October 2017; Accepted: 18 February 2018; Published: 26 February 2018 Abstract: Evolutionary change comes from natural and other forms of selection acting on existing anatomical and physiological variants. While much is known about selection, little is known about the details of how genetic mutation leads to the range of heritable anatomical variants that are present within any population. This paper takes a systems-based view to explore how genomic mutation in vertebrate genomes works its way upwards, though changes to proteins, protein networks, and cell phenotypes to produce variants in anatomical detail. The evidence used in this approach mainly derives from analysing anatomical change in adult vertebrates and the protein networks that drive tissue formation in embryos. The former indicate which processes drive variation—these are mainly patterning, timing, and growth—and the latter their molecular basis. The paper then examines the effects of mutation and genetic drift on these processes, the nature of the resulting heritable phenotypic variation within a population, and the experimental evidence on the speed with which new variants can appear under selection. The discussion considers whether this speed is adequate to explain the observed rate of evolutionary change or whether other non-canonical, adaptive mechanisms of heritable mutation are needed. The evidence to hand suggests that they are not, for vertebrate evolution at least. Keywords: anatomical change; evolutionary change; developmental process; embryogenesis; growth; mutation; patterning in embryos; protein network; systems biology; variation 1. -
Late Devonian Paleontology and Paleoenvironments at Red Hill and Other Fossil Sites in the Catskill Formation of North-Central Pennsylvania Edward B
West Chester University Digital Commons @ West Chester University Geology & Astronomy Faculty Publications Geology & Astronomy 2011 Late Devonian paleontology and paleoenvironments at Red Hill and other fossil sites in the Catskill Formation of north-central Pennsylvania Edward B. Daeschler Academy of Natural Sciences of Philadelphia Walter L. Cressler III West Chester University of Pennsylvania, [email protected] Follow this and additional works at: http://digitalcommons.wcupa.edu/geol_facpub Part of the Paleobiology Commons, and the Paleontology Commons Recommended Citation Daeschler, E.B., and Cressler, W.L., III, 2011. Late Devonian paleontology and paleoenvironments at Red Hill and other fossil sites in the Catskill Formation of north-central Pennsylvania. In R.M. Ruffolo and C.N. Ciampaglio [eds.], From the Shield to the Sea: Geological Trips from the 2011 Joint Meeting of the GSA Northeastern and North-Central Sections, pp. 1-16. Geological Society of America Field Guide 20. This Article is brought to you for free and open access by the Geology & Astronomy at Digital Commons @ West Chester University. It has been accepted for inclusion in Geology & Astronomy Faculty Publications by an authorized administrator of Digital Commons @ West Chester University. For more information, please contact [email protected]. FLD020-01 1st pgs page 1 The Geological Society of America Field Guide 20 2011 Late Devonian paleontology and paleoenvironments at Red Hill and other fossil sites in the Catskill Formation of north-central Pennsylvania Edward B. Daeschler Vertebrate Paleontology, Academy of Natural Sciences, 1900 Benjamin Franklin Parkway, Philadelphia, Pennsylvania 19103, USA Walter L. Cressler III Francis Harvey Green Library, 25 West Rosedale Avenue, West Chester University, West Chester, Pennsylvania 19383, USA ABSTRACT The stratifi ed red beds of the Catskill Formation are conspicuous in road cut expo- sures on the Allegheny Plateau of north-central Pennsylvania. -
A Primitive Megalichthyid Fish (Sarcopterygii, Tetrapodomorpha)
