Introduction to Renormalization

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Renormalization Introduction to Renormalization with Applications in Condensed-Matter and High-Energy Physics Institute for Theoretical Physics, University of Cologne Lecture course, winter term 2017/2018 Michael M. Scherer January 26, 2021 Contents Contents 1 1 Introduction5 1.1 Aspects of the renormalization group....................... 6 1.2 Phase transitions.................................. 7 1.3 Critical phenomena................................. 8 1.4 Perturbative quantum field theory ........................ 9 1.5 Renormalization-group based definition of QFTs ................ 10 1.6 QFTs in the high-energy limit........................... 11 2 Phase transitions and critical phenomena 13 2.1 Ising model..................................... 13 2.1.1 Remarks on solutions of the Ising model in d = 1 and d = 2 . 14 2.1.2 Symmetries of the Ising model ...................... 15 2.2 XY model and Heisenberg model......................... 15 2.3 Universality and critical exponents........................ 16 2.4 Scaling hypothesis for the free energy....................... 17 2.4.1 Derivation of power laws from scaling hypothesis............ 18 2.4.2 First attempt to calculate critical exponents............... 19 2.5 Correlations and hyperscaling........................... 20 2.6 Ginzburg-Landau-Wilson theory ......................... 22 2.6.1 Functional integral representation of the partition function . 22 2.6.2 Saddle-point approximation (SPA).................... 27 2.6.3 Critical exponents in saddle-point approximation∗ . 28 2.7 Kosterlitz-Thouless phase transition ....................... 29 2.7.1 XY model in two dimensions ....................... 29 2.7.2 Limiting cases at low and high temperatures .............. 30 3 Wilson's renormalization group 31 3.1 General strategy .................................. 31 3.2 Momentum-shell transformation ......................... 34 3.2.1 Perturbation theory ............................ 35 3.2.2 Combinations in eq. (3.23) that contribute in eq. (3.19) . 36 1 Contents 3.3 Determination of fixed-point coupling below four dimensions.......... 39 3.4 Epsilon expansion and Wilson-Fisher fixed point ................ 41 3.5 Summary and comparison to experiment..................... 44 3.6 Excursion: Relations to QFTs in high-energy physics.............. 45 3.6.1 Landau-pole singularity and the triviality problem........... 47 3.6.2 Fine-tuning and the hierarchy problem.................. 49 4 Functional methods in quantum field theory 51 4.1 Introductory remarks................................ 51 4.2 Generating functional ............................... 52 4.2.1 Correlation functions............................ 52 4.2.2 Schwinger functional............................ 54 4.3 Effective action................................... 54 4.4 Perturbative renormalization ........................... 57 4.4.1 Divergencies in perturbation theory ................... 57 4.4.2 Removal of divergencies.......................... 60 4.4.3 Divergencies in perturbation theory: general analysis.......... 63 4.4.4 Classification of perturbatively renormalizable theories......... 66 5 Functional renormalization group 69 5.1 Effective average action .............................. 69 5.1.1 The regulator term............................. 70 5.2 Wetterich equation................................. 71 5.2.1 Some properties of the Wetterich equation................ 73 5.2.2 Method of truncations........................... 74 5.2.3 Example: Local potential approximation and for a scalar field . 75 5.3 Functional RG fixed points and the stability matrix .............. 77 5.3.1 Example: critical exponents for scalar field theories........... 79 5.4 Ultraviolet completion of quantum field theories................. 81 5.4.1 Preliminaries................................ 81 5.4.2 Asymptotic safety scenario (Weinberg 1976, Gell-Mann-Low 1954) . 83 5.4.3 Candidate theories for asymptotic safety................. 86 A Remark on generating functional 89 A.1 Connected and disconnected Green's functions ................. 89 A.2 Example: two-point function ........................... 91 B Divergencies beyond 1-loop 93 B.1 Recap: Renormalized action and 1-loop divergencies.............. 94 B.2 Divergencies beyond 1-loop ............................ 96 B.3 Callan-Symanzik equations ............................ 