Renormalization Group Flow of Scalar Models in Gravity

Total Page:16

File Type:pdf, Size:1020Kb

Renormalization Group Flow of Scalar Models in Gravity Renormalization group flow of scalar models in gravity DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Physik eingereicht an der Mathematisch-Naturwissenschaflichen Fakultät I Humboldt-Universität zu Berlin von Herrn Filippo Guarnieri Betreuer der Arbeit Prof. Dr. Hermann Nicolai Präsident der Humboldt-Universität zu Berlin: Prof. Dr. Jan-Hendrik Olbertz Dekan der Mathematisch-Naturwissenschaflichen Fakultät I: Prof. Dr. Stefan Hecht Gutachter: Prof. Dr. Hermann Nicolai Prof. Dr. Martin Reuter Dr. Roberto Percacci Tag der mündlichen Prüfung: 08.04.2014 2 3 Sic unumquicquid paulatim protrahit aetas in medium ratioque in luminis erigit oras De rerum natura, Lucretius 4 Contents Abstract 9 Zusammenfassung 11 Sommario 13 Introduction 15 1 Basics of renormalization group 19 1.1 Gell-Mann Low equation . 20 1.2 Functional renormalization group . 22 1.2.1 Sharp cutoff equation . 26 1.2.2 Exact equation . 29 1.2.3 Proper time equation . 33 2 Renormalization group in quantum gravity 39 2.1 Renormalizability and unitarity . 40 2.2 Asymptotic safety scenario . 42 2.2.1 Gravity in 2 + dimensions . 45 2.2.2 Background field method . 47 2.2.3 Gauge fixing and ghosts . 49 2.2.4 Exact equation for gravity . 51 2.2.5 Polynomial truncations . 53 2.2.6 Non-polynomial truncations . 56 2.3 Hořava-Lifshitz gravity . 58 2.3.1 Spacetime anisotropy . 58 2.3.2 Anisotropic gravitational actions . 59 2.3.3 Detailed balance condition . 61 2.3.4 Anisotropic Weyl invariance . 62 3 Asymptotic safety in conformal gravity 63 3.1 RG flow equation for the Einstein-Hilbert action . 64 3.2 Conformally reduced action . 67 3.3 Polynomial truncations . 70 3.3.1 Sd topology . 71 3.3.2 Rd topology . 72 3.3.3 Fixed points and linearized flow . 74 6 CONTENTS 3.4 Non-polynomial truncations . 77 4 Brans-Dicke theory in the LPA 83 4.1 Scalar-tensor theories . 84 4.2 Quantization procedure . 87 4.2.1 Feynman gauge . 88 4.2.2 Landau gauge . 89 4.3 The flow equation . 90 4.3.1 Feynman gauge . 90 4.3.2 Landau gauge . 92 4.4 Analytical study of the equation . 93 4.4.1 Feynman gauge . 94 4.4.2 Landau gauge . 99 4.5 Numerical results . 102 4.5.1 Feynman Gauge . 102 4.5.2 Landau Gauge . 103 4.6 Quantum equivalence . 109 5 Hořava-Lifshitz gravity in 2+1 dimensions 111 5.1 The action in 2+1 dimensions . 112 5.2 Metric decomposition and gauge fixing . 114 5.3 Setup of the one-loop calculation . 116 5.4 Divergences and β-functions . 117 5.4.1 Heat kernel expansion . 118 5.4.2 β-functions . 120 Conclusions 125 A Functional representation of the effective action 131 B Arnowitt-Deser-Misner splitting 133 C CREH: Critical exponents and β-functions 137 C.1 Critical exponents and universal quantities . 137 C.2 β-functions . 139 C.2.1 The projection on Sd . 139 C.2.2 The projection on Rd .......................140 D Heat kernel techniques 143 D.1 Pseudodifferential operators . 144 D.1.1 Heat kernel expansion . 146 D.1.2 The Laplacian operators . 148 D.1.3 The squared Laplacian operators . 150 D.1.4 Other results . 151 E Other results for the scalar-tensor model 157 E.1 Subleading corrections to singular behavior . 157 E.2 The two-dimensional case . 159 CONTENTS 7 F Anisotropic Weyl invariance 161 8 CONTENTS Abstract In this Ph.D. thesis we will study the issue of renormalizability of gravitation in the context of the renormalization group (RG), employing both perturbative and non-perturbative techniques. In particular, we will focus on different gravitational models and approximations in which a central role is played by a scalar degree of freedom, since their RG flow is easier to analyze. More specifically, we will consider two types of situations: on the one hand, we will study scalar field theories obtained as conformally reduced toy models of gravity, that is, by neglecting the contribution of the spin-2 degrees of freedom of the metric in the quantization procedure. On the other hand, we will study scalar-tensor theories as dynamically equivalent theories of higher derivative models. We restrict our interest in particular to two quantum gravity approaches that have gained a lot of attention recently, namely the asymptotic safety scenario for gravity and the Hořava-Lifshitz quantum gravity. In the so-called asymptotic safety conjecture the high energy regime of gravity is controlled by a non-Gaussian fixed point which ensures non-perturbative renormalizability and finiteness of the corre- lation functions. We will then investigate the existence of such a non trivial fixed point using the functional renormalization group, a continuum version of the non- perturbative Wilson’s renormalization group. In particular we will quantize the sole conformal degree of freedom, which is an approximation that has been shown to lead to a qualitatively correct picture. The use of such a scalar toy model, moreover, will help us to investigate in a non-perturbative way the role that non-local operators have in the emergence of a symmetry-broken phase in the infrared. The question of the existence of a non-Gaussian fixed point in an infinite- dimensional parameter space, that is for a generic f(R) theory, cannot however be studied using such a conformally reduced model. Hence we will study it by quantizing a dynamically equivalent scalar-tensor theory, i.e. a generic Brans-Dicke theory with ! = 0 in the local potential approximation. We will then debate the breaking of the equivalence at a quantum level. Finally, we will investigate, using a perturbative RG scheme, the asymptotic freedom of the Hořava-Lifshitz gravity, that is an approach based on the emergence of an anisotropy between space and time which lifts the Newton’s constant to a marginal coupling and explicitly preserves unitarity. In particular we will evaluate the one-loop correction in 2+1 dimensions quantizing only the conformal degree of freedom. For this dimensionality it is in fact the only physical one. We obtain in this way the first results on the RG flow of the model in the ultraviolet. 10 ABSTRACT Zusammenfassung In dieser Doktorarbeit werden wir das Renormierungsproblem von Gravitationsthe- orien im Kontext der Renormierungsgruppe (RG) unter Anwendung von perturba- tiven und nicht-perturbativen Methoden untersuchen. Insbesondere werden wir uns auf verschiedene Gravitationsmodelle und Näherungen konzentrieren, in welchen die zentrale Rolle von einem skalaren Freiheitsgrad eingenommen wird, da sein RG Fluss einfacher zu analysieren ist. Wir werden zwei Fälle genauer betrachten: einerseits werden wir skalare Feldtheorien aus konform reduzierten vereinfachten Gravitation- smodellen untersuchen, indem der Beitrag der Gravitonen bei der Quantisierung vernachlässigt wird. Andererseits untersuchen wir Skalar-Tensortheorien als dy- namische Äquivalentstheorie zu höheren Ableitungstheorien. Wir konzentrieren uns besonders auf zwei Ansätze für Quantengravitation, die in letzter Zeit viel Aufmerksamkeit erhalten haben, nämlich den asymptotisch sicheren Fall der Gravitation und die Hořava-Lifshitz Quantengravitation. Das Prinzip der Asymptotischen Sicherheit beruht auf der Annahme, dass das hochenergetische Gravitationsregime von einem nicht-Gaußschen Fixpunkt bestimmt wird, der nicht- perturbative Renormierung und Endlichkeit der Korrelationsfunktionen sicherstellt. Wir werden die Existenz eines solchen nicht-trivialen Fixpunktes mit Hilfe der funk- tionalen Renormierungsgruppe, einer kontinuierlichen Version der nicht-perturbativen Wilson Renormierungsgruppe, untersuchen. Insbesondere werden wir den einzigen konformen Freiheitsgrad quantisieren. In diesem Fall konnte gezeigt werden, dass dies eine qualitativ gute Näherung darstellt. Diese skalare Feldtheorie hilft uns auf nicht-perturbative Weise die Rolle der nicht-lokalen Operatoren zu verstehen, die diese bei der Entstehung einer Symmetrie-gebrochenen Phase im Infraroten haben. Die Frage nach der Existenz eines nicht-Gaußschen Fixpunktes in einem unendlich- dimensionalen Parameterraum, das heißt für eine generische f(R)-Theorie, kann je- doch nicht mit einem solchen konform reduzierten Model analysiert werden. Deshalb werden wir es untersuchen, indem wir eine skalare dynamische Äquivalentstheorie, das heißt eine generische Brans-Dicke Theorie in der lokal-Potential Näherung mit ! = 0, quantisieren. Wir werden dann die Äquivalenzbrechung auf dem Quanten- level debattieren. Schließlich werden wir mittels einer perturbativen RG Methode die asympto- tische Freiheit der Hořava-Lifshitz Gravitationstheorie analysieren. Diese Gravita- tionstheorie beruht auf der Entstehung einer Anisotropie zwischen Raum und Zeit, die Newtons Konstante zu einer marginalen Koppelung werden lässt und explizit die Unitarität bewahrt. Insbesondere werden wir die Einschleifenkorrektur in 2+1 Dimensionen berechnen, indem wir nur den konformen Freiheitsgrad, den einzigen physikalischen für diese Dimensionalität, quantisieren. Wir erhalten somit die ersten Resultate über den RG Fluss dieses Models im ultravioletten Regime. 12 ZUSAMMENFASSUNG Sommario In questa tesi di dottorato studieremo la rinormalizzabilità di teorie gravitazionali nel contesto del gruppo di rinormalizzazione (RG), impiegando sia tecniche per- turbative che non perturbative. In particolare, ci concentreremo su diversi modelli gravitazionali ed approssimazioni in cui un ruolo centrale viene svolto da una grado di libertà scalare; il flusso di rinormalizzazione di questi modelli risulta infatti più semplice da analizzare. Più nello specifico prenderemo in considerazione due situ- azioni: in una studieremo teorie di campo
Recommended publications
  • Ultraviolet Fixed Point Structure of Renormalizable Four-Fermion Theory in Less Than Four Dimensions*
    160 Ultraviolet Fixed Point Structure of Renormalizable Four-Fermion Theory in Less Than Four Dimensions* Yoshio Kikukawa Department of Physics, Nagoya University, Nagoya 464-01,Japan Abstract We study the renormalization properties of the four-fermion theory in less than four dimen­ sions (D < 4) in 1/N expansion scheme. It is shown that /3 function of the bare coupling has a nontrivial ultraviolet fixed point with a large anomalous dimension ( 'Yti;.p = D - 2) in a similar manner to QED and gauged Nambu-Jona-Lasinio (NJL) model in ladder approximation. The anomalous dimension has no discontinuity across the fixed point in sharp contrast to gauged NJL model. The operator product expansion of the fermion mass function is also given. Introduction Recently the possibility that QED may have a nontrivial ultraviolet(UV) fixed point has been paid much attention from the viewpoints of "zero charge" problem in QED and raising condensate in technicolor model. Actually such a possibility was pointed out in ladder approximation in which the cutoff Schwinger-Dyson equation for the fermion self-energy possesses a spontaneous-chiral­ symmetry-breaking solution for the bare coupling larger than a non-zero value ( ao =eij/ 411" > ?r/3 = ac)- We can make this solution finite by letting ao have a cutoff dependence in such a way that ao( I\) _,. ac + 0 (I\ - oo ), ac being identified as the critical point with scaling behavior of essential-singularity type. At the critical point, fermion mass operator ;j;'lj; has a large anomalous dimension 'Yti;.p = 1,
    [Show full text]
  • The Real Problem with Perturbative Quantum Field Theory
    The Real Problem with Perturbative Quantum Field Theory James Duncan Fraser Abstract The perturbative approach to quantum field theory (QFT) has long been viewed with suspicion by philosophers of science. This paper offers a diag- nosis of its conceptual problems. Drawing on Norton's ([2012]) discussion of the notion of approximation I argue that perturbative QFT ought to be understood as producing approximations without specifying an underlying QFT model. This analysis leads to a reassessment of common worries about perturbative QFT. What ends up being the key issue with the approach on this picture is not mathematical rigour, or the threat of inconsistency, but the need for a physical explanation of its empirical success. 1 Three Worries about Perturbative Quantum Field Theory 2 The Perturbative Formalism 2.1 Expanding the S-matrix 2.2 Perturbative renormalization 3 Approximations and Models 4 Perturbative Quantum Field Theory Produces Approximations 5 The Real Problem 1 Three Worries about Perturbative Quantum Field Theory On the face of it, the perturbative approach to quantum field theory (QFT) ought to be of great interest to philosophers of physics.1 Perturbation theory has long 1I use the terms `perturbative approach to QFT' and `perturbative QFT' here to refer to the perturbative treatment of interacting field theories that is invariable found in QFT textbooks and forms the basis of much work in high energy physics. I am not assuming that this `approach' 1 played a special role in the QFT programme. The axiomatic and effective field theory approaches to QFT, which have been the locus of much philosophical at- tention in recent years, have their roots in the perturbative formalism pioneered by Feynman, Schwinger and Tomonaga in the 1940s.
    [Show full text]
  • Arxiv:1102.4624V1 [Hep-Th] 22 Feb 2011 (Sec
    Renormalisation group and the Planck scale Daniel F. Litim∗ Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH, U.K. I discuss the renormalisation group approach to gravity, its link to S. Weinberg's asymptotic safety scenario, and give an overview of results with applications to particle physics and cosmology. I. INTRODUCTION Einstein's theory of general relativity is the remarkably successful classical theory of the gravitational force, charac- −11 3 2 terised by Newton's coupling constant GN = 6:67×10 m =(kg s ) and a small cosmological constant Λ. Experimen- tally, its validity has been confirmed over many orders of magnitude in length scales ranging from the sub-millimeter regime up to solar system size. At larger length scales, the standard model of cosmology including dark matter and dark energy components fits the data well. At shorter length scales, quantum effects are expected to become impor- tant. An order of magnitude estimate for the quantum scale of gravity { the Planck scale { is obtained by dimensional p 3 −33 analysis leading to the Planck length `Pl ≈ ~GN =c of the order of 10 cm, with c the speed of light. In particle physics units this translates into the Planck mass 19 MPl ≈ 10 GeV : (1) While this energy scale is presently out of reach for earth-based particle accelerator experiments, fingerprints of Planck-scale physics can nevertheless become accessible through cosmological data from the very early universe. From a theory perspective, it is widely expected that a fundamental understanding of Planck scale physics requires a quantum theory of gravity.
    [Show full text]
  • The Search for the Universality Class of Metric Quantum Gravity
    universe Article The Search for the Universality Class of Metric Quantum Gravity Riccardo Martini 1 , Alessandro Ugolotti 2 and Omar Zanusso 3,* 1 Okinawa Institute of Science, Technology Graduate University, Kunigami District, Okinawa 904-0495, Japan; [email protected] 2 Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany; [email protected] 3 Università di Pisa and INFN—Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy * Correspondence: [email protected] Abstract: On the basis of a limited number of reasonable axioms, we discuss the classification of all the possible universality classes of diffeomorphisms invariant metric theories of quantum gravity. We use the language of the renormalization group and adopt several ideas which originate in the context of statistical mechanics and quantum field theory. Our discussion leads to several ideas that could affect the status of the asymptotic safety conjecture of quantum gravity and give universal arguments towards its proof. Keywords: quantum gravity; asymptotic safety 1. Introduction Citation: Martini, R.; Ugolotti, A.; A well-known fact is that in four dimensions a quantum theory of Einstein–Hilbert Zanusso, O. The Search for the gravity displays perturbatively non-renormalizable divergences starting at two loops [1,2]. Universality Class of Metric This happens because Newton’s constant has negative mass dimension, which in turn Quantum Gravity. Universe 2021, 7, requires a re-interpretation of the perturbative series as an effective expansion in inverse 162. https://doi.org/10.3390/ powers of the Planck mass, making the theory an effective IR model, rather than a UV universe7060162 complete one [3].
    [Show full text]
  • Arxiv:1707.04217V2 [Hep-Th] 28 Mar 2018
    More asymptotic safety guaranteed Andrew D. Bond1, ∗ and Daniel F. Litim1, y 1Department of Physics and Astronomy, U Sussex, Brighton, BN1 9QH, U.K. We study interacting fixed points and phase diagrams of simple and semi-simple quantum field theories in four dimensions involving non-abelian gauge fields, fermions and scalars in the Veneziano limit. Particular emphasis is put on new phenomena which arise due to the semi- simple nature of the theory. Using matter field multiplicities as free parameters, we find a large variety of interacting conformal fixed points with stable vacua and crossovers inbetween. Highlights include semi-simple gauge theories with exact asymptotic safety, theories with one or several interacting fixed points in the IR, theories where one of the gauge sectors is both UV free and IR free, and theories with weakly interacting fixed points in the UV and the IR limits. The phase diagrams for various simple and semi-simple settings are also given. Further aspects such as perturbativity beyond the Veneziano limit, conformal windows, and implications for model building are discussed. arXiv:1707.04217v2 [hep-th] 28 Mar 2018 ∗ [email protected] y [email protected] 2 Contents I. Introduction 3 II. Fixed points of gauge theories 4 A. Fixed points in perturbation theory 4 B. Gauge couplings 6 C. Yukawa couplings 7 D. Scalar couplings 8 E. Universal scaling exponents 9 III. Minimal models 11 A. Semi-simple gauge theory 11 B. Free parameters and Veneziano limit 13 C. Perturbativity to leading order 14 D. Anomalous dimensions 16 E. Running couplings beyond the leading order 17 IV.
    [Show full text]
  • 2 and Dark Matter Confront Asymptotic Safety
    Minimal models for g − 2 and dark matter confront asymptotic safety Kamila Kowalska∗ and Enrico Maria Sessolo† National Centre for Nuclear Research Pasteura 7, 02-093 Warsaw, Poland Abstract We use the framework of asymptotic safety above the Planck scale to constrain the parameter space of simple models of new physics that can accommodate the measured value of the anomalous magnetic moment of the muon and the relic density of dark matter. We couple parametrically to the trans-Planckian quantum physics a set of SU(2)L×U(1)Y invariant extensions of the Standard Model, each comprising an inert scalar field and one pair of colorless fermions that communicate to the muons through Yukawa-type interactions. The presence of an interactive UV fixed point in the system of gauge and Yukawa couplings imposes a set of boundary conditions at the Planck scale, which allow one to derive unique phenomenological predictions in each case and distinguish the different representations of the gauge group from one another. We apply to the models constraints from the h ! µµ signal strength at ATLAS and CMS, direct LHC searches for electroweak production with leptons and missing energy in the final state, and the dark matter relic density. We find that they further restrict the available parameter space. arXiv:2012.15200v2 [hep-ph] 27 May 2021 ∗[email protected][email protected] 1 Contents 1 Introduction2 2 Minimal models for the lepton g − 24 2.1 Lagrangian of the models . .7 2.2 Dark matter . 10 3 Trans-Planckian fixed points 11 3.1 General notions .
    [Show full text]
  • Effective and Fundamental Quantum Fields at Criticality
    Effective and fundamental quantum fields at criticality Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat) vorgelegt dem Rat der Physikalisch-Astronomischen Fakult¨at der Friedrich-Schiller-Universit¨at Jena von Dipl.-Phys. Michael Scherer geboren am 2. November 1981 in Furtwangen Gutachter: 1. Prof. Dr. Holger Gies, Jena 2. Prof. Dr. Jan Pawlowski, Heidelberg 3. Prof. Dr. Litim, Sussex Tag der Disputation: 28. Oktober 2010 Effektive und fundamentale Quantenfelder an der Kritikalit¨at Zusammenfassung Die funktionale Renormierungsgruppe in der Formulierung von Wetterich wird als ge- eignete nicht-st¨orungstheoretische Methode f¨ur die qualitative und quantitative Unter- suchung universeller Ph¨anomene in Quantenfeldtheorien verwendet. Es werden Fluss- gleichungen f¨ur eine Klasse chiraler Yukawa-Modelle mit und ohne Eichbosonen abgeleitet und deren Fixpunktstruktur untersucht. Die vierdimensionalen chiralen Yukawa-Modelle dienen als Spielzeug-Modelle f¨ur den Higgs-Sektor des Standardmodells. Eine Balance bosonischer und fermionischer Fluktuationen erm¨oglicht asymptotisch sichere Fixpunkte in der untersuchten N¨aherung, was eine Interpretation dieser Theorie als fundamentale Theorie erlaubt und das Trivialit¨ats-Problem l¨ost. Außerdem erhalten wir Vorhersagen f¨ur die Higgs- und die Topquark-Masse unseres Spielzeugmodells. In drei Dimensio- nen berechnen wir die kritischen Exponenten, die neue Universalit¨atsklassen definieren. Damit liefern wir quantitative Vorhersagen f¨ur Systeme stark korrelierter chiraler Fermio- nen, die mit anderen nicht-st¨orungstheoretischen Methoden ¨uberpr¨uft werden k¨onnen. In einem Yukawa-System nicht-relativistischer zweikomponentiger Fermionen wird der Renormierungsgruppen-Fluss ebenfalls durch einen Fixpunkt dominiert, was zu Univer- salit¨at im BCS-BEC Crossover f¨uhrt. Wir entwickeln die Methode der funktionalen Renormierung hinzu einem quantitativen Niveau und berechnen unter anderem die kri- tische Temperatur ¨uber den gesamten Crossover.
    [Show full text]
  • Where to Look for Solving the Gauge Hierarchy Problem?
    Physics Letters B 718 (2012) 573–576 Contents lists available at SciVerse ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Where to look for solving the gauge hierarchy problem? C. Wetterich Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, D-69120 Heidelberg, Germany article info abstract Article history: A mass of the Higgs boson close to 126 GeV may give a hint that the standard model of particle physics Received 19 October 2012 is valid up to the Planck scale. We discuss perspectives for the solution of the gauge hierarchy problem Accepted 8 November 2012 at high scales. Scenarios with an ultraviolet fixed point have predicted a Higgs boson mass very close to Available online 9 November 2012 126 GeV if the fixed point value of the quartic scalar coupling is small. In this case the top quark pole Editor: A. Ringwald mass should be close to 172 GeV. © 2012 Elsevier B.V. All rights reserved. The ATLAS and CMS Collaborations at the LHC have announced fields being straightforward.) The relevant terms in the effective evidence for a mass of the Higgs boson in the range of 125– potential for ϕ and χ are 126 GeV [1,2]. A mass in the vicinity of 126 GeV has been pre- 1 † 2 † 2 dicted [3] within models of non-perturbative renormalizability of U = λ ϕ ϕ + γ ϕ ϕ χ + Uχ (χ), (1) gravity [4,5] which lead to a small value of the quartic scalar cou- 2 pling near the Planck scale. In this Letter we ask if a Higgs boson with dimensionless couplings λ and γ .(Termsm2ϕ†ϕ or νϕ†ϕχ mass around 126 GeV, if confirmed, could give hints for the energy can be absorbed by a redefinition of χ .) We choose conventions scale where a possible solution of the gauge hierarchy problem for χ such that its expectation value equals the reduced Planck could be found.
    [Show full text]
  • Exploring New Windows Into Fundamental Physics at High
    Exploring New Windows into Fundamental Physics at High Energies Published by Proefschriftmaken phone: +31(0)883746777 De Limiet 26 e-mail: [email protected] 4131 NR Vianen http://www.Proefchriftmaken.nl The Netherlands Cover illustration: Planck mapped the strength (color) and polarization (texture) of ra- diation from galactic dust. This is a photo from ESA/PLANCK COLLABORATION. One can find this photo from http://science.sciencemag.org/content/347/6222/595/tab- figures-data. Adrian Cho has used this figure. ISBN: 978-94-6380-312-0 NUR: 925 Copyright c 2019 Leihua Liu. All rights reserved. Exploring New Windows into Fundamental Physics at High Energies Nieuwe Invalshoeken in de Fundamentele Fysica van Hoge Energiee¨n (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof. dr. H.R.B.M. Kummeling, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op woensdag 24 april 2019 des middags te 12.45 uur door Leihua Liu geboren 9 september 1985 te Anhua, China Promotor: Prof. dr. S.J.G. Vandoren Copromoter: Dr. T. Prokopec This thesis is dedicated to my parents and wife, for their endless love and support. Contents List of Tables . ix List of Figures . xi 1 Introduction 1 1.1 A big picture of the Universe . 1 1.2 Why inflation? . 3 1.3 Inflationary model building . 4 1.4 The nature of gravity . 5 1.5 Outline of the thesis . 6 2 Standard cosmological model 7 2.1 A brief history of cosmology .
    [Show full text]
  • Renormalization Group - Wikipedia, the Free Encyclopedia 3/17/12 5:27 PM Renormalization Group from Wikipedia, the Free Encyclopedia
    Renormalization group - Wikipedia, the free encyclopedia 3/17/12 5:27 PM Renormalization group From Wikipedia, the free encyclopedia In theoretical physics, the renormalization group (RG) refers to a mathematical apparatus that allows systematic investigation of the changes of a physical system as viewed at different distance scales. In particle physics, it reflects the changes in the underlying force laws (codified in a quantum field theory) as the energy scale at which physical processes occur varies, energy/momentum and resolution distance scales being effectively conjugate under the uncertainty principle (cf. Compton wavelength). A change in scale is called a "scale transformation". The renormalization group is intimately related to "scale invariance" and "conformal invariance", symmetries in which a system appears the same at all scales (so-called self-similarity). (However, note that scale transformations are included in conformal transformations, in general: the latter including additional symmetry generators associated with special conformal transformations.) As the scale varies, it is as if one is changing the magnifying power of a notional microscope viewing the system. In so- called renormalizable theories, the system at one scale will generally be seen to consist of self-similar copies of itself when viewed at a smaller scale, with different parameters describing the components of the system. The components, or fundamental variables, may relate to atoms, elementary particles, atomic spins, etc. The parameters of the theory typically describe the interactions of the components. These may be variable "couplings" which measure the strength of various forces, or mass parameters themselves. The components themselves may appear to be composed of more of the self-same components as one goes to shorter distances.
    [Show full text]
  • Arxiv:1904.07042V1 [Gr-Qc] 15 Apr 2019
    Quantum spacetime and the renormalization group: Progress and visions Antonio D. Pereira1, 2, ∗ 1Instituto de F´ısica, Universidade Federal Fluminense, Campus da Praia Vermelha, Av. Litor^anea s/n, 24210-346, Niter´oi,RJ, Brazil 2Institute for Theoretical Physics, University of Heidelberg, Philosophenweg 12, 69120 Heidelberg, Germany The quest for a consistent theory which describes the quantum microstructure of spacetime seems to require some departure from the paradigms that have been followed in the construction of quan- tum theories for the other fundamental interactions. In this contribution we briefly review two approaches to quantum gravity, namely, asymptotically safe quantum gravity and tensor models, based on different theoretical assumptions. Nevertheless, the main goal is to find a universal con- tinuum limit for such theories and we explain how coarse-graining techniques should be adapted to each case. Finally, we argue that although seemingly different, such approaches might be just two sides of the same coin. I. INTRODUCTION The construction of the Standard Model (SM) of particle physics under the perturbative and continuum quantum- field theoretic dogmas led to a successful theory beyond dispute. The detection of the Higgs [1] and the absence of new physics at the LHC so far have crowned the SM as a very accurate quantum description of the fundamental interactions but gravity. However, there are some puzzles which are not addressed by the SM as, e.g., neutrino masses and dark matter. Moreover, the SM is not a fundamental quantum field theory valid up to arbitrarily short scales due to the existence of a Landau pole being thus valid up to some cutoff scale, [2{5].
    [Show full text]
  • Asymptotic Safety of Scalar Field Theories
    Asymptotic safety of scalar field theories Daniel F. Litim1 and Matthew J. Trott1, 2 1Department of Physics and Astronomy, University of Sussex, BN1 9QH, Brighton, UK 2 SUPA, School of Physics and Astronomy, University of St Andrews, KY16 9SS, St Andrews, UK We study 3d O(N) symmetric scalar field theories using Polchinski's renormalisation group. In the infinite N limit the model is solved exactly including at strong coupling. At short dis- tances the theory is described by a line of asymptotically safe ultraviolet fixed points bounded by asymptotic freedom at weak, and the Bardeen-Moshe-Bander phenomenon at strong sex- tic coupling. The Wilson-Fisher fixed point arises as an isolated low-energy fixed point. Further results include the conformal window for asymptotic safety, convergence-limiting poles in the complex field plane, and the phase diagram with regions of first and second order phase transitions. We substantiate a duality between Polchinski's and Wetterich's versions of the functional renormalisation group, also showing that that eigenperturbations are identical at any fixed point. At a critical sextic coupling, the duality is worked out in detail to explain the spontaneous breaking of scale symmetry responsible for the generation of a light dilaton. Implications for asymptotic safety in other theories are indicated. Contents I. Introduction 2 II. Renormalisation group 3 A. Polchinski equation3 B. Wetterich equation5 C. Duality 6 III. Running couplings 8 A. Local flows 9 B. Global flows 10 C. Interacting fixed points 11 IV. Infrared fixed point 13 A. Wilson-Fisher fixed point 13 B. Bootstrap for scaling exponents 14 C.
    [Show full text]