Brief Communication Mutations in AMPA Receptor-Associated FRRS1L

Total Page:16

File Type:pdf, Size:1020Kb

Brief Communication Mutations in AMPA Receptor-Associated FRRS1L Brief Communication Mutations in AMPA receptor-associated FRRS1L lead to a hyperkinetic movement disorder in mice and humans Marianna Madeo1*, Michelle Stewart2*, Yuyang Sun3, Nadia Sahir1, Sarah Wiethoff4, Indra Chandrasekar1, Anna Yarrow1, Jill A Mokry5, Yaping Yang5, Dawn Cordeiro6, Elizabeth M McCormick7, Colleen C Murarescu7, Tyler N. Jepperson1, Lauren McBeth1, Mohammed Zain Seidahmed8, Heba El Khashab9,10, Muddathir Hamad9, Hamid Azzedine11, Karl Clark12, Silvia Corrochano2, Sara Wells2, Mariet W Elting13, Marjan M Weiss13, Sabrina Burn1, Angela Myers1, Megan Landsverk1, Patricia L Crotwell1, Quinten Waisfisz13, Nicole I. Wolf14, Patrick M. Nolan2, Sergio Padilla-Lopez15,16, Henry Houlden4, Richard Lifton17, Shrikant Mane17, Brij Singh3, Marni Falk7*, Saadet Mercimek-Mahmutoglu6*, Mustafa A. Salih9*, Kaya Bilguvar17*, Abraham Acevedo- Arozena2*, Michael C. Kruer1,15,16,18,19*# 1 Children’s Health Research Center, Sanford Research Sioux Falls, SD 57104 USA 2 MRC Harwell, Mammalian Genetics Unit Oxfordshire, OX11 ORD, UK 3 Department of Basic Sciences University of North Dakota Grand Forks, ND 58202 USA 4 Department of Molecular Neuroscience, Lila Reta Weston Institute of Neurology, University College London London WC1H 0AJ UK 5 Department of Molecular & Human Genetics, Baylor College of Medicine Houston, TX, 77030 USA 6 Department of Pediatrics, Division of Clinical & Metabolic Genetics and Genetics & Genome Biology Program, The Hospital for Sick Children, University of Toronto Toronto, Ontario, M5G 1X8 Canada 7 Department of Pediatrics, Division of Human Genetics and Division of Child Development & Metabolic Disease, The Children's Hospital of Philadelphia Philadelphia, PA, 19104 USA 8 Department of Pediatrics, Security Forces Hospital Riyadh, 12625 Saudi Arabia 9 Department of Pediatrics, Division of Pediatric Neurology, College of Medicine, King Saud University Riyadh, 12372 Saudi Arabia 10 Department of Pediatrics, Ain Shams University Hospital Cairo, 11355 Egypt 11 Institute of Neuropathology, Uniklink-RWTH Aachen, 52074 Germany 12 Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, 55905 USA 13 Department of Clinical Genetics VU University Medical Center Amsterdam, 1007 The Netherlands 14 Department of Child Neurology and Neuroscience Campus Amsterdam VU University Medical Center Amsterdam, 1007 The Netherlands 15 Department of Child Health, University of Arizona College of Medicine Phoenix, AZ, 85004 USA 16 Neurogenetics Research Program, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ, 85016 USA 17 Yale Genomics Center New Haven, CT, 06516 USA 18 Program in Neuroscience, Arizona State University Tempe, AZ, 85287 USA 19 Movement Disorders Center, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ, 85016 USA * These authors contributed equally Author emails: Marianna Madeo [email protected] Michelle Stewart [email protected] Yuyang Sun [email protected] Nadia Sahir [email protected] Sarah Wiethoff [email protected] Indra Chandrasekar [email protected] Anna Yarrow [email protected] Jill Mokry [email protected] Yaping Yang [email protected] Dawn Cordeiro [email protected] Elizabeth McCormick [email protected] Colleen Murarescu [email protected] Tyler Jepperson [email protected] Lauren McBeth [email protected] Mohammed Seidahmed [email protected] Heba El Khashab [email protected] Muddathir Hamad [email protected] Hamid Azzedine [email protected] Karl Clark [email protected] Silvia Corrochano [email protected] Sara Wells [email protected] Mariet Elting [email protected] Marjan Weiss [email protected] Sabrina Burn [email protected] Angela Myers [email protected] Megan Landsverk [email