97 B.4 Inductive proof of perturbative renormalizability (idea) ............ 99 2 Recommended literature φ−1 I. Herbut, A Modern Approach to Critical Phenomena, Cambridge University Press. No-frills introduction to critical phenomena and basics of the renormalization group `ala Wilson. Excellent first read to become acquainted with the physics and concepts. The start of this lecture follows this presentation, i.e. my chapters on the Ginzburg-Landau-Wilson theory and Wilson's RG. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Oxford University Press (2nd edition). 1000+ pages of quantum field theory and statistical mechanics for enthusiasts with a lot of details, background and also explicit calculations. Also contains also some more formal and mathematical aspects. Can also be considered as a general reference work. Does not contain functional renormalization. My chapter on the functional integral approach to QFT is a compilation of Chaps. 5,6, 7 & 9 of this tome. H. Gies, Introduction to the functional RG and applications to gauge theories, e- Print:hep-ph/0611146. https://arxiv.org/pdf/hep-ph/0611146.pdf. Sections 1 and 2 give a smooth and straightforward introduction to the functional RG formalism and a very nice instructive example for its application (the euclidean anharmonic oscillator). Inspired parts of my chapter on functional RG. M.E. Peskin and D.V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley. The introductory QFT textbook for particle physicists. After a canonical introduction to relativistic QFT in part I, the second part deals with functional integrals. Also contains a pretty nice chapter on critical phenomena which provides a complementary point of view. No functional RG. Further useful reads • J. Cardy, Scaling and Renormalization in Statistical Physics, Cambridge Lecture Notes in Physics. • P. Kopietz, L. Bartosch, F. Sch¨utz,Introduction to the Functional Renormalization Group, Lecture Notes in Physics 798. 3 Contents • M. Salmhofer, Renormalization. An Introduction. Springer, Berlin 1998, ISBN 3540646663 4 Chapter 1 Introduction Quantum field theory provides a framework for the description of all fundamental interac- tions (strong, weak, electromagnetic, maybe gravity), phase transitions in particle physics, statistical mechanics and condensed-matter physics: Quantum field theory is the framework for the discussion of systems with a large/infinite number of coupled degrees of freedom. In quantum field theory and statistical mechanics renormalization is required to treat infini- ties which appear in calculated quantities, typically induced by effects of self-interactions. Moreover, even when no infinities occur in loop diagrams in QFT, renormalization of masses and fields appearing in the Lagrangian is needed. Renormalization is a procedure to adjust the theoretical parameters describing a system in such a way as not to change the measurable properties on the length of time scales of interest. Generally speaking, in quantum or statistical field theory, a system at one scale is described by a set of different parameters (particle masses, couplings, interactions,...). The renormalization group (RG) then describes how these parameters are changed when the system is considered at a different scale, i.e. the couplings of a system are running couplings, running with the scale. A variation of the scale loosely corresponds to changing the magnifying power of an appropriate microscope for viewing the system. The renormalization group refers to a mathematical procedure that facilitates the system- atic study of the changes of a physical system when viewed at different length or energy scales. Upon changing the scale, it might turn out that a particular description of a system in terms of a chosen Lagrangian becomes inappropriate and new degrees of freedom arise. This can also be assessed by the RG. 5 1. Introduction In the following, I will first discuss some of the aspects of the RG to give a rough overview. These different aspects will then be worked out in more detail during the lecture. 1.1 Aspects of the renormalization group • phase transitions and critical phenomena in: { statistical mechanics (liquid-vapor transitions, ferromagnetic transitions,...) { condensed-matter/solid-state physics (superfluid/superconducting transitions,...) { quantum chormodynamics (chiral symmetry-breaking, confinement-defconfinement transition,...) { Standard-Model-Higgs sector • perturbative quantum field theory { divergencies and their removal { predictivity of QFTs { classification of (perturbatively) renormalizable QFTs • quantum field theories in the high-energy limit { triviality problem { non-perturbatively renormalizable QFTs { UV completion { asymptotic freedom/safety • renormalization-group based definitions of quantum field theories 6 liquid-gas (1st order) theory space 1.2. Phase transitions S + Renormalization-group methods are relevant to a large diversity of fields many (apparently) different implementations ) order parameter Γ sometimes hard to access ) Functional RG providestemperature unified formulation. ! h m > 0 1.2 Phase transitions m ≠ 0 m = 0 T • Sketchy phase diagram of water: FM Tc PM m < 0 solid phase liquid phase pressure pc
Recommended publications
  • Renormalization Group Flows from Holography; Supersymmetry and a C-Theorem
    © 1999 International Press Adv. Theor. Math. Phys. 3 (1999) 363-417 Renormalization Group Flows from Holography; Supersymmetry and a c-Theorem D. Z. Freedmana, S. S. Gubser6, K. Pilchc and N. P. Warnerd aDepartment of Mathematics and Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 b Department of Physics, Harvard University, Cambridge, MA 02138, USA c Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484, USA d Theory Division, CERN, CH-1211 Geneva 23, Switzerland Abstract We obtain first order equations that determine a super symmetric kink solution in five-dimensional Af = 8 gauged supergravity. The kink interpo- lates between an exterior anti-de Sitter region with maximal supersymme- try and an interior anti-de Sitter region with one quarter of the maximal supersymmetry. One eighth of supersymmetry is preserved by the kink as a whole. We interpret it as describing the renormalization group flow in J\f = 4 super-Yang-Mills theory broken to an Af = 1 theory by the addition of a mass term for one of the three adjoint chiral superfields. A detailed cor- respondence is obtained between fields of bulk supergravity in the interior anti-de Sitter region and composite operators of the infrared field theory. We also point out that the truncation used to find the reduced symmetry critical point can be extended to obtain a new Af = 4 gauged supergravity theory holographically dual to a sector of Af = 2 gauge theories based on quiver diagrams. e-print archive: http.y/xxx.lanl.gov/abs/hep-th/9904017 *On leave from Department of Physics and Astronomy, USC, Los Angeles, CA 90089 364 RENORMALIZATION GROUP FLOWS We consider more general kink geometries and construct a c-function that is positive and monotonic if a weak energy condition holds in the bulk gravity theory.
    [Show full text]
  • Path Integrals in Quantum Mechanics
    Path Integrals in Quantum Mechanics Dennis V. Perepelitsa MIT Department of Physics 70 Amherst Ave. Cambridge, MA 02142 Abstract We present the path integral formulation of quantum mechanics and demon- strate its equivalence to the Schr¨odinger picture. We apply the method to the free particle and quantum harmonic oscillator, investigate the Euclidean path integral, and discuss other applications. 1 Introduction A fundamental question in quantum mechanics is how does the state of a particle evolve with time? That is, the determination the time-evolution ψ(t) of some initial | i state ψ(t ) . Quantum mechanics is fully predictive [3] in the sense that initial | 0 i conditions and knowledge of the potential occupied by the particle is enough to fully specify the state of the particle for all future times.1 In the early twentieth century, Erwin Schr¨odinger derived an equation specifies how the instantaneous change in the wavefunction d ψ(t) depends on the system dt | i inhabited by the state in the form of the Hamiltonian. In this formulation, the eigenstates of the Hamiltonian play an important role, since their time-evolution is easy to calculate (i.e. they are stationary). A well-established method of solution, after the entire eigenspectrum of Hˆ is known, is to decompose the initial state into this eigenbasis, apply time evolution to each and then reassemble the eigenstates. That is, 1In the analysis below, we consider only the position of a particle, and not any other quantum property such as spin. 2 D.V. Perepelitsa n=∞ ψ(t) = exp [ iE t/~] n ψ(t ) n (1) | i − n h | 0 i| i n=0 X This (Hamiltonian) formulation works in many cases.
