Natural Dyeing Plants As a Source of Compounds Protecting Against UV Radiation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Natural Colourants with Ancient Concept and Probable Uses
JOURNAL OF ADVANCED BOTANY AND ZOOLOGY Journal homepage: http://scienceq.org/Journals/JABZ.php Review Open Access Natural Colourants With Ancient Concept and Probable Uses Tabassum Khair1, Sujoy Bhusan2, Koushik Choudhury2, Ratna Choudhury3, Manabendra Debnath4 and Biplab De2* 1 Department of Pharmaceutical Sciences, Assam University, Silchar, Assam, India. 2 Regional Institute of Pharmaceutical Science And Technology, Abhoynagar, Agartala, Tripura, India. 3 Rajnagar H. S. School, Agartala, Tripura, India. 4 Department of Human Physiology, Swami Vivekananda Mahavidyalaya, Mohanpur, Tripura, India. *Corresponding author: Biplab De, E-mail: [email protected] Received: February 20, 2017, Accepted: April 15, 2017, Published: April 15, 2017. ABSTRACT: The majority of natural colourants are of vegetable origin from plant sources –roots, berries, barks, leaves, wood and other organic sources such as fungi and lichens. In the medicinal and food products apart from active constituents there are several other ingredients present which are used for either ethical or technical reasons. Colouring agent is one of them, known as excipients. The discovery of man-made synthetic dye in the mid-19th century triggered a long decline in the large-scale market for natural dyes as practiced by the villagers and tribes. The continuous use of synthetic colours in textile and food industry has been found to be detrimental to human health, also leading to environmental degradation. Biocolours are extracted by the villagers and certain tribes from natural herbs, plants as leaves, fruits (rind or seeds), flowers (petals, stamens), bark or roots, minerals such as prussian blue, red ochre & ultramarine blue and are also of insect origin such as lac, cochineal and kermes. -
The Maiwa Guide to NATURAL DYES W H at T H Ey a R E a N D H Ow to U S E T H E M
the maiwa guide to NATURAL DYES WHAT THEY ARE AND HOW TO USE THEM WA L NUT NATURA L I ND IG O MADDER TARA SYM PL O C OS SUMA C SE Q UO I A MAR IG O L D SA FFL OWER B U CK THORN LIVI N G B L UE MYRO B A L AN K AMA L A L A C I ND IG O HENNA H I MA L AYAN RHU B AR B G A LL NUT WE L D P OME G RANATE L O G WOOD EASTERN B RA ZIL WOOD C UT C H C HAMOM IL E ( SA PP ANWOOD ) A LK ANET ON I ON S KI NS OSA G E C HESTNUT C O C H I NEA L Q UE B RA C HO EU P ATOR I UM $1.00 603216 NATURAL DYES WHAT THEY ARE AND HOW TO USE THEM Artisans have added colour to cloth for thousands of years. It is only recently (the first artificial dye was invented in 1857) that the textile industry has turned to synthetic dyes. Today, many craftspeople are rediscovering the joy of achieving colour through the use of renewable, non-toxic, natural sources. Natural dyes are inviting and satisfying to use. Most are familiar substances that will spark creative ideas and widen your view of the world. Try experimenting. Colour can be coaxed from many different sources. Once the cloth or fibre is prepared for dyeing it will soak up the colour, yielding a range of results from deep jew- el-like tones to dusky heathers and pastels. -
Chemical Groups and Botanical Distribution
International Journal of Pharmacy and Pharmaceutical Sciences ISSN- 0975-1491 Vol 8, Issue 10, 2016 Review Article REVIEW: FROM SCREENING TO APPLICATION OF MOROCCAN DYEING PLANTS: CHEMICAL GROUPS AND BOTANICAL DISTRIBUTION IMANE ALOUANI, MOHAMMED OULAD BOUYAHYA IDRISSI, MUSTAPHA DRAOUI, MUSTAPHA BOUATIA Laboratory of Analytical Chemestry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat Email: [email protected] Received: 19 May 2016 Revised and Accepted: 12 Aug 2016 ABSTRACT Many dyes are contained in plants and are used for coloring a medium. They are characterized by their content of dyes molecules. They stimulate interest because they are part of a sustainable development approach. There are several chemicals families of plant dye which are contained in more than 450 plants known around the world. In this article, a study based on literature allowed us to realize an inventory of the main dyes plants potentially present in Morocco. A list of 117 plants was established specifying their botanical families, chemical Composition, Colors and parts of the plant used. Keywords: Natural dye, Morocco, Chemical structures, Plant pigments, Extraction © 2016 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ijpps.2016v8i10.12960 INTRODUCTION [5]. They are also biodegradable and compatible with the environment [12]. Several hundred species of plants are used around the world, sometimes for thousands of years for their ability to stain a medium In this article, we process methods of extraction and analysis, or material[1]. -
NATURAL DYE 101 Indigo NATURAL DYE 101: Indigo
NATURAL DYE 101 Indigo NATURAL DYE 101: Indigo •IS THERE ANOTHER NATURAL DYE that holds such deep, almost magical, powers as indigo? One that is called by so many names, such as ai (Japan), landian (China), chàm (Laos and Vietnam), nila (India), gara (Africa), or añil (Central America)? One that beckons the spirits or causes mutinies? In this collection of articles, learn about the natural dye indigo—an overview of its history and science, and places to visit with rich indigo cultural roots. Meet a few artisans who work with indigo and sustain its traditional roots, learn some tips for dyeing and care, and learn more from additional resources. Contents Explore the World of the Natural Dye Indigo and How-To | 3 A Place to Visit: Lao Traditional Culture and Education Center in Vientiane, Laos | 6 Meet Ms. Mai Suxiong, An Artisan of Hmong Batik Indigo Cloth | 8 In Country: Indigo and the El Salvador Story of Grace Guirola | 10 An Ode to Indigo and Dorothy Miller | 12 Natural Fermentation Vat | 14 A Care Tip: Washing Excess Indigo Dye Particles | 15 Contemporary Artisan Cloth and Indigo Projects | 16 Additional Resources | 16 Further Reading | 17 ClothRoads | NATURAL DYEING 101: INDIGO | 2 Explore the World of the Natural Dye Indigo •by Judy Newland OUR JOURNEY through the ancient and mysterious world of the natural dye indigo begins with an overview of this dye deeply embedded in cultures around the world--one that is both art and science and touches the disciplines of botany, chemistry, economics, fashion, medicine, politics, as well as textile and social history. -
Introduction to Indigo and Shibori
ICHF Show Guide NEC Birmingham 30th March – 2nd April 2006 1 Darkly, Deeply, Beautifully Blue Jane Callender explains the history behind the indigodyeing and shibori techniques which she uses to create fabulous fabrics. The Magic of Indigo dilemma, as a means of safe disposal Both natural and manufactured Know to man in ancient times, had yet to be found. It was coal tar. indigo are available to us today and indigo was harvested from plants In 1830, Berlin chemist Ferdinand astonishingly the process of dyeing flourishing in the hot climates of Runge sought recycling possibilities with either has remained the same. Africa, China, Japan, India and the from this substance and by 1834 had Unique and seemingly magical, it is Americas. We can only speculate as isolated the compound aniline oil. It very different to other methods of to how the blue dye yielded by many was known that natural indigo dyeing cloth and the key word in different species, a prolific genus contained aniline through the work understanding the process is oxygen. being Indigofera, was first revealed of Adolf von Bayer. Even though The prepared fabric is dipped, for a to man. Indigo was extracted from Runge made positive advancements minute or two, in the indigo vat, a the plant thorough fermentation, and into the world of synthetic dye stuffs golden/green colour, and then because it was able to be stored, it he was prevented from further allowed to hang in the air. With the was able to be sold. In the 13t h research – his amazing discovery was introduction of oxygen, absent in the century Marco Polo tells us that suppressed by management. -
Atlas of the Flora of New England: Fabaceae
Angelo, R. and D.E. Boufford. 2013. Atlas of the flora of New England: Fabaceae. Phytoneuron 2013-2: 1–15 + map pages 1– 21. Published 9 January 2013. ISSN 2153 733X ATLAS OF THE FLORA OF NEW ENGLAND: FABACEAE RAY ANGELO1 and DAVID E. BOUFFORD2 Harvard University Herbaria 22 Divinity Avenue Cambridge, Massachusetts 02138-2020 [email protected] [email protected] ABSTRACT Dot maps are provided to depict the distribution at the county level of the taxa of Magnoliophyta: Fabaceae growing outside of cultivation in the six New England states of the northeastern United States. The maps treat 172 taxa (species, subspecies, varieties, and hybrids, but not forms) based primarily on specimens in the major herbaria of Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, and Connecticut, with most data derived from the holdings of the New England Botanical Club Herbarium (NEBC). Brief synonymy (to account for names used in standard manuals and floras for the area and on herbarium specimens), habitat, chromosome information, and common names are also provided. KEY WORDS: flora, New England, atlas, distribution, Fabaceae This article is the eleventh in a series (Angelo & Boufford 1996, 1998, 2000, 2007, 2010, 2011a, 2011b, 2012a, 2012b, 2012c) that presents the distributions of the vascular flora of New England in the form of dot distribution maps at the county level (Figure 1). Seven more articles are planned. The atlas is posted on the internet at http://neatlas.org, where it will be updated as new information becomes available. This project encompasses all vascular plants (lycophytes, pteridophytes and spermatophytes) at the rank of species, subspecies, and variety growing independent of cultivation in the six New England states. -
