Regulation of Cancer Stemness In

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of Cancer Stemness In Published OnlineFirst May 28, 2020; DOI: 10.1158/1940-6207.CAPR-19-0566 CANCER PREVENTION RESEARCH | RESEARCH ARTICLE Analysis of the Transcriptome: Regulation of Cancer Stemness in Breast Ductal Carcinoma In Situ by Vitamin D Compounds Naing Lin Shan1, Audrey Minden1,2, Philip Furmanski1,2, Min Ji Bak1, Li Cai2,3, Roman Wernyj1, Davit Sargsyan4, David Cheng4, Renyi Wu4, Hsiao-Chen D. Kuo4, Shanyi N. Li4, Mingzhu Fang5, Hubert Maehr1, Ah-Ng Kong2,4, and Nanjoo Suh1,2 ABSTRACT ◥ Ductal carcinoma in situ (DCIS), which accounts for one mesenchymal transition, invasion, and metastasis (e.g., out of every five new breast cancer diagnoses, will progress to LCN2 and S100A4), and chemoresistance (e.g., NGFR, potentially lethal invasive ductal carcinoma (IDC) in about PPP1R1B, and AGR2), while upregulating genes associated 50% of cases. Vitamin D compounds have been shown to with a basal-like phenotype (e.g., KRT6A and KRT5) and inhibit progression to IDC in the MCF10DCIS model. This negative regulators of breast tumorigenesis (e.g., EMP1). inhibition appears to involve a reduction in the cancer stem Gene methylation status was analyzed to determine cell–like population in MCF10DCIS tumors. To identify whether the changes in expression induced by vitamin genes that are involved in the vitamin D effects, a global D compounds occurred via this mechanism. Ingenuity transcriptomic analysis was undertaken of MCF10DCIS cells pathway analysis was performed to identify upstream grown in mammosphere cultures, in which cancer stem–like regulators and downstream signaling pathway genes cells grow preferentially and produce colonies by self- differentially regulated by vitamin D, including TP63 renewal and maturation, in the presence and absence of and vitamin D receptor –mediated canonical pathways a fi 1 25(OH)2D3 and a vitamin D analog, BXL0124. Using in particular. This study provides a global pro ling of next-generation RNA-sequencing, we found that vitamin D changes in the gene signature of DCIS regulated by compounds downregulated genes involved in maintenance vitamin D compounds and possible targets for chemopre- of breast cancer stem–like cells (e.g., GDF15), epithelial– vention of DCIS progression to IDC in patients. À À À þ Introduction and HER2 ), and HER2-enriched (ER ,PR , and HER2 ; ref. 2). Breast cancer development is a multi-step process that Breast cancer is the most common cancer and the second involves epigenetic and genetic changes contributing to aber- leading cause of cancer-related deaths in women worldwide (1). rant cell growth (3). Histologically, breast cancer can be staged On the basis of the presence or absence of estrogen receptor into invasive ductal carcinoma (IDC), ductal carcinoma in situ (ER), progesterone receptor (PR), and HER2, breast cancers are þ þ À (DCIS), and invasive lobular carcinoma. About 20% of breast divided into subtypes: luminal A (ER and/or PR ; HER2 ), þ þ þ À À cancers newly diagnosed in 2019 among U.S. women will be luminal B (ER and/or PR ; HER2 ), basal-like (ER ,PR , classified as DCIS, amounting to over 48,000 cases (4). DCIS is an early stage, noninvasive type characterized by proliferation 1Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, of malignant epithelial cells in the ducts (5). It arises from The State University of New Jersey, New Brunswick, New Jersey. 2Rutgers atypical ductal hyperplasia and may progress to IDC and Cancer Institute of New Jersey, New Brunswick, New Jersey. 3Department of Biomedical Engineering, School of Engineering, Rutgers, The State University of metastatic cancer (5). It is predicted that up to 50% of the New Jersey, New Brunswick, New Jersey. 4Department of Pharmaceutics, Ernest DCIS cases will progress to IDC within 10 years of initial Mario School of Pharmacy, Rutgers, The State University of New Jersey, New diagnosis (6). Gene expression and miRNA analyses have been 5 Brunswick, New Jersey. Environmental and Occupational Health Sciences performed to elucidate the molecular characteristics of DCIS Institute and School of Public Health, Rutgers, The State University of New Jersey, New Brunswick, New Jersey. progression to IDC (7, 8). However, the natural history of progression of DCIS to IDC is yet to be fully determined. Note: Supplementary data for this article are available at Cancer Prevention fi fi Research Online (http://cancerprevres.aacrjournals.org/). Cancer stem cells (CSC) were rst identi ed in breast cancer þ À Corresponding Author: Nanjoo Suh, Rutgers University, 164 Frelinghuysen using the cell surface markers CD44 /CD24 (9). This pop- Road, Ernest Mario School Of Pharmacy, Rutgers University, Piscataway, NJ ulation is characterized by a stem cell gene expression signa- 08854. Phone: 848-445-8030; Fax: 732-445-0687; E-mail: tures, drug-resistant phenotype, and self-renewal capacity [email protected] in vitro and in vivo (10). Human DCIS lesions form spheroids Cancer Prev Res 2020;13:673–86 and duct-like structures in ex vivo organoid culture and tumors doi: 10.1158/1940-6207.CAPR-19-0566 in immunodeficient mice, suggestive of the presence of CSC- Ó2020 American Association for Cancer Research. like cells in these early tumors (11). MCF10DCIS.COM was AACRJournals.org | 673 Downloaded from cancerpreventionresearch.aacrjournals.org on October 1, 2021. © 2020 American Association for Cancer Research. Published OnlineFirst May 28, 2020; DOI: 10.1158/1940-6207.CAPR-19-0566 Shan et al. derived from the nontumorigenic MCF10A human breast cell cell detachment solution. Cells were then grown in 6-well ultra- line and exhibits basal-like subtype properties (12). It is similar low attachment plates at a density of 10,000 cells/mL and to human DCIS with bi-potentiality that can give rise to both maintained in MammoCult Human Medium added with myoepithelial and luminal cells and spontaneous progression MammoCult proliferation supplement, hydrocortisone solu- to invasive breast cancer in vivo (13), and it is widely used as a tion, and heparin solution (Stemcell Technologies). Spheres a model for IDC development from precursor lesions. were treated with DMSO (0.01%), 1 25(OH)2D3 (100 nmol/L), MCF10DCIS.COM cultures and tumors contain high and BXL0124 (10 nmol/L) for 5 days. After 5 days in culture, þ þ þ À ALDH1 and CD44 /CD49f /CD24 subpopulations with the culture plates were gently swirled to cluster the spheres in increased self-renewal and tumor development capabilities, the middle of each well and photographed. Mammosphere similar to CSCs of fully invasive tumors (14). forming efficiency (MFE) was calculated by dividing the num- Vitamin D signaling is known to be a potential target for ber of mammospheres (≥100 mm) formed by the number of breast cancer chemoprevention (15). Our laboratory has shown single cells seeded in individual wells. Three independent that vitamin D compounds inhibit triple-negative breast cancer experiments were repeated. tumorigenesis by reducing expression of CSC-associated genes, including OCT4 and CD44, and by inducing differentiation Nucleic acid isolation and next-generation sequencing and upregulating myoepithelial markers (16). These com- MCF10DCIS mammospheres were treated with DMSO a pounds reduce in vitro mammosphere formation and in vivo (0.01%), 1 25(OH)2D3 (100 nmol/L), and BXL0124 tumorigenesis, although the molecular mechanisms of (10 nmol/L) for 5 days followed by extraction of RNA and these effects are not known. BXL0124 is an analog of calcitriol DNA using AllPrep DNA/RNA Mini Kit (Qiagen). The con- a fi (1 25(OH)2D3) modi ed with an additional side chain at C21- centrations and quality of the RNA and DNA were determined methyl group, endowing it with more biological activity at using NanoDrop spectrophotometer and Agilent 2100 Bio- lower concentrations without causing hypercalcemia, a limit- analyzer separately. We prepared three independent sets of ing side effect of vitamin D (17). BXL0124 also inhibits cultures with MCF10DCIS mammospheres treated with a MCF10DCIS xenograft tumorigenesis more potently than DMSO, 1 25(OH)2D3, and BXL0124, and extracted each 1a25(OH)2D3, apparently through the similar mechanism of separately to obtain three RNA samples and three DNA suppressing CSCs (18). This study was undertaken to develop samples. We pooled those samples for the RNA-sequencing global profiles of changes in gene expression and CpG meth- (RNA-seq) and methyl-sequencing (methyl-seq) analyses, ylation in MCF10DCIS cells induced by vitamin D compounds, which was carried out at RUCDR Infinite Biologics, a Rutgers to gain an understanding of the pathways involved in their University affiliated institution which provides next- overall effects and the molecular basis of their activities, and to generation sequencing (NGS) services. RNA-seq libraries were identify potential targets that could be exploited in the che- prepared using Illumina RNA Library Prep Kit v2 according to moprevention of breast cancer progression from DCIS to IDC. the manufacturer's user guide with 400 ng of RNA as input. The libraries were then quantified using KAPA Library Quantifi- cation Kit according to the manufacturer's user guide and Materials and Methods pooled with barcodes. The pooled libraries were sequenced Reagents and cell culture on Illumina NextSeq 550 System, using NextSeq 500/550 Mid a 1 25(OH)2D3 and a Gemini vitamin D analog [BXL0124; Output v2 Kit. The sequencing parameters used were 150 bp, 1a,25-dihydroxy-20R-21(3-hydroxy-3-deuteromethyl-4,4,4- paired-end with around 20 million reads generated per sample. trideuterobutyl)-23-yne-26,27-hexafluoro-cholecalciferol, >95% The DNA samples were further processed using an Agilent purity] were provided by BioXCell, Inc. (17). Vitamin D SureSelect Human Methyl-seq Target Enrichment System compounds were dissolved in DMSO. MCF10DCIS.com (Agilent Technologies) and sequenced on an Illumina NextSeq human breast cancer cells (MCF10DCIS, RRID: CVCL_5552) 500 instrument with 76 bp single-end reads, generating 34–47 were provided by Dr.
Recommended publications
  • Post-Mortem Whole-Exome Analysis in a Large Sudden Infant Death Syndrome Cohort with a Focus on Cardiovascular and Metabolic Genetic Diseases
    European Journal of Human Genetics (2017) 25, 404–409 & 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 1018-4813/17 www.nature.com/ejhg ARTICLE Post-mortem whole-exome analysis in a large sudden infant death syndrome cohort with a focus on cardiovascular and metabolic genetic diseases Jacqueline Neubauer*,1, Maria Rita Lecca2, Giancarlo Russo2, Christine Bartsch3, Argelia Medeiros-Domingo4, Wolfgang Berger5,6,7 and Cordula Haas1 Sudden infant death syndrome (SIDS) is described as the sudden and unexplained death of an apparently healthy infant younger than one year of age. Genetic studies indicate that up to 35% of SIDS cases might be explained by familial or genetic diseases such as cardiomyopathies, ion channelopathies or metabolic disorders that remained undetected during conventional forensic autopsy procedures. Post-mortem genetic testing by using massive parallel sequencing (MPS) approaches represents an efficient and rapid tool to further investigate unexplained death cases and might help to elucidate pathogenic genetic variants and mechanisms in cases without a conclusive cause of death. In this study, we performed whole-exome sequencing (WES) in 161 European SIDS infants with focus on 192 genes associated with cardiovascular and metabolic diseases. Potentially causative variants were detected in 20% of the SIDS cases. The majority of infants had variants with likely functional effects in genes associated with channelopathies (9%), followed by cardiomyopathies (7%) and metabolic diseases (1%). Although lethal arrhythmia represents the most plausible and likely cause of death, the majority of SIDS cases still remains elusive and might be explained by a multifactorial etiology, triggered by a combination of different genetic and environmental risk factors.
    [Show full text]
  • Nuclear and Mitochondrial Genome Defects in Autisms
    UC Irvine UC Irvine Previously Published Works Title Nuclear and mitochondrial genome defects in autisms. Permalink https://escholarship.org/uc/item/8vq3278q Journal Annals of the New York Academy of Sciences, 1151(1) ISSN 0077-8923 Authors Smith, Moyra Spence, M Anne Flodman, Pamela Publication Date 2009 DOI 10.1111/j.1749-6632.2008.03571.x License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California THE YEAR IN HUMAN AND MEDICAL GENETICS 2009 Nuclear and Mitochondrial Genome Defects in Autisms Moyra Smith, M. Anne Spence, and Pamela Flodman Department of Pediatrics, University of California, Irvine, California In this review we will evaluate evidence that altered gene dosage and structure im- pacts neurodevelopment and neural connectivity through deleterious effects on synap- tic structure and function, and evidence that the latter are key contributors to the risk for autism. We will review information on alterations of structure of mitochondrial DNA and abnormal mitochondrial function in autism and indications that interactions of the nuclear and mitochondrial genomes may play a role in autism pathogenesis. In a final section we will present data derived using Affymetrixtm SNP 6.0 microar- ray analysis of DNA of a number of subjects and parents recruited to our autism spectrum disorders project. We include data on two sets of monozygotic twins. Col- lectively these data provide additional evidence of nuclear and mitochondrial genome imbalance in autism and evidence of specific candidate genes in autism. We present data on dosage changes in genes that map on the X chromosomes and the Y chro- mosome.
    [Show full text]
  • Anti-Lunatic Fringe Antibody (ARG40136)
    Product datasheet [email protected] ARG40136 Package: 100 μl anti-Lunatic Fringe antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes Lunatic Fringe Tested Reactivity Hu Tested Application FACS, IHC-P, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name Lunatic Fringe Antigen Species Human Immunogen KLH-conjugated synthetic peptide corresponding to aa. 86-114 of Human Lunatic Fringe. Conjugation Un-conjugated Alternate Names O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase; EC 2.4.1.222; SCDO3; Beta-1,3-N- acetylglucosaminyltransferase lunatic fringe Application Instructions Application table Application Dilution FACS 1:10 - 1:50 IHC-P 1:50 - 1:100 WB 1:1000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Positive Control K562 Calculated Mw 42 kDa Properties Form Liquid Purification Purification with Protein A and immunogen peptide. Buffer PBS and 0.09% (W/V) Sodium azide. Preservative 0.09% (W/V) Sodium azide. Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/3 Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol LFNG Gene Full Name LFNG O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase Background This gene is a member of the fringe gene family which also includes radical and manic fringe genes.
    [Show full text]
  • Segmentation in Vertebrates: Clock and Gradient Finally Joined
    Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Segmentation in vertebrates: clock and gradient finally joined Alexander Aulehla1 and Bernhard G. Herrmann2 Max-Planck-Institute for Molecular Genetics, Department of Developmental Genetics, 14195 Berlin, Germany The vertebral column is derived from somites formed by terior (A–P) axis. Somite formation takes place periodi- segmentation of presomitic mesoderm, a fundamental cally in a fixed anterior-to-posterior sequence. process of vertebrate embryogenesis. Models on the In the chick embryo, a new somite is formed approxi- mechanism controlling this process date back some mately every 90 min, whereas in the mouse embryo, the three to four decades. Access to understanding the mo- periodicity varies, dependent on the axial position (Tam lecular control of somitogenesis has been gained only 1981). Classical embryology experiments revealed that recently by the discovery of molecular oscillators (seg- periodicity and directionality of somite formation are mentation clock) and gradients of signaling molecules, controlled by an intrinsic program set off in the cells as as predicted by early models. The Notch signaling path- they are recruited into the psm. For instance, when the way is linked to the oscillator and plays a decisive role in psm is inverted rostro–caudally, somite formation in the inter- and intrasomitic boundary formation. An Fgf8 sig- inverted region proceeds from caudal to rostral, main- naling gradient is involved in somite size control. And taining the original direction (Christ et al. 1974). More- the (canonical) Wnt signaling pathway, driven by Wnt3a, over, neither the transversal bisection nor the isolation appears to integrate clock and gradient in a global of the psm from all surrounding tissues stops the seg- mechanism controlling the segmentation process.
    [Show full text]
  • Transcriptomic Profiling of Equine and Viral Genes in Peripheral Blood
    pathogens Article Transcriptomic Profiling of Equine and Viral Genes in Peripheral Blood Mononuclear Cells in Horses during Equine Herpesvirus 1 Infection Lila M. Zarski 1, Patty Sue D. Weber 2, Yao Lee 1 and Gisela Soboll Hussey 1,* 1 Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; [email protected] (L.M.Z.); [email protected] (Y.L.) 2 Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA; [email protected] * Correspondence: [email protected] Abstract: Equine herpesvirus 1 (EHV-1) affects horses worldwide and causes respiratory dis- ease, abortions, and equine herpesvirus myeloencephalopathy (EHM). Following infection, a cell- associated viremia is established in the peripheral blood mononuclear cells (PBMCs). This viremia is essential for transport of EHV-1 to secondary infection sites where subsequent immunopathol- ogy results in diseases such as abortion or EHM. Because of the central role of PBMCs in EHV-1 pathogenesis, our goal was to establish a gene expression analysis of host and equine herpesvirus genes during EHV-1 viremia using RNA sequencing. When comparing transcriptomes of PBMCs during peak viremia to those prior to EHV-1 infection, we found 51 differentially expressed equine genes (48 upregulated and 3 downregulated). After gene ontology analysis, processes such as the interferon defense response, response to chemokines, the complement protein activation cascade, cell adhesion, and coagulation were overrepresented during viremia. Additionally, transcripts for EHV-1, EHV-2, and EHV-5 were identified in pre- and post-EHV-1-infection samples. Looking at Citation: Zarski, L.M.; Weber, P.S.D.; micro RNAs (miRNAs), 278 known equine miRNAs and 855 potentially novel equine miRNAs were Lee, Y.; Soboll Hussey, G.
    [Show full text]
  • Anti-ARL4A Antibody (ARG41291)
    Product datasheet [email protected] ARG41291 Package: 100 μl anti-ARL4A antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes ARL4A Tested Reactivity Hu, Ms, Rat Tested Application ICC/IF, IHC-P Host Rabbit Clonality Polyclonal Isotype IgG Target Name ARL4A Antigen Species Human Immunogen Recombinant fusion protein corresponding to aa. 121-200 of Human ARL4A (NP_001032241.1). Conjugation Un-conjugated Alternate Names ARL4; ADP-ribosylation factor-like protein 4A Application Instructions Application table Application Dilution ICC/IF 1:50 - 1:200 IHC-P 1:50 - 1:200 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 23 kDa Properties Form Liquid Purification Affinity purified. Buffer PBS (pH 7.3), 0.02% Sodium azide and 50% Glycerol. Preservative 0.02% Sodium azide Stabilizer 50% Glycerol Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. www.arigobio.com 1/2 Bioinformation Gene Symbol ARL4A Gene Full Name ADP-ribosylation factor-like 4A Background ADP-ribosylation factor-like 4A is a member of the ADP-ribosylation factor family of GTP-binding proteins. ARL4A is similar to ARL4C and ARL4D and each has a nuclear localization signal and an unusually high guaninine nucleotide exchange rate.
    [Show full text]
  • Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-Like Mouse Models: Tracking the Role of the Hairless Gene
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2006 Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene Yutao Liu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Liu, Yutao, "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino- like Mouse Models: Tracking the Role of the Hairless Gene. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1824 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yutao Liu entitled "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Brynn H. Voy, Major Professor We have read this dissertation and recommend its acceptance: Naima Moustaid-Moussa, Yisong Wang, Rogert Hettich Accepted for the Council: Carolyn R.
    [Show full text]
  • Deficiency in Class III PI3-Kinase Confers Postnatal Lethality with IBD
    ARTICLE DOI: 10.1038/s41467-018-05105-8 OPEN Deficiency in class III PI3-kinase confers postnatal lethality with IBD-like features in zebrafish Shaoyang Zhao1,2,3, Jianhong Xia2,3, Xiuhua Wu2,3, Leilei Zhang2,3, Pengtao Wang2,3, Haiyun Wang2,3, Heying Li2, Xiaoshan Wang 2, Yan Chen 2, Jean Agnetti2, Yinxiong Li 2, Duanqing Pei2,3 & Xiaodong Shu2,3 The class III PI3-kinase (PIK3C3) is an enzyme responsible for the generation of phospha- tidylinositol 3-phosphate (PI3P), a critical component of vesicular membrane. Here, we report 1234567890():,; that PIK3C3 deficiency in zebrafish results in intestinal injury and inflammation. In pik3c3 mutants, gut tube forms but fails to be maintained. Gene expression analysis reveals that barrier-function-related inflammatory bowel disease (IBD) susceptibility genes (e-cadherin, hnf4a, ttc7a) are suppressed, while inflammatory response genes are stimulated in the mutants. Histological analysis shows neutrophil infiltration into mutant intestinal epithelium and the clearance of gut microbiota. Yet, gut microorganisms appear dispensable as mutants cultured under germ-free condition have similar intestinal defects. Mechanistically, we show that PIK3C3 deficiency suppresses the formation of PI3P and disrupts the polarized dis- tribution of cell-junction proteins in intestinal epithelial cells. These results not only reveal a role of PIK3C3 in gut homeostasis, but also provide a zebrafish IBD model. 1 School of Life Sciences, University of Science and Technology of China, 230027 Hefei, Anhui, China. 2 CAS Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health-Guangzhou Medical University Joint School of Biological Sciences, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China.
    [Show full text]
  • Autism Multiplex Family with 16P11.2P12.2 Microduplication Syndrome in Monozygotic Twins and Distal 16P11.2 Deletion in Their Brother
    European Journal of Human Genetics (2012) 20, 540–546 & 2012 Macmillan Publishers Limited All rights reserved 1018-4813/12 www.nature.com/ejhg ARTICLE Autism multiplex family with 16p11.2p12.2 microduplication syndrome in monozygotic twins and distal 16p11.2 deletion in their brother Anne-Claude Tabet1,2,3,4, Marion Pilorge2,3,4, Richard Delorme5,6,Fre´de´rique Amsellem5,6, Jean-Marc Pinard7, Marion Leboyer6,8,9, Alain Verloes10, Brigitte Benzacken1,11,12 and Catalina Betancur*,2,3,4 The pericentromeric region of chromosome 16p is rich in segmental duplications that predispose to rearrangements through non-allelic homologous recombination. Several recurrent copy number variations have been described recently in chromosome 16p. 16p11.2 rearrangements (29.5–30.1 Mb) are associated with autism, intellectual disability (ID) and other neurodevelopmental disorders. Another recognizable but less common microdeletion syndrome in 16p11.2p12.2 (21.4 to 28.5–30.1 Mb) has been described in six individuals with ID, whereas apparently reciprocal duplications, studied by standard cytogenetic and fluorescence in situ hybridization techniques, have been reported in three patients with autism spectrum disorders. Here, we report a multiplex family with three boys affected with autism, including two monozygotic twins carrying a de novo 16p11.2p12.2 duplication of 8.95 Mb (21.28–30.23 Mb) characterized by single-nucleotide polymorphism array, encompassing both the 16p11.2 and 16p11.2p12.2 regions. The twins exhibited autism, severe ID, and dysmorphic features, including a triangular face, deep-set eyes, large and prominent nasal bridge, and tall, slender build. The eldest brother presented with autism, mild ID, early-onset obesity and normal craniofacial features, and carried a smaller, overlapping 16p11.2 microdeletion of 847 kb (28.40–29.25 Mb), inherited from his apparently healthy father.
    [Show full text]
  • HES1, Two Programs: Promoting the Quiescence and Proliferation of Adult Neural Stem Cells
    Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press OUTLOOK HES1, two programs: promoting the quiescence and proliferation of adult neural stem cells Lachlan Harris and François Guillemot The Francis Crick Institute, London NW1 1AT, United Kingdom Adult neural stem cells are mostly quiescent and only bition of this pathway drives neuronal differentiation rarely enter the cell cycle to self-renew and generate neu- (Imayoshi et al. 2013). Specifically, they had determined ronal or glial progenies. The Notch signaling pathway is that Notch signaling induces proliferation via activating essential for both the quiescent and proliferative states the expression of the transcriptional repressor HES1, of neural stem cells. However, these are mutually exclu- whose protein levels oscillate due to autorepression (Hir- sive cellular states; thus, how Notch promotes both of ata et al. 2002). The oscillation of the HES1 protein then these programs within adult neural stem cells has re- induces the out of phase oscillation of its target gene, mained unclear. In this issue of Genes & Development, Achaete–scute homolog 1 (Ascl1), which in turn activates Sueda and colleagues (pp. 511–523) use an extensive reper- the transcription of positive regulators of cell cycle pro- toire of mouse genetic tools and techniques to demon- gression. Conversely, inhibition of the Notch pathway strate that it is the levels and dynamic expression of the down-regulates HES1 below a critical level, resulting in Notch transcriptional effector Hairy and Enhancer of sustained, rather than oscillatory, ASCL1 expression and Split 1 that enables this dual role. the induction of neuronal genes (Imayoshi et al.
    [Show full text]
  • Homeobox Gene Expression Profile in Human Hematopoietic Multipotent
    Leukemia (2003) 17, 1157–1163 & 2003 Nature Publishing Group All rights reserved 0887-6924/03 $25.00 www.nature.com/leu Homeobox gene expression profile in human hematopoietic multipotent stem cells and T-cell progenitors: implications for human T-cell development T Taghon1, K Thys1, M De Smedt1, F Weerkamp2, FJT Staal2, J Plum1 and G Leclercq1 1Department of Clinical Chemistry, Microbiology and Immunology, Ghent University Hospital, Ghent, Belgium; and 2Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands Class I homeobox (HOX) genes comprise a large family of implicated in this transformation proces.14 The HOX-C locus transcription factors that have been implicated in normal and has been primarily implicated in lymphomas.15 malignant hematopoiesis. However, data on their expression or function during T-cell development is limited. Using degener- Hematopoietic cells are derived from stem cells that reside in ated RT-PCR and Affymetrix microarray analysis, we analyzed fetal liver (FL) in the embryo and in the adult bone marrow the expression pattern of this gene family in human multipotent (ABM), which have the unique ability to self-renew and thereby stem cells from fetal liver (FL) and adult bone marrow (ABM), provide a life-long supply of blood cells. T lymphocytes are a and in T-cell progenitors from child thymus. We show that FL specific type of hematopoietic cells that play a major role in the and ABM stem cells are similar in terms of HOX gene immune system. They develop through a well-defined order of expression, but significant differences were observed between differentiation steps in the thymus.16 Several transcription these two cell types and child thymocytes.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]