    [Show full text]
  • An Introduction to Quantum Field Theory
    AN INTRODUCTION TO QUANTUM FIELD THEORY By Dr M Dasgupta University of Manchester Lecture presented at the School for Experimental High Energy Physics Students Somerville College, Oxford, September 2009 - 1 - - 2 - Contents 0 Prologue....................................................................................................... 5 1 Introduction ................................................................................................ 6 1.1 Lagrangian formalism in classical mechanics......................................... 6 1.2 Quantum mechanics................................................................................... 8 1.3 The Schrödinger picture........................................................................... 10 1.4 The Heisenberg picture............................................................................ 11 1.5 The quantum mechanical harmonic oscillator ..................................... 12 Problems .............................................................................................................. 13 2 Classical Field Theory............................................................................. 14 2.1 From N-point mechanics to field theory ............................................... 14 2.2 Relativistic field theory ............................................................................ 15 2.3 Action for a scalar field ............................................................................ 15 2.4 Plane wave solution to the Klein-Gordon equation ...........................
    [Show full text]
  • Conformal Symmetry in Field Theory and in Quantum Gravity
    universe Review Conformal Symmetry in Field Theory and in Quantum Gravity Lesław Rachwał Instituto de Física, Universidade de Brasília, Brasília DF 70910-900, Brazil; [email protected] Received: 29 August 2018; Accepted: 9 November 2018; Published: 15 November 2018 Abstract: Conformal symmetry always played an important role in field theory (both quantum and classical) and in gravity. We present construction of quantum conformal gravity and discuss its features regarding scattering amplitudes and quantum effective action. First, the long and complicated story of UV-divergences is recalled. With the development of UV-finite higher derivative (or non-local) gravitational theory, all problems with infinities and spacetime singularities might be completely solved. Moreover, the non-local quantum conformal theory reveals itself to be ghost-free, so the unitarity of the theory should be safe. After the construction of UV-finite theory, we focused on making it manifestly conformally invariant using the dilaton trick. We also argue that in this class of theories conformal anomaly can be taken to vanish by fine-tuning the couplings. As applications of this theory, the constraints of the conformal symmetry on the form of the effective action and on the scattering amplitudes are shown. We also remark about the preservation of the unitarity bound for scattering. Finally, the old model of conformal supergravity by Fradkin and Tseytlin is briefly presented. Keywords: quantum gravity; conformal gravity; quantum field theory; non-local gravity; super- renormalizable gravity; UV-finite gravity; conformal anomaly; scattering amplitudes; conformal symmetry; conformal supergravity 1. Introduction From the beginning of research on theories enjoying invariance under local spacetime-dependent transformations, conformal symmetry played a pivotal role—first introduced by Weyl related changes of meters to measure distances (and also due to relativity changes of periods of clocks to measure time intervals).
    [Show full text]
  • Arxiv:1910.05796V2 [Math-Ph] 26 Oct 2020 5
    Towards a conformal field theory for Schramm-Loewner evolutions Eveliina Peltola [email protected] Institute for Applied Mathematics, University of Bonn, Endenicher Allee 60, D-53115 Bonn, Germany We discuss the partition function point of view for chordal Schramm-Loewner evolutions and their relation- ship with correlation functions in conformal field theory. Both are closely related to crossing probabilities and interfaces in critical models in two-dimensional statistical mechanics. We gather and supplement previous results with different perspectives, point out remaining difficulties, and suggest directions for future studies. 1. Introduction 2 2. Schramm-Loewner evolution in statistical mechanics and conformal field theory4 A. Schramm-Loewner evolution (SLE) 5 B. SLE in critical models – the Ising model6 C. Conformal field theory (CFT) 7 D. Martingale observables for interfaces 9 3. Multiple SLE partition functions and applications 12 A. Multiple SLEs and their partition functions 12 B. Definition of the multiple SLE partition functions 13 C. Properties of the multiple SLE partition functions 16 D. Relation to Schramm-Loewner evolutions and critical models 18 4. Fusion and operator product expansion 20 A. Fusion and operator product expansion in conformal field theory 21 B. Fusion: analytic approach 22 C. Fusion: systematic algebraic approach 23 D. Operator product expansion for multiple SLE partition functions 26 arXiv:1910.05796v2 [math-ph] 26 Oct 2020 5. From OPE structure to products of random distributions? 27 A. Conformal bootstrap 27 B. Random tempered distributions 28 C. Bootstrap construction? 29 Appendix A. Representation theory of the Virasoro algebra 31 Appendix B. Probabilistic construction of the pure partition functions 32 Appendix C.