Understanding and Conserving the Past and Recreating Natural Dyes
Understanding and Conserving the Past and Recreating Natural Dyes for Today Recep Karadag1 and Emine Torgan2 1Marmara University, Laboratory of Natural Dyes, Faculty of Fine Arts, 34718 Kadikoy- Istanbul-Turkey. 2Turkish Cultural Foundation, Cultural Heritage Preservation and Natural Dyes Laboratory, 34775 Umraniye-Istanbul-Turkey. Abstract We aim to use the natural dyeing of textiles from the past as a basis of modern dye natural dyeing of textiles. The natural dyes and methods used in the historical textiles were determined. We adapt these to the recent natural dyes in modern textiles by using different analysis techniques. In this study, the metal thread, dyestuff and technical analysis of historical textiles by micro and nondestructive analysis methods were determined. Historical samples were provided from many museum collection. Optical microscopy for the technical analysis, CIEL*a*b* spectrophotometer/colorimeter for the color measurements, HPLC-PAD for the dyestuff analysis and SEM-EDX for the metal thread analysis were performed. According to the results of this analysis, the fabrics that are made in modern times have the same characteristics as the fabrics analyzed due to the use of the same natural dyes. Keywords: Historical textiles, reproduction, natural dyes, dyestuff analysis, elemental analysis, color measurement, technical analysis. 1. INTRODUCTION Identification of an art object material of cultural heritage had received significant attention, because of its importance for the development of appropriate restoration and conservation strategies. Natural dyes have advantages since their production implies renewable resources causing minimum environmental pollution and has a low risk factor in relation to human health. Some of natural dyes are used by pharmaceutical industry as a basis for drug products and by the food industry [1]. -
Isatis Tinctoria L. (Woad): a Review of Its Botany, Ethnobotanical Uses, Phytochemistry, Biological Activities, and Biotechnological Studies
plants Review Isatis tinctoria L. (Woad): A Review of Its Botany, Ethnobotanical Uses, Phytochemistry, Biological Activities, and Biotechnological Studies Jasmine Speranza 1,2, Natalizia Miceli 2,*, Maria Fernanda Taviano 2 , Salvatore Ragusa 3 , Inga Kwiecie ´n 4, Agnieszka Szopa 4 and Halina Ekiert 4 1 Foundation “Prof. Antonio Imbesi”, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy; [email protected] 2 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; [email protected] 3 Department of Health Sciences, University ‘Magna Graecia’ of Catanzaro, V. Europa, IT-88100 Catanzaro, Italy; [email protected] 4 Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland; [email protected] (I.K.); [email protected] (A.S.); [email protected] (H.E.) * Correspondence: [email protected] Received: 10 February 2020; Accepted: 25 February 2020; Published: 1 March 2020 Abstract: Isatis tinctoria L. (Brassicaceae), which is commonly known as woad, is a species with an ancient and well-documented history as an indigo dye and medicinal plant. Currently, I. tinctoria is utilized more often as medicinal remedy and also as a cosmetic ingredient. In 2011, I. tinctoria root was accepted in the official European phytotherapy by introducing its monograph in the European Pharmacopoeia. The biological properties of raw material have been known from Traditional Chinese Medicine (TCM). Over recent decades, I. tinctoria has been investigated both from a phytochemical and a biological point of view. The modern in vitro and in vivo scientific studies proved anti-inflammatory, anti-tumour, antimicrobial, antiviral, analgesic, and antioxidant activities. -
Antibacterial and UV Protective Effects of Cotton Fabrics Dyed with Brasi-Color Extract ICAMS 2018 – 7Th International Conference on Advanced Materials and Systems
Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com Antibacterial and UV Protective Effects of Cotton Fabrics Dyed with Brasi-color Extract ICAMS 2018 – 7th International Conference on Advanced Materials and Systems CONCLUSIONS ANTIBACTERIAL AND UV PROTECTIVE EFFECTS OF COTTON FABRICS DYED WITH RESEDA LUTEOLA EXTRACT The highest dye exhaustion is attained for the cotton pre-mordanted with 2% mimosa 4% alum. All the mordanted and dyed materials have a high UV protection on IULIANA DUMITRESCU1, RODICA CONSTANTINESCU1, ELENA-CORNELIA MITRAN1, both UVA and UVB regions. The material dyed with Brasi-Color presents a good 1 1 1 antibacterial efficiency against S. aureus. ELENA PERDUM , LAURA CHIRILĂ , OVIDIU GEORGE IORDACHE , DANA ŞTEFĂNESCU2, MARIANA PÎSLARU2, IULIAN MANCAŞI3 1 Acknowledgments The National Research Development Institute for Textiles and Leather, Bucharest, Romania, Str. Lucretiu Patrascanu nr. 16, sector 3, 30508, Bucharest, Romania, E-Mail: This study was supported by UEFISCDI through the project No. 55/2017 – UV- [email protected] SHIELD in the frame of PN III Program, EUREKA Traditional projects. 2SC Tanex SRL, Sos. Bucuresti - Magurele, nr. 47B, 051432, Bucharest, Romania, E-Mail: [email protected] 3 REFERENCES SC Majutex SRL, Bîrnova, Jud. Iaşi, 707035, Romania, e-mail: [email protected] Ferlay, J. et al. (2013), “Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012”, Eur J Cancer, 49(6), 1374-403, https://doi.org/10.1016/j.ejca.2012.12.027. Reseda luteola (Weld) extracts were used to dye textiles and decorate medieval manuscripts. -
Red, Blue and Purple Dyes
Purple, Blue and Red Dyes We have discussed the vibrant colors of flowers, the somber colors of ants, the happy colors of leaves throughout their lifespan, the iridescent colors of butterflies, beetles and birds, the attractive and functional colors of human eyes, skin and hair, the warm colors of candlelight, the inherited colors of Mendel’s peas, the informative colors of stained chromosomes and stained germs, the luminescent colors of fireflies and dragonfish, and the abiotic colors of rainbows, the galaxies, the sun and the sky. The natural world is a wonderful world of color! The infinite number of colors in the solar spectrum was divided into seven colors by Isaac Newton—perhaps for theological reasons. While there is no scientific reason to divide the spectral colors into seven colors, there is a natural reason to divide the spectral colors into three primary colors. Thomas Young (1802), who was belittled as an “Anti-Newtonian” for speaking out about the wave nature of light, predicted that if the human eye had three photoreceptor pigments, we could perceive all the colors of the rainbow. He was right. 751 Thomas Young (1802) wrote “Since, for the reason assigned by NEWTON, it is probable that the motion of the retina is rather of a vibratory [longitudinal] than of an undulatory [transverse] nature, the frequency of the vibrations must be dependent on the constitution of this substance. Now, as it is almost impossible to conceive each sensitive point of the retina to contain an infinite number of particles, each capable of vibrating -
Mountain Gardens Full Plant List 2016
MOUNTAIN GARDENS BARE ROOT PLANT SALES WWW.MOUNTAINGARDENSHERBS.COM Here is our expanded list of bare root plants. Prices are $4-$5 as indicated. Note that some are only available in spring or summer, as indicated; otherwise they are available all seasons. No price listed = not available this year. We begin responding to requests in April and plants are generally shipped in May and June, though inquiries are welcome throughout the growing season. We ship early in the week by Priority Mail. For most orders, except very large or very small, we use flat rate boxes @$25 per shipment. Some species will sell out – please list substitutes, or we will refund via Paypal or a check. TO ORDER, email name/number of plants wanted & your address to [email protected] Payment: Through Paypal, using [email protected]. If you prefer, you can mail your order with a check (made out to ‘Joe Hollis’) to 546 Shuford Cr. Rd., Burnsville, NC 28714. Or you can pick up your plants at the nursery (please send your order and payment with requested pick-up date in advance). * Shipping & handling: 25$ flat rate on all but very small or very large orders – will verify via email. MOUNTAIN GARDENS PLANT LIST *No price listed = not available this year. LATIN NAME COMMON NAME BARE USE/CATEGORY ROOT Edible, Medicinal, etc. Achillea millefolium Yarrow $4.00 Medicinal Aconitum napellus Monkshood, Chinese, fu zi ChinMed, Ornamental Acorus calamus Calamus, sweet flag Med Acorus gramineus shi chang pu 4 ChinMed Actaea racemosa Black Cohosh 4 Native Med Aegopodium podograria -
Economically Important Plants Arranged Systematically James P
Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 1-2017 Economically Important Plants Arranged Systematically James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: http://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Economically Important Plants Arranged Systematically" (2017). Botanical Studies. 48. http://digitalcommons.humboldt.edu/botany_jps/48 This Economic Botany - Ethnobotany is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. ECONOMICALLY IMPORTANT PLANTS ARRANGED SYSTEMATICALLY Compiled by James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State University Arcata, California 30 January 2017 This list began in 1970 as a handout in the Plants and Civilization course that I taught at HSU. It was an updating and expansion of one prepared by Albert F. Hill in his 1952 textbook Economic Botany... and it simply got out of hand. I also thought it would be useful to add a brief description of how the plant is used and what part yields the product. There are a number of more or less encyclopedic references on this subject. The number of plants and the details of their uses is simply overwhelming. In the list below, I have attempted to focus on those plants that are of direct economic importance to us.