protected] Patricia Crotwell [email protected] Quinten Waisfisz [email protected] Nicole Wolf [email protected] Pat Nolan [email protected] Sergio Padilla-Lopez [email protected] Henry Houlden [email protected] Rick Lifton [email protected] Shrikant Mane [email protected] Brij Singh [email protected] Marni Falk [email protected] Saadet Mercimek-Mahmutoglu [email protected] Mustafa Salih [email protected] Kaya Bilguvar [email protected] Abraham Acevedo-Arozena [email protected] Michael Kruer [email protected] Correspondence should be addressed to M.C.K. ([email protected]) The etiology of many severe childhood movement disorders remains uncharacterized. We describe a novel neurological disorder with prominent hyperkinetic movements in both mice and humans caused by mutations in FRRS1L, an AMPA receptor outer core protein. Loss of FRRS1L function attenuates AMPA-mediated currents, implicating chronic abnormalities of glutamatergic neurotransmission in this monogenic neurological disease of childhood. Pediatric movement disorders encompass a heterogeneous group of neurodevelopmental and neurodegenerative disorders affecting movement and limiting activities of daily living (1). Huntington disease (HD) is a progressive neurodegenerative disease characterized by impairment of volitional movement, chorea and subcortical dementia due to a CAG triplet repeat expansion in HTT. Although uncommon, juvenile HD (JHD) represents an important cause of pediatric movement disorders (2). Although the majority of patients with clinical features of HD will ultimately be found to have an expanded HTT allele, several phenocopies have been described, yet the cause of most HD-like syndromes remains uncharacterized (3). We set out to identify genes that lead to HD-like phenotypes and enrolled eligible families in our institutional review board and ethics committee-approved studies after informed consent was obtained. The index family hailed from southern Saudi Arabia, and the parents were distant cousins (Supplementary Figure 1a). All five of the couple’s children developed progressive chorea, dementia and epilepsy without expansion of HTT (Supplementary Table 1). Over time, a rigid, akinetic presentation began to predominate. One child had already succumbed to the disease at the time of ascertainment. All laboratory studies were unrevealing. Brain MRI was initially normal, but repeat neuroimaging demonstrated diffuse cortical and cerebellar volume loss with flattening of the caudate heads (Supplementary Figure 1b). Given the family structure and presumed autosomal recessive nature of the disorder, we then applied tandem homozygosity mapping and whole exome sequencing. We identified six regions of homozygosity >3 Mb shared by affected family members alone (Supplementary Table 2). We performed whole exome sequencing on patients 1_II:-1-4 and focused our analysis on homozygous stop-gain, stop-loss, or frameshift and splice-site or missense variants predicted to be deleterious. We excluded variants with a reported minor allele frequency >0.01 based on ExAc Browser and Exome Variant Server databases. Using this strategy, we identified a homozygous c.961C>T (p.G321*) mutation in FRRS1L (aka c9orf4) (NM_014334) within a prominent block of homozygosity (hg19; chr9:104,622,396-119,149,440). We confirmed segregation within affected family members by Sanger sequencing (Supplementary Figure 1a). This mutation has not been reported in variation repositories, and is predicted to lead to loss of a C-terminal hydrophobic motif that may contribute to FRRS1L’s membrane localization (Figure 1a). We subsequently identified three additional, unrelated patients with similar phenotypes (Supplemental Video 1) by whole exome sequencing [patient 2_II-1: homozygous c.845G>A (p.W282*)]; patient 3_II-1: homozygous c.737_739del (p.G246del)]; patient 4_II-2 c.436dup; (p.Ile146Asnfs*10) (Supplementary Table 1) and confirmed mutations by Sanger sequencing (Supplementary Figure 1a). None of these variants has been identified in public repositories. Targeted sequencing of FRRS1L in a cohort of 52 pediatric and adult patients with an early- onset Huntington-like phenotype but without demonstrable mutations in HTT did not reveal any putatively pathogenic biallelic mutations (Supplementary Table 3). Additionally, no biallelic FRRS1L mutations were detected in the Epi4K and EuroEPINOMICS RES epilepsy consortia datasets. Using patient fibroblasts and age and sex-matched controls, we next performed RT-PCR to determine whether the c.961C>T and c.845G>A mRNAs are subject to nonsense-mediated decay. Although FRRS1L is predominantly expressed in the brain (Supplementary Figure 2a), it is expressed at a lower level in fibroblasts (4) (Figure 1b). For both c.961C>T and c.845G>A, consistent with a mutation location near the 3’ end of the transcript, we found equal levels of both control and mutant transcripts (Supplementary Figure 2b). Both the (p.G321*) and (p.W282*) patient fibroblasts exhibited a marked decrease in FRRS1L levels by immunoblot (Figure 1b). Little is known about the biological function of FRRS1L. Despite its name (ferric chelate reductase-like 1), it lacks a ferrochelatase domain, and so is unlikely to function in iron storage and processing. A recent study instead identified FRRS1L as an important component of the outer core of AMPA glutamate receptor accessory proteins (5), suggesting that loss of FRRS1L would affect AMPA receptor constituency and might affect AMPA receptor function. In that study, FRRS1L co-immunoprecipitated with GluR1, suggesting a direct interaction
Recommended publications
  • PRRT2 Gene and Protein in Human: Characteristics, Evolution and Function Yinchao Li1, Shuda Chen1, Chengzhe Wang1, Peiling Wang1,Xili1 and Liemin Zhou1,2*
    Li et al. Acta Epileptologica (2021) 3:7 https://doi.org/10.1186/s42494-021-00042-4 Acta Epileptologica RESEARCH Open Access PRRT2 gene and protein in human: characteristics, evolution and function Yinchao Li1, Shuda Chen1, Chengzhe Wang1, Peiling Wang1,XiLi1 and Liemin Zhou1,2* Abstract Background: This study was designed to characterize human PRRT2 gene and protein, in order to provide theoretical reference for research on regulation of PRRT2 expression and its involvement in the pathogenesis of paroxysmal kinesigenic dyskinesia and other related diseases. Method: Biological softwares Protparam, Protscale, MHMM, SignalP 5.0, NetPhos 3.1, Swiss-Model, Promoter 2.0, AliBaba2.1 and EMBOSS were used to analyze the sequence characteristics, transcription factors of human PRRT2 and their binding sites in the promoter region of the gene, as well as the physicochemical properties, signal peptides, hydrophobicity property, transmembrane regions, protein structure, interacting proteins and functions of PRRT2 protein. Results: (1) Evolutionary analysis of PRRT2 protein showed that the human PRRT2 had closest genetic distance from Pongo abelii. (2) The human PRRT2 protein was an unstable hydrophilic protein located on the plasma membrane. (3) The forms of random coil (67.65%) and alpha helix (23.24%) constituted the main secondary structure elements of PRRT2 protein. There were also multiple potential phosphorylation sites in the protein. (4) The results of ontology analysis showed that the cellular component of PRRT2 protein was located in the plasma membrane; the molecular function of PRRT2 included syntaxin-1 binding and SH3 domain binding; the PRRT2 protein is involved in biological processes of negative regulation of soluble NSF attachment protein receptor (SNAR E) complex assembly and calcium-dependent activation of synaptic vesicle fusion.
    [Show full text]
  • PRRT2 Gene Proline Rich Transmembrane Protein 2
    PRRT2 gene proline rich transmembrane protein 2 Normal Function The PRRT2 gene provides instructions for making the proline-rich transmembrane protein 2 (PRRT2). The function of this protein is unknown, although it is thought to be involved in signaling in the brain. Studies show that it interacts with another protein called SNAP25, which is involved in signaling between nerve cells (neurons) in the brain. SNAP25 helps control the release of neurotransmitters, which are chemicals that relay signals from one neuron to another. Health Conditions Related to Genetic Changes Familial hemiplegic migraine At least two mutations in the PRRT2 gene have been identified in people with familial hemiplegic migraine. This condition is characterized by migraine headaches with a pattern of neurological symptoms known as aura. In familial hemiplegic migraine, the aura includes temporary numbness or weakness on one side of the body (hemiparesis). One PRRT2 gene mutation that is found in multiple people with familial hemiplegic migraine inserts an extra DNA building block (nucleotide) in the gene. (This change is written as 649dupC.) Both known mutations alter the blueprint used for making the protein and lead to production of an abnormally short PRRT2 protein that is quickly broken down. As a result, affected individuals have a shortage of PRRT2 protein. Researchers speculate that this shortage affects the function of the SNAP25 protein, leading to abnormal signaling between neurons, although the mechanism that causes familial hemiplegic migraine is unknown. It is thought that the changes in signaling in the brain lead to development of the severe headaches characteristic of the disorder. Familial paroxysmal kinesigenic dyskinesia More than 10 mutations in the PRRT2 gene have been found to cause a neurological disorder called familial paroxysmal kinesigenic dyskinesia.
    [Show full text]
  • Targeted Genomic Sequencing Identifies PRRT2 Mutations As A
    New loci J Med Genet: first published as 10.1136/jmedgenet-2011-100635 on 30 November 2011. Downloaded from SHORT REPORT Targeted genomic sequencing identifies PRRT2 mutations as a cause of paroxysmal kinesigenic choreoathetosis Jingyun Li,1 Xilin Zhu,1 Xin Wang,1 Wei Sun,2 Bing Feng,3 Te Du,1 Bei Sun,1 Fenghe Niu,1 Hua Wei,2 Xiaopan Wu,1 Lei Dong,1 Liping Li,2 Xingqiu Cai,4 Yuping Wang,2 Ying Liu1 < Additional figure and tables ABSTRACT characterised by recurrent and brief attacks of are published online only. To Background Paroxysmal kinesigenic choreoathetosis involuntary movement.1 Familial and sporadic view these files please visit the (PKC) is characterised by recurrent and brief attacks of cases have been described. Familial PKC usually journal online (http://jmg.bmj. com/content/49/2.toc). involuntary movement, inherited as an autosomal shows an autosomal dominant inheritance pattern dominant trait with incomplete penetrance. A PKC locus with incomplete penetrance. 1State Key Laboratory of Medical Molecular Biology, has been previously mapped to the pericentromeric We previously performed linkage and haplotype Institute of Basic Medical region of chromosome 16 (16p11.2-q12.1), but the analysis in four Chinese families (family 2 and Sciences, Chinese Academy of causative gene remains unidentified. family 4 with incomplete penetrance) with similar Medical Sciences; School of Methods/results Deep sequencing of this 30 Mb region choreoathetosis clinical symptoms, and all mapped Basic Medicine, Peking Union enriched with array capture in five affected individuals the disease locus to a region between D16S3093 and Medical College, Beijing, China 2 3 2Department of Neurology, from four Chinese PKC families detected two D16S3057 at 16p11.2-q12.1.
    [Show full text]
  • The Genetic Relationship Between Paroxysmal Movement Disorders and Epilepsy
    Review article pISSN 2635-909X • eISSN 2635-9103 Ann Child Neurol 2020;28(3):76-87 https://doi.org/10.26815/acn.2020.00073 The Genetic Relationship between Paroxysmal Movement Disorders and Epilepsy Hyunji Ahn, MD, Tae-Sung Ko, MD Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, Seoul, Korea Received: May 1, 2020 Revised: May 12, 2020 Seizures and movement disorders both involve abnormal movements and are often difficult to Accepted: May 24, 2020 distinguish due to their overlapping phenomenology and possible etiological commonalities. Par- oxysmal movement disorders, which include three paroxysmal dyskinesia syndromes (paroxysmal Corresponding author: kinesigenic dyskinesia, paroxysmal non-kinesigenic dyskinesia, paroxysmal exercise-induced dys- Tae-Sung Ko, MD kinesia), hemiplegic migraine, and episodic ataxia, are important examples of conditions where Department of Pediatrics, Asan movement disorders and seizures overlap. Recently, many articles describing genes associated Medical Center Children’s Hospital, University of Ulsan College of with paroxysmal movement disorders and epilepsy have been published, providing much infor- Medicine, 88 Olympic-ro 43-gil, mation about their molecular pathology. In this review, we summarize the main genetic disorders Songpa-gu, Seoul 05505, Korea that results in co-occurrence of epilepsy and paroxysmal movement disorders, with a presenta- Tel: +82-2-3010-3390 tion of their genetic characteristics, suspected pathogenic mechanisms, and detailed descriptions Fax: +82-2-473-3725 of paroxysmal movement disorders and seizure types. E-mail: [email protected] Keywords: Dyskinesias; Movement disorders; Seizures; Epilepsy Introduction ies, and paroxysmal dyskinesias [3,4]. Paroxysmal dyskinesias are an important disease paradigm asso- Movement disorders often arise from the basal ganglia nuclei or ciated with overlapping movement disorders and seizures [5].
    [Show full text]
  • Clinical and Genetic Overview of Paroxysmal Movement Disorders and Episodic Ataxias
    International Journal of Molecular Sciences Review Clinical and Genetic Overview of Paroxysmal Movement Disorders and Episodic Ataxias Giacomo Garone 1,2 , Alessandro Capuano 2 , Lorena Travaglini 3,4 , Federica Graziola 2,5 , Fabrizia Stregapede 4,6, Ginevra Zanni 3,4, Federico Vigevano 7, Enrico Bertini 3,4 and Francesco Nicita 3,4,* 1 University Hospital Pediatric Department, IRCCS Bambino Gesù Children’s Hospital, University of Rome Tor Vergata, 00165 Rome, Italy; [email protected] 2 Movement Disorders Clinic, Neurology Unit, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy; [email protected] (A.C.); [email protected] (F.G.) 3 Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy; [email protected] (L.T.); [email protected] (G.Z.); [email protected] (E.B.) 4 Laboratory of Molecular Medicine, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy; [email protected] 5 Department of Neuroscience, University of Rome Tor Vergata, 00133 Rome, Italy 6 Department of Sciences, University of Roma Tre, 00146 Rome, Italy 7 Neurology Unit, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; [email protected] * Correspondence: [email protected]; Tel.: +0039-06-68592105 Received: 30 April 2020; Accepted: 13 May 2020; Published: 20 May 2020 Abstract: Paroxysmal movement disorders (PMDs) are rare neurological diseases typically manifesting with intermittent attacks of abnormal involuntary movements. Two main categories of PMDs are recognized based on the phenomenology: Paroxysmal dyskinesias (PxDs) are characterized by transient episodes hyperkinetic movement disorders, while attacks of cerebellar dysfunction are the hallmark of episodic ataxias (EAs).