    [Show full text]
  • Effective Quantum Field Theories Thomas Mannel Theoretical Physics I (Particle Physics) University of Siegen, Siegen, Germany
    Generating Functionals Functional Integration Renormalization Introduction to Effective Quantum Field Theories Thomas Mannel Theoretical Physics I (Particle Physics) University of Siegen, Siegen, Germany 2nd Autumn School on High Energy Physics and Quantum Field Theory Yerevan, Armenia, 6-10 October, 2014 T. Mannel, Siegen University Effective Quantum Field Theories: Lecture 1 Generating Functionals Functional Integration Renormalization Overview Lecture 1: Basics of Quantum Field Theory Generating Functionals Functional Integration Perturbation Theory Renormalization Lecture 2: Effective Field Thoeries Effective Actions Effective Lagrangians Identifying relevant degrees of freedom Renormalization and Renormalization Group T. Mannel, Siegen University Effective Quantum Field Theories: Lecture 1 Generating Functionals Functional Integration Renormalization Lecture 3: Examples @ work From Standard Model to Fermi Theory From QCD to Heavy Quark Effective Theory From QCD to Chiral Perturbation Theory From New Physics to the Standard Model Lecture 4: Limitations: When Effective Field Theories become ineffective Dispersion theory and effective field theory Bound Systems of Quarks and anomalous thresholds When quarks are needed in QCD É. T. Mannel, Siegen University Effective Quantum Field Theories: Lecture 1 Generating Functionals Functional Integration Renormalization Lecture 1: Basics of Quantum Field Theory Thomas Mannel Theoretische Physik I, Universität Siegen f q f et Yerevan, October 2014 T. Mannel, Siegen University Effective Quantum
    [Show full text]
  • 2D Potts Model Correlation Lengths
    KOMA Revised version May D Potts Mo del Correlation Lengths Numerical Evidence for = at o d t Wolfhard Janke and Stefan Kappler Institut f ur Physik Johannes GutenbergUniversitat Mainz Staudinger Weg Mainz Germany Abstract We have studied spinspin correlation functions in the ordered phase of the twodimensional q state Potts mo del with q and at the rstorder transition p oint Through extensive Monte t Carlo simulations we obtain strong numerical evidence that the cor relation length in the ordered phase agrees with the exactly known and recently numerically conrmed correlation length in the disordered phase As a byproduct we nd the energy moments o t t d in the ordered phase at in very go o d agreement with a recent large t q expansion PACS numbers q Hk Cn Ha hep-lat/9509056 16 Sep 1995 Introduction Firstorder phase transitions have b een the sub ject of increasing interest in recent years They play an imp ortant role in many elds of physics as is witnessed by such diverse phenomena as ordinary melting the quark decon nement transition or various stages in the evolution of the early universe Even though there exists already a vast literature on this sub ject many prop erties of rstorder phase transitions still remain to b e investigated in detail Examples are nitesize scaling FSS the shap e of energy or magnetization distributions partition function zeros etc which are all closely interrelated An imp ortant approach to attack these problems are computer simulations Here the available system sizes are necessarily
    [Show full text]
  • Full and Unbiased Solution of the Dyson-Schwinger Equation in the Functional Integro-Differential Representation
    PHYSICAL REVIEW B 98, 195104 (2018) Full and unbiased solution of the Dyson-Schwinger equation in the functional integro-differential representation Tobias Pfeffer and Lode Pollet Department of Physics, Arnold Sommerfeld Center for Theoretical Physics, University of Munich, Theresienstrasse 37, 80333 Munich, Germany (Received 17 March 2018; revised manuscript received 11 October 2018; published 2 November 2018) We provide a full and unbiased solution to the Dyson-Schwinger equation illustrated for φ4 theory in 2D. It is based on an exact treatment of the functional derivative ∂/∂G of the four-point vertex function with respect to the two-point correlation function G within the framework of the homotopy analysis method (HAM) and the Monte Carlo sampling of rooted tree diagrams. The resulting series solution in deformations can be considered as an asymptotic series around G = 0 in a HAM control parameter c0G, or even a convergent one up to the phase transition point if shifts in G can be performed (such as by summing up all ladder diagrams). These considerations are equally applicable to fermionic quantum field theories and offer a fresh approach to solving functional integro-differential equations beyond any truncation scheme. DOI: 10.1103/PhysRevB.98.195104 I. INTRODUCTION was not solved and differences with the full, exact answer could be seen when the correlation length increases. Despite decades of research there continues to be a need In this work, we solve the full DSE by writing them as a for developing novel methods for strongly correlated systems. closed set of integro-differential equations. Within the HAM The standard Monte Carlo approaches [1–5] are convergent theory there exists a semianalytic way to treat the functional but suffer from a prohibitive sign problem, scaling exponen- derivatives without resorting to an infinite expansion of the tially in the system volume [6].
    [Show full text]
  • Notes on Statistical Field Theory
    Lecture Notes on Statistical Field Theory Kevin Zhou [email protected] These notes cover statistical field theory and the renormalization group. The primary sources were: • Kardar, Statistical Physics of Fields. A concise and logically tight presentation of the subject, with good problems. Possibly a bit too terse unless paired with the 8.334 video lectures. • David Tong's Statistical Field Theory lecture notes. A readable, easygoing introduction covering the core material of Kardar's book, written to seamlessly pair with a standard course in quantum field theory. • Goldenfeld, Lectures on Phase Transitions and the Renormalization Group. Covers similar material to Kardar's book with a conversational tone, focusing on the conceptual basis for phase transitions and motivation for the renormalization group. The notes are structured around the MIT course based on Kardar's textbook, and were revised to include material from Part III Statistical Field Theory as lectured in 2017. Sections containing this additional material are marked with stars. The most recent version is here; please report any errors found to [email protected]. 2 Contents Contents 1 Introduction 3 1.1 Phonons...........................................3 1.2 Phase Transitions......................................6 1.3 Critical Behavior......................................8 2 Landau Theory 12 2.1 Landau{Ginzburg Hamiltonian.............................. 12 2.2 Mean Field Theory..................................... 13 2.3 Symmetry Breaking.................................... 16 3 Fluctuations 19 3.1 Scattering and Fluctuations................................ 19 3.2 Position Space Fluctuations................................ 20 3.3 Saddle Point Fluctuations................................. 23 3.4 ∗ Path Integral Methods.................................. 24 4 The Scaling Hypothesis 29 4.1 The Homogeneity Assumption............................... 29 4.2 Correlation Lengths.................................... 30 4.3 Renormalization Group (Conceptual)..........................
    [Show full text]
  • Ultraviolet Fixed Point Structure of Renormalizable Four-Fermion Theory in Less Than Four Dimensions*
    160 Ultraviolet Fixed Point Structure of Renormalizable Four-Fermion Theory in Less Than Four Dimensions* Yoshio Kikukawa Department of Physics, Nagoya University, Nagoya 464-01,Japan Abstract We study the renormalization properties of the four-fermion theory in less than four dimen­ sions (D < 4) in 1/N expansion scheme. It is shown that /3 function of the bare coupling has a nontrivial ultraviolet fixed point with a large anomalous dimension ( 'Yti;.p = D - 2) in a similar manner to QED and gauged Nambu-Jona-Lasinio (NJL) model in ladder approximation. The anomalous dimension has no discontinuity across the fixed point in sharp contrast to gauged NJL model. The operator product expansion of the fermion mass function is also given. Introduction Recently the possibility that QED may have a nontrivial ultraviolet(UV) fixed point has been paid much attention from the viewpoints of "zero charge" problem in QED and raising condensate in technicolor model. Actually such a possibility was pointed out in ladder approximation in which the cutoff Schwinger-Dyson equation for the fermion self-energy possesses a spontaneous-chiral­ symmetry-breaking solution for the bare coupling larger than a non-zero value ( ao =eij/ 411" > ?r/3 = ac)- We can make this solution finite by letting ao have a cutoff dependence in such a way that ao( I\) _,. ac + 0 (I\ - oo ), ac being identified as the critical point with scaling behavior of essential-singularity type. At the critical point, fermion mass operator ;j;'lj; has a large anomalous dimension 'Yti;.p = 1,
    [Show full text]
  • Radiative Corrections in Curved Spacetime and Physical Implications to the Power Spectrum and Trispectrum for Different Inflationary Models
    Radiative Corrections in Curved Spacetime and Physical Implications to the Power Spectrum and Trispectrum for different Inflationary Models Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades Doctor rerum naturalium der Georg-August-Universit¨atG¨ottingen Im Promotionsprogramm PROPHYS der Georg-August University School of Science (GAUSS) vorgelegt von Simone Dresti aus Locarno G¨ottingen,2018 Betreuungsausschuss: Prof. Dr. Laura Covi, Institut f¨urTheoretische Physik, Universit¨atG¨ottingen Prof. Dr. Karl-Henning Rehren, Institut f¨urTheoretische Physik, Universit¨atG¨ottingen Prof. Dr. Dorothea Bahns, Mathematisches Institut, Universit¨atG¨ottingen Miglieder der Prufungskommission:¨ Referentin: Prof. Dr. Laura Covi, Institut f¨urTheoretische Physik, Universit¨atG¨ottingen Korreferentin: Prof. Dr. Dorothea Bahns, Mathematisches Institut, Universit¨atG¨ottingen Weitere Mitglieder der Prufungskommission:¨ Prof. Dr. Karl-Henning Rehren, Institut f¨urTheoretische Physik, Universit¨atG¨ottingen Prof. Dr. Stefan Kehrein, Institut f¨urTheoretische Physik, Universit¨atG¨ottingen Prof. Dr. Jens Niemeyer, Institut f¨urAstrophysik, Universit¨atG¨ottingen Prof. Dr. Ariane Frey, II. Physikalisches Institut, Universit¨atG¨ottingen Tag der mundlichen¨ Prufung:¨ Mittwoch, 23. Mai 2018 Ai miei nonni Marina, Palmira e Pierino iv ABSTRACT In a quantum field theory with a time-dependent background, as in an expanding uni- verse, the time-translational symmetry is broken. We therefore expect loop corrections to cosmological observables to be time-dependent after renormalization for interacting fields. In this thesis we compute and discuss such radiative corrections to the primordial spectrum and higher order spectra in simple inflationary models. We investigate both massless and massive virtual fields, and we disentangle the time dependence caused by the background and by the initial state that is set to the Bunch-Davies vacuum at the beginning of inflation.
    [Show full text]
  • The Real Problem with Perturbative Quantum Field Theory
    The Real Problem with Perturbative Quantum Field Theory James Duncan Fraser Abstract The perturbative approach to quantum field theory (QFT) has long been viewed with suspicion by philosophers of science. This paper offers a diag- nosis of its conceptual problems. Drawing on Norton's ([2012]) discussion of the notion of approximation I argue that perturbative QFT ought to be understood as producing approximations without specifying an underlying QFT model. This analysis leads to a reassessment of common worries about perturbative QFT. What ends up being the key issue with the approach on this picture is not mathematical rigour, or the threat of inconsistency, but the need for a physical explanation of its empirical success. 1 Three Worries about Perturbative Quantum Field Theory 2 The Perturbative Formalism 2.1 Expanding the S-matrix 2.2 Perturbative renormalization 3 Approximations and Models 4 Perturbative Quantum Field Theory Produces Approximations 5 The Real Problem 1 Three Worries about Perturbative Quantum Field Theory On the face of it, the perturbative approach to quantum field theory (QFT) ought to be of great interest to philosophers of physics.1 Perturbation theory has long 1I use the terms `perturbative approach to QFT' and `perturbative QFT' here to refer to the perturbative treatment of interacting field theories that is invariable found in QFT textbooks and forms the basis of much work in high energy physics. I am not assuming that this `approach' 1 played a special role in the QFT programme. The axiomatic and effective field theory approaches to QFT, which have been the locus of much philosophical at- tention in recent years, have their roots in the perturbative formalism pioneered by Feynman, Schwinger and Tomonaga in the 1940s.
    [Show full text]