A primitive megalichthyid fi sh (Sarcopterygii, Tetrapodomorpha) from the Upper Devonian of Turkey and its biogeographical implications Philippe JANVIER UMR 5143 du CNRS, Département Histoire de la Terre, Muséum national d’Histoire naturelle, case postale 38, 57 rue Cuvier, F-75231 Paris cedex 05 (France) [email protected] and Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom) Gaël CLÉMENT UMR 5143 du CNRS, Département Histoire de la Terre, Muséum national d’Histoire naturelle, case postale 38, 57 rue Cuvier, F-75231 Paris cedex 05 (France) [email protected] Richard CLOUTIER Département de Biologie, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, Québec, G5L 3A1 (Canada) [email protected] Janvier P., Clément G. & Cloutier R. 2007. — A primitive megalichthyid fi sh (Sarcopterygii, Tetrapodomorpha) from the Upper Devonian of Turkey and its biogeographical implications. Geodiversitas 29 (2) : 249-268. ABSTRACT KEY WORDS Sarcopterygii, Th e vertebrate fauna of the red sandstone of Pamucak-Sapan Dere Unit of Tetrapodomorpha, the Upper Antalya Nappe (Frasnian?, Turkey) is reviewed on the basis of new Megalichthyidae, “Osteolepiformes”, material. Th e association of the phyllolepid Placolepis with the arthrodire Holo- Devonian, nema in this fauna strongly suggests a Frasnian age or, at any rate, older than Turkey, the Famennian. Th e unique osteolepiform sarcopterygian of this fauna is here biogeography, new genus, described in detail and referred to Sengoerichthys ottoman n. gen., n. sp., which new species. is considered as the most generalized megalichthyid known to date. GEODIVERSITAS • 2007 • 29 (2) © Publications Scientifi ques du Muséum national d’Histoire naturelle, Paris. -
Shipman (2006)
A reprint from American Scientist the magazine of Sigma Xi, The Scientific Research Society This reprint is provided for personal and noncommercial use. For any other use, please send a request to Permissions, American Scientist, P.O. Box 13975, Research Triangle Park, NC, 27709, U.S.A., or by electronic mail to [email protected]. ©Sigma Xi, The Scientific Research Society and other rightsholders Marginalia Missing Links and Found Links Pat Shipman hough missing links are of- sion enhanced by its four-to-nine-foot Tten talked about, it’s the found In and out of the length. Its skeleton differs markedly ones that hold a special place in my from those of crocodiles or alligators, heart. Found links are fossils that il- though, despite the overall resemblance lustrate major transitions during evo- water, transitional in body shape. Tiktaalik’s front fins hold lutionary history. More than that, such the biggest surprise. Each was a sort of creatures offer unexpected glimpses of forms from the fossil half-fin, half-leg containing the bony the never-predictable twists and turns elements found in a limb—with a func- taken by evolution. Their discovery record illuminate tional wrist, elbow and shoulder—and and surprise bring sheer fun to pale- yet retaining the bony “rays” of a fish ontology and biology. the nuts and bolts of fin. According to team member Farish I have always loved the iconic Arch- Jenkins, Jr., of Harvard University, the aeopteryx, a beautiful fossil recognized evolution front fins were sturdy enough to sup- in 1860 that unmistakably combines port the creature in very shallow water features of two major groups of ani- or on land for brief trips. -
Galvenā Devona Lauka Osteolepiformu
DISERTATIONES GEOLOGICAE UNIVERSITAS LATVIENSIS Nr. 11 IVARS ZUPI ĥŠ GALVEN Ā DEVONA LAUKA OSTEOLEPIFORMU K ĀRTAS DAIVSPURZIVIS (SARCOPTERYGII, OSTEOLEPIFORMES) DISERT ĀCIJA RĪGA 2009 DISERTATIONES GEOLOGICAE UNIVERSITAS LATVIENSIS Nr. 11 IVARS ZUPI ĥŠ GALVEN Ā DEVONA LAUKA OSTEOLEPIFORMU K ĀRTAS DAIVSPURZIVIS (SARCOPTERYGII, OSTEOLEPIFORMES) DISERT ĀCIJA doktora gr āda ieg ūšanai ăeolo ăijas nozares pamatiežu ăeolo ăijas apakšnozar ē LATVIJAS UNIVERSIT ĀTE 2 Promocijas darbs izstr ādāts Latvijas Universit ātes Ăeolo ăijas noda Ĝas Pamatiežu ăeolo ăijas katedr ā no 2001. gada l īdz 2009. gadam Promocijas darba vad ītājs: Erv īns Lukševi čs, profesors, Dr. ăeol. (Latvijas Universit āte) Recenzenti: Promocijas padomes sast āvs: Vit ālijs Zel čs, profesors, Dr. ăeol. – padomes priekšs ēdētājs Erv īns Lukševi čs, profesors, Dr. ăeol. – padomes priekšs ēdētāja vietnieks Guntis Eberhards, emerit ētais profesors, Dr. h. ăeog. Laimdota Kalni Ħa, asoc. profesore, Dr. ăeog. Māris K Ĝavi Ħš, profesors, Dr. h. ėī m. Uldis Sedmalis, profesors, Dr. h. ėī m. Padomes sekret ārs: Ăirts Stinkulis, Dr. ăeol. Promocijas darbs pie Ħemts aizst āvēšanai ar LU Ăeolo ăijas promocijas padomes ……. gada …. ................................ s ēdes l ēmumu nr. .../........... Promocijas darba atkl āta aizst āvēšana notiks LU Ăeolo ăijas promocijas padomes s ēdē ……. gada …. ........................., R īgā, Alberta iel ā 10, J āĦ a un Elfr īdas Rutku auditorij ā (313. telpa). Promocijas darba kopsavilkuma izdošanu ir finans ējusi Latvijas Universit āte. Ar promocijas darbu ir iesp ējams iepaz īties Latvijas Universit ātes Zin ātniskaj ā bibliot ēkā Rīgā, Kalpaka bulv ārī 4 un Latvijas Akad ēmiskaj ā bibliot ēkā R īgā, Lielv ārdes iel ā 4. Atsauksmes s ūtīt: Dr. -