    [Show full text]
  • Mutations in the Novel Protein PRRT2 Cause Paroxysmal Kinesigenic Dyskinesia with Infantile Convulsions
    NIH Public Access Author Manuscript Cell Rep. Author manuscript; available in PMC 2012 April 25. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Cell Rep. 2012 January 26; 1(1): 2–12. doi:10.1016/j.celrep.2011.11.001. Mutations in the novel protein PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions Hsien-Yang Lee1, Yong Huang1,2, Nadine Bruneau3, Patrice Roll4, Elisha D.O. Roberson5, Mark Hermann1, Emily Quinn1,2, James Maas1, Robert Edwards1, Tetsuo Ashizawa6, Betul Baykan7, Kailash Bhatia8, Susan Bressman9, Michiko K. Bruno1,10, Ewout R. Brunt11, Roberto Caraballo12, Bernard Echenne13, Natalio Fejerman12, Steve Frucht14, Christina A. Gurnett15, Edouard Hirsch16, Henry Houlden8, Joseph Jankovic17, Wei-Ling Lee18, David R. Lynch19, Shehla Mohamed20, Ulrich Müller21, Mark P. Nespeca22, David Renner23, Jacques Rochette24, Gabrielle Rudolf16, Shinji Saiki25,26, Bing-Wen Soong27, Kathryn J. Swoboda23, Sam Tucker19, Nicholas Wood8, Michael Hanna8,28, Anne Bowcock5,28, Pierre Szepetowski3,28, Ying-Hui Fu1,28, and Louis J. Ptáček1,2,28 1Department of Neurology, UCSF, San Francisco, California, 94158 2Howard Hughes Medical Institute, San Francisco, California, 94158 3Institut de Neurobiologie de la Méditerranée, INMED. Inserm U901. Université de la Méditerranée. Marseille, France 4INSERM UMR_S910, Université de la Méditerranée, Marseille, France 5Division of Human Genetics, Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110 6Department of Neurology, University of Florida, Gainesville, Florida 32611 7Department of Neurology, Istanbul University, Millet Cad 34390 Istanbul Turkey 8Institute of Neurology, University College London, London, WC1N 3BG 9Department of Neurology, Beth Israel Medical Center, New York, New York, 10003 10Department of Neurology, The Queen’s Medical Center, Honolulu, Hawaii, 96813 11Department of Neurology, University Medical Centre Groningen, University of Groningen, The Netherlands, 9713 GZ 12Department of Neurology, Juan P.
    [Show full text]
  • A Novel PRRT2 Pathogenic Variant in a Family with Paroxysmal Kinesigenic Dyskinesia and Benign Familial Infantile Seizures
    Downloaded from molecularcasestudies.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press A novel PRRT2 pathogenic variant in a family with Paroxysmal Kinesigenic Dyskinesia and Benign Familial Infantile Seizures Jacqueline G. Lu 1,8*, Juliet Bishop 5, Sarah Cheyette 4, Igor B. Zhulin 6,7, Su Guo 1,2*, Nara Sobreira 5, Steven E. Brenner 1,3 1 Department of Bioengineering and Therapeutic Sciences, 2 Institute for Human Genetics and Programs in Biological Sciences, University of California, San Francisco, CA, USA; 3 Department of Computational Biology, University of California, Berkeley, CA, USA; 4 Palo Alto Medical Foundation, Palo Alto, CA, USA 94306; 5 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA; 6 Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; 7Department of Microbiology, University of Tennessee, Knoxville, TN, USA 8 Gunn High School, 780 Arastradero Rd, Palo Alto, CA 94306 * Corresponding authors: [email protected]; [email protected] Short running title: A novel pathogenic PRRT2 variant in PKD and BFIS Downloaded from molecularcasestudies.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Paroxysmal Kinesigenic Dyskinesia (PKD) is a rare neurological disorder characterized by recurrent attacks of dyskinetic movements without alteration of consciousness that are often triggered by the initiation of voluntary movements. Whole exome sequencing has revealed a cluster of pathogenic variants in PRRT2 (proline-rich transmembrane protein), a gene with a function in synaptic regulation that remains poorly understood. Here, we report the discovery of a novel PRRT2 pathogenic variant inherited in an autosomal dominant pattern in a family with PKD and Benign Familial Infantile Seizures (BFIS).
    [Show full text]
  • With Infantile Convulsions in a Taiwanese Cohort
    PRRT2 Mutations in Paroxysmal Kinesigenic Dyskinesia with Infantile Convulsions in a Taiwanese Cohort Yi-Chung Lee1,2,3*., Ming-Jen Lee4, Hsiang-Yu Yu1,2, Chien Chen1,2, Chang-Hung Hsu5, Kon-Ping Lin1,2, Kwong-Kum Liao1,2, Ming-Hong Chang2,6, Yi-Chu Liao2,6, Bing-Wen Soong1,2,3*. 1 Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, 2 Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan, 3 Brain Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan, 4 Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan, 5 Department of Neurology, Tri-Service General Hospital, Taipei, Taiwan, 6 Section of Neurology, Taichung Veterans General Hospital, Taichung, Taiwan Abstract Background: Mutations in the PRRT2 gene have recently been identified in patients with familial paroxysmal kinesigenic dyskinesia with infantile convulsions (PKD/IC) and patients with sporadic PKD/IC from several ethnic groups. To extend these recent genetic reports, we investigated the frequency and identities of PRRT2 mutations in a cohort of Taiwanese patients with PKD/IC. Methodology and Principal Findings: We screened all 3 coding exons of PRRT2 for mutations in 28 Taiwanese patients with PKD/IC. Among them, 13 had familial PKD/IC and 15 were apparently sporadic cases. In total, 7 disparate mutations were identified in 13 patients, including 8 familial cases and 5 apparently sporadic cases. The mutations were not present in 500 healthy controls. Four mutations were novel. One patient had a missense mutation and all other patients carried PRRT2 mutations putatively resulting in a protein truncation.
    [Show full text]
  • PRRT2 (P-13): Sc-161170
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . PRRT2 (P-13): sc-161170 BACKGROUND PRODUCT PRRT2 (proline-rich transmembrane protein 2) is a 340 amino acid multi-pass Each vial contains 200 µg IgG in 1.0 ml of PBS with < 0.1% sodium azide membrane protein belonging to the CD225 family. Existing as three alterna - and 0.1% gelatin. tively spliced isoforms, the gene encoding PRRT2 maps to human chromo - Blocking peptide available for competition studies, sc-161170 P, (100 µg some 16p11.2 and mouse chromosome 7 F3. Chromosome 16 encodes over peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA). 900 genes in approximately 90 million base pairs, makes up nearly 3% of human cellular DNA and is associated with a variety of genetic disorders. APPLICATIONS The GAN gene is located on chromosome 16 and, with mutation, may lead to giant axonal neuropathy, a nervous system disorder characterized by PRRT2 (P-13) is recommended for detection of PRRT2 of mouse and increasing malfunction with growth. The rare disorder Rubinstein-Taybi syn - human origin by Western Blotting (starting dilution 1:200, dilution range drome, characterized by mental retardation and predisposition to tumor 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range growth and white blood cell neoplasias, and Crohn's disease, a gastroin - 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range testinal inflammatory condition, are also associated with chromosome 16. 1:30-1:3000); non cross-reactive with PRRT1 or PRRT3. Suitable for use as control antibody for PRRT2 siRNA (h): sc-93160, PRRT2 REFERENCES siRNA (m): sc-152521, PRRT2 shRNA Plasmid (h): sc-93160-SH, PRRT2 1.
    [Show full text]
  • Benign Familial Infantile Seizures and Paroxysmal
    CORRESPONDENCE als with isolated BFIS, 6 patients with pure PKD, 3 with RESEARCH LETTER both BFIS and PKD, and 1 nonmanifesting carrier (Figure). Genotyping of these pedigrees showed 4 in- dependent haplotypes, suggesting that this mutation arose from recurrent mutational events. Two Faces of the Same Coin: These results confirm that PRRT2 mutations cause PKD Benign Familial Infantile Seizures and ICPC in multi-ethnic populations including Ger- and Paroxysmal Kinesigenic Dyskinesia man, Turkish, and Russian. Most importantly, they pro- Caused by PRRT2 Mutations vide further evidence that the 2 apparently clinically dis- tinct syndromes of BFIS and PKD can be allelic conditions, huzo Kure, the first to describe paroxysmal ki- and they can both be caused by the same mutation in nesigenic dyskinesia (PKD) in a Japanese jour- PRRT2. nal in 1892,1 would have been pleased to learn There has been debate about whether paroxysmal dys- S 1,4 that the gene for this condition has now been identi- kinesias have an epileptic origin. It is notable that in fied.2,3 Paroxysmal kinesigenic dyskinesia is the most com- PKD, ictal and interictal changes are typically absent on mon paroxysmal movement disorder, presenting with electroencephalogram.1,4 However, the confirmation that brief episodes of dystonic, choreatic, or ballistic, and some- PKD and BFIS can have a shared genetic cause lends sup- times bizarre, involuntary movements triggered by sud- port to the concept that the pathophysiological mecha- den movement with onset in childhood or adoles- nism underlying PKD may be subcortical epileptogenic cence.4 Owing to its unusual semiology, PKD is often discharges, possibly originating from the basal ganglia.
    [Show full text]
  • Regulation of Cancer Stemness in Breast Ductal Carcinoma in Situ by Vitamin D Compounds
    Author Manuscript Published OnlineFirst on May 28, 2020; DOI: 10.1158/1940-6207.CAPR-19-0566 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Analysis of the Transcriptome: Regulation of Cancer Stemness in Breast Ductal Carcinoma In Situ by Vitamin D Compounds Naing Lin Shan1, Audrey Minden1,5, Philip Furmanski1,5, Min Ji Bak1, Li Cai2,5, Roman Wernyj1, Davit Sargsyan3, David Cheng3, Renyi Wu3, Hsiao-Chen D. Kuo3, Shanyi N. Li3, Mingzhu Fang4, Hubert Maehr1, Ah-Ng Kong3,5, Nanjoo Suh1,5 1Department of Chemical Biology, Ernest Mario School of Pharmacy; 2Department of Biomedical Engineering, School of Engineering; 3Department of Pharmaceutics, Ernest Mario School of Pharmacy; 4Environmental and Occupational Health Sciences Institute and School of Public Health, 5Rutgers Cancer Institute of New Jersey, New Brunswick; Rutgers, The State University of New Jersey, NJ, USA Running title: Regulation of cancer stemness by vitamin D compounds Key words: Breast cancer, cancer stemness, gene expression, DCIS, vitamin D compounds Financial Support: This research was supported by the National Institutes of Health grant R01 AT007036, R01 AT009152, ES005022, Charles and Johanna Busch Memorial Fund at Rutgers University and the New Jersey Health Foundation. Corresponding author: Dr. Nanjoo Suh, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, New Jersey 08854. Tel: 848-445-8030, Fax: 732-445-0687; e-mail: [email protected] Disclosure of Conflict of Interest: “The authors declare no potential conflicts of interest” 1 Downloaded from cancerpreventionresearch.aacrjournals.org on September 27, 2021.
    [Show full text]
  • Association of a Synonymous SCN1B Variant Affecting Splicing Efficiency with Benign Familial Infantile Epilepsy (BFIE)
    Association of a synonymous SCN1B variant affecting splicing efficiency with Benign Familial Infantile Epilepsy (BFIE) 1 1 3 4 Sunay Usluer , Melek Aslı Kayserili *, Aslı Gündoğdu Eken2, Uluc Yiş , Costin Leu **, Janine 2 Altmüller4, Holger Thiele4, Peter Nuernberg4, Thomas Sander4, S. Hande Çağlayan 1 Formerly affiliated with the Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey 2 Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey 3 Department of Pediatrics, Division of Child Neurology, Dokuz Eylül University School of Medicine, İzmir, Turkey 4 Cologne Center for Genomics, University of Cologne, Cologne, Germany *Present address: Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany ** Present address: NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, United Kingdom Corresponding author: Server Hande Çağlayan, Ph.D., Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Turkey Tel: +90 -212 359 6881 Fax: +90 -212 287 2468 Email: [email protected] Key Words: Benign Familial Infantile Seizures, SCN1B, PRRT2, splice variant, minigene reporter assay Abbreviations: BIS: Benign Infantile Seizures BFIC/BFIS: Benign Familial Infantile Convulsions/ Seizures BFIE: Benign Familial Infantile Epilepsy WES: Whole Exome Sequencing AD: Autosomal Dominant SCN1B: Voltage Gated Sodium Channel Beta 1 ABSTRACT Benign familial infantile epilepsy (BFIE) is clinically characterized by clusters of brief partial seizures progressing to secondarily generalized seizures with onset at the age of 3-7 months and with favorable outcome. PRRT2 mutations are the most common cause of BFIE, and found in about 80% of BFIE families. In this study, we analyzed a large multiplex BFIE family by linkage and whole exome sequencing (WES) analyses.
    [Show full text]