Fish/Tetrapod Communities in the Upper Devonian
Fish/tetrapod Communities Examensarbete vid Institutionen för geovetenskaper in the Upper Devonian ISSN 1650-6553 Nr 301 Maxime Delgehier Fish/tetrapod Communities Vertebrate communities including tetrapods and fishes are known from a in the Upper Devonian limited number of Late Devonian localities from several areas worldwide. These localities encompass a wide variety of environments, from true marine conditions of the near shore neritic province, to fluvial or lacustrine conditions. These localities form the foundation for a number of data matrices from which three different sets of cluster analyses were made. The first set practices a strait forward taxonomical framework using present/absent data on species and genus level to test similarity between the various localities. The second set of analyses builds on the Maxime Delgehier first one with the integration of artificial hierarchies to compensate taxonomical biases and instead infer relationship. The third also builds on the previous ones, but integrates morphological data as indicators of relationships between taxa. From this, a critical review was made for each method which comes to the conclusion that the first analysis and the first artificial level of the second analysis provide the distinctions between Frasnian and Frasnian/Famennian locality whereas the second artificial level of the second analysis and the third analysis need to be improved. Uppsala universitet, Institutionen för geovetenskaper Examensarbete D/E1/E2/E, Geologi/Hydrologi/Naturgeografi /Paleobiologi, 15/30/45 -
A Devonian Tetrapod-Like Fish Reveals Substantial Parallelism in Stem Tetrapod Evolution
ARTICLES DOI: 10.1038/s41559-017-0293-5 A Devonian tetrapod-like fish reveals substantial parallelism in stem tetrapod evolution Min Zhu 1,2*, Per E. Ahlberg 3*, Wen-Jin Zhao1,2 and Lian-Tao Jia1 The fossils assigned to the tetrapod stem group document the evolution of terrestrial vertebrates from lobe-finned fishes. During the past 18 years the phylogenetic structure of this stem group has remained remarkably stable, even when accommo- dating new discoveries such as the earliest known stem tetrapod Tungsenia and the elpistostegid (fish–tetrapod intermediate) Tiktaalik. Here we present a large lobe-finned fish from the Late Devonian period of China that disrupts this stability. It com- bines characteristics of rhizodont fishes (supposedly a basal branch in the stem group, distant from tetrapods) with derived elpistostegid-like and tetrapod-like characters. This mélange of characters may reflect either detailed convergence between rhizodonts and elpistostegids plus tetrapods, under a phylogenetic scenario deduced from Bayesian inference analysis, or a previously unrecognized close relationship between these groups, as supported by maximum parsimony analysis. In either case, the overall result reveals a substantial increase in homoplasy in the tetrapod stem group. It also suggests that ecological diversity and biogeographical provinciality in the tetrapod stem group have been underestimated. he colonization of the land by animals during the mid-Palaeozoic in 2002 and described here, provides a first and highly sur- involved the evolution of complex suites of adaptations. prising glimpse of sarcopterygian diversity in the Devonian of The incidence and importance of evolutionary convergence North China (Figs. 1–4 and Supplementary Figs. -
Fishes of the World
Fishes of the World Fishes of the World Fifth Edition Joseph S. Nelson Terry C. Grande Mark V. H. Wilson Cover image: Mark V. H. Wilson Cover design: Wiley This book is printed on acid-free paper. Copyright © 2016 by John Wiley & Sons, Inc. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with the respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be createdor extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation.