Renormalization Group - Wikipedia, the Free Encyclopedia 3/17/12 5:27 PM Renormalization Group from Wikipedia, the Free Encyclopedia

Total Page:16

File Type:pdf, Size:1020Kb

Renormalization Group - Wikipedia, the Free Encyclopedia 3/17/12 5:27 PM Renormalization Group from Wikipedia, the Free Encyclopedia Renormalization group - Wikipedia, the free encyclopedia 3/17/12 5:27 PM Renormalization group From Wikipedia, the free encyclopedia In theoretical physics, the renormalization group (RG) refers to a mathematical apparatus that allows systematic investigation of the changes of a physical system as viewed at different distance scales. In particle physics, it reflects the changes in the underlying force laws (codified in a quantum field theory) as the energy scale at which physical processes occur varies, energy/momentum and resolution distance scales being effectively conjugate under the uncertainty principle (cf. Compton wavelength). A change in scale is called a "scale transformation". The renormalization group is intimately related to "scale invariance" and "conformal invariance", symmetries in which a system appears the same at all scales (so-called self-similarity). (However, note that scale transformations are included in conformal transformations, in general: the latter including additional symmetry generators associated with special conformal transformations.) As the scale varies, it is as if one is changing the magnifying power of a notional microscope viewing the system. In so- called renormalizable theories, the system at one scale will generally be seen to consist of self-similar copies of itself when viewed at a smaller scale, with different parameters describing the components of the system. The components, or fundamental variables, may relate to atoms, elementary particles, atomic spins, etc. The parameters of the theory typically describe the interactions of the components. These may be variable "couplings" which measure the strength of various forces, or mass parameters themselves. The components themselves may appear to be composed of more of the self-same components as one goes to shorter distances. For example, in quantum electrodynamics (QED), an electron appears to be composed of electrons, positrons (anti- electrons) and photons, as one views it at higher resolution, at very short distances. The electron at such short distances has a slightly different electric charge than does the "dressed electron" seen at large distances, and this change, or "running," in the value of the electric charge is determined by the renormalization group equation. Contents 1 History of the renormalization group 2 Block spin renormalization group 3 Elements of RG theory 4 Relevant and irrelevant operators, universality classes 5 Momentum space RG 6 Appendix: Exact Renormalization Group Equations 7 Threshold effect 8 See also 9 References 9.1 Pedagogical and Historical reviews 9.2 Books 10 External links History of the renormalization group The idea of scale transformations and scale invariance is old in physics. Scaling arguments were commonplace for the Pythagorean school, Euclid and up to Galileo.[citation needed] They became popular again at the end of the 19th century, http://en.wikipedia.org/wiki/Renormalization_group Page 1 of 14 Renormalization group - Wikipedia, the free encyclopedia 3/17/12 5:27 PM perhaps the first example being the idea of enhanced viscosity of Osborne Reynolds, as a way to explain turbulence. The renormalization group was initially devised in particle physics, but nowadays its applications extend to solid-state physics, fluid mechanics, cosmology and even nanotechnology. An early article[1] by Ernst Stueckelberg and Andre Petermann in 1953 anticipates the idea in quantum field theory. Stueckelberg and Petermann opened the field conceptually. They noted that renormalization exhibits a group of transformations which transfer quantities from the bare terms to the counterterms. They introduced a function h(e) in QED, which is now called the beta function (see below). Murray Gell-Mann and Francis E. Low in 1954 restricted the idea to scale transformations in QED,[2] which are the most physically significant, and focused on asymptotic forms of the photon propagator at high energies. They determined the variation of the electromagnetic coupling in QED, by appreciating the simplicity of the scaling structure of that theory. They thus discovered that the coupling parameter g(!) at the energy scale ! is effectively given by the group equation g(!) = G"1( (!/M)d G(g(M)) ) , for some function G and a constant d, in terms of the coupling at a reference scale M. Gell-Mann and Low realized in these results that the effective scale can be arbitrarily taken as !, and can vary to define the theory at any other scale: g(#) = G"1( (#/!)d G(g(!)) ) = G"1( (#/M)d G(g(M)) ) . The gist of the RG is this group property: as the scale ! varies, the theory presents a self-similar replica of itself, and any scale can be accessed similarly from any other scale, by group action, a formal conjugacy of couplings[3] in the mathematical sense (Schröder's equation). On the basis of this (finite) group equation, Gell-Mann and Low then focussed on infinitesimal transformations, and invented a computational method based on a mathematical flow function $(g) = G d/(%G/%g) of the coupling parameter g, which they introduced. Like the function h(e) of Stueckelberg and Petermann, their function determines the differential change of the coupling g(!) with respect to a small change in energy scale ! through a differential equation, the renormalization group equation: %g / %ln(!) = $(g) = &(g) . The modern name is also indicated, the beta function, introduced by C. Callan and K. Symanzik in the early 1970s. Since it is a mere function of g, integration in g of a perturbative estimate of it permits specification of the renormalization trajectory of the coupling, that is, its variation with energy, effectively the function G in this perturbative approximation. The renormalization group prediction (cf Stueckelberg-Petermann and Gell-Mann-Low works) was confirmed 40 years later at the LEP accelerator experiments: the fine structure "constant" of QED was measured to be about 1/127 at energies close to 200 GeV, as opposed to the standard low-energy physics value of 1/137. (Early applications to quantum electrodynamics are discussed in the influential book of Nikolay Bogolyubov and Dmitry Shirkov in 1959.[4]) The renormalization group emerges from the renormalization of the quantum field variables, which normally has to address the problem of infinities in a quantum field theory (although the RG exists independently of the infinities). This problem of systematically handling the infinities of quantum field theory to obtain finite physical quantities was solved for QED by Richard Feynman, Julian Schwinger and Sin-Itiro Tomonaga, who received the 1965 Nobel prize for these contributions. They effectively devised the theory of mass and charge renormalization, in which the infinity in the momentum scale is cut-off by an ultra-large regulator, ' (which could ultimately be taken to be infinite — infinities reflect the pileup of contributions from an infinity of degrees of freedom at infinitely high energy scales.). The dependence of physical quantities, such as the electric charge or electron mass, on the scale ' is hidden, effectively swapped for the longer-distance scales at which the physical quantities are measured, and, as a result, all observable quantities end up being finite, instead, even for an infinite '. Gell-Mann and Low thus realized in these results that, while, infinitesimally, a tiny http://en.wikipedia.org/wiki/Renormalization_group Page 2 of 14 Renormalization group - Wikipedia, the free encyclopedia 3/17/12 5:27 PM change in g is provided by the above RG equation given $(g), the self-similarity is expressed by the fact that $(g) depends explicitly only upon the parameter(s) of the theory, and not upon the scale !. Consequently, the above renormalization group equation may be solved for (G and thus) g(!). A deeper understanding of the physical meaning and generalization of the renormalization process, which goes beyond the dilatation group of conventional renormalizable theories, came from condensed matter physics. Leo P. Kadanoff's paper in 1966 proposed the "block-spin" renormalization group.[5] The blocking idea is a way to define the components of the theory at large distances as aggregates of components at shorter distances. This approach covered the conceptual point and was given full computational substance[6] in the extensive important contributions of Kenneth Wilson. The power of Wilson's ideas was demonstrated by a constructive iterative renormalization solution of a long-standing problem, the Kondo problem, in 1974, as well as the preceding seminal developments of his new method in the theory of second-order phase transitions and critical phenomena in 1971. He was awarded the Nobel prize for these decisive contributions in 1982. Meanwhile, the RG in particle physics had been reformulated in more practical terms by C. G. Callan and K. Symanzik in 1970. [7] The above beta function, which describes the "running of the coupling" parameter with scale, was also found to amount to the "canonical trace anomaly", which represents the quantum-mechanical breaking of scale (dilation) symmetry in a field theory. (Remarkably, quantum mechanics itself can induce mass through the trace anomaly and the running coupling.) Applications of the RG to particle physics exploded in number in the 1970s with the establishment of the Standard Model. In 1973, it was discovered that a theory of interacting colored quarks, called quantum chromodynamics had a negative beta function. This means that an initial high-energy value of the coupling will eventuate
Recommended publications
  • 978-1-62808-450-4 Ch1.Pdf
    In: Recent Advances in Magnetism Research ISBN: 978-1-62808-450-4 Editor: Keith Pace © 2013 Nova Science Publishers, Inc. No part of this digital document may be reproduced, stored in a retrieval system or transmitted commercially in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. Chapter 1 TOWARDS A FIELD THEORY OF MAGNETISM Ulrich Köbler FZ-Jülich, Institut für Festkörperforschung, Jülich, Germany ABSTRACT Experimental tests of conventional spin wave theory reveal two serious shortcomings of this typical local or atomistic theory: first, spin wave theory is unable to explain the universal temperature dependence of the thermodynamic observables and, second, spin wave theory does not distinguish between the dynamics of magnets with integer and half- integer spin quantum number. As experiments show, universality is not restricted to the critical dynamics but holds for all temperatures in the long range ordered state including the low temperature regime where spin wave theory is widely believed to give an adequate description. However, a rigorous and convincing test that spin wave theory gives correct description of the thermodynamics of ordered magnets has never been delivered. Quite generally, observation of universality unequivocally calls for a continuum or field theory instead of a local theory.
    [Show full text]
  • Ultraviolet Fixed Point Structure of Renormalizable Four-Fermion Theory in Less Than Four Dimensions*
    160 Ultraviolet Fixed Point Structure of Renormalizable Four-Fermion Theory in Less Than Four Dimensions* Yoshio Kikukawa Department of Physics, Nagoya University, Nagoya 464-01,Japan Abstract We study the renormalization properties of the four-fermion theory in less than four dimen­ sions (D < 4) in 1/N expansion scheme. It is shown that /3 function of the bare coupling has a nontrivial ultraviolet fixed point with a large anomalous dimension ( 'Yti;.p = D - 2) in a similar manner to QED and gauged Nambu-Jona-Lasinio (NJL) model in ladder approximation. The anomalous dimension has no discontinuity across the fixed point in sharp contrast to gauged NJL model. The operator product expansion of the fermion mass function is also given. Introduction Recently the possibility that QED may have a nontrivial ultraviolet(UV) fixed point has been paid much attention from the viewpoints of "zero charge" problem in QED and raising condensate in technicolor model. Actually such a possibility was pointed out in ladder approximation in which the cutoff Schwinger-Dyson equation for the fermion self-energy possesses a spontaneous-chiral­ symmetry-breaking solution for the bare coupling larger than a non-zero value ( ao =eij/ 411" > ?r/3 = ac)- We can make this solution finite by letting ao have a cutoff dependence in such a way that ao( I\) _,. ac + 0 (I\ - oo ), ac being identified as the critical point with scaling behavior of essential-singularity type. At the critical point, fermion mass operator ;j;'lj; has a large anomalous dimension 'Yti;.p = 1,
    [Show full text]
  • The Real Problem with Perturbative Quantum Field Theory
    The Real Problem with Perturbative Quantum Field Theory James Duncan Fraser Abstract The perturbative approach to quantum field theory (QFT) has long been viewed with suspicion by philosophers of science. This paper offers a diag- nosis of its conceptual problems. Drawing on Norton's ([2012]) discussion of the notion of approximation I argue that perturbative QFT ought to be understood as producing approximations without specifying an underlying QFT model. This analysis leads to a reassessment of common worries about perturbative QFT. What ends up being the key issue with the approach on this picture is not mathematical rigour, or the threat of inconsistency, but the need for a physical explanation of its empirical success. 1 Three Worries about Perturbative Quantum Field Theory 2 The Perturbative Formalism 2.1 Expanding the S-matrix 2.2 Perturbative renormalization 3 Approximations and Models 4 Perturbative Quantum Field Theory Produces Approximations 5 The Real Problem 1 Three Worries about Perturbative Quantum Field Theory On the face of it, the perturbative approach to quantum field theory (QFT) ought to be of great interest to philosophers of physics.1 Perturbation theory has long 1I use the terms `perturbative approach to QFT' and `perturbative QFT' here to refer to the perturbative treatment of interacting field theories that is invariable found in QFT textbooks and forms the basis of much work in high energy physics. I am not assuming that this `approach' 1 played a special role in the QFT programme. The axiomatic and effective field theory approaches to QFT, which have been the locus of much philosophical at- tention in recent years, have their roots in the perturbative formalism pioneered by Feynman, Schwinger and Tomonaga in the 1940s.
    [Show full text]
  • Arxiv:1102.4624V1 [Hep-Th] 22 Feb 2011 (Sec
    Renormalisation group and the Planck scale Daniel F. Litim∗ Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH, U.K. I discuss the renormalisation group approach to gravity, its link to S. Weinberg's asymptotic safety scenario, and give an overview of results with applications to particle physics and cosmology. I. INTRODUCTION Einstein's theory of general relativity is the remarkably successful classical theory of the gravitational force, charac- −11 3 2 terised by Newton's coupling constant GN = 6:67×10 m =(kg s ) and a small cosmological constant Λ. Experimen- tally, its validity has been confirmed over many orders of magnitude in length scales ranging from the sub-millimeter regime up to solar system size. At larger length scales, the standard model of cosmology including dark matter and dark energy components fits the data well. At shorter length scales, quantum effects are expected to become impor- tant. An order of magnitude estimate for the quantum scale of gravity { the Planck scale { is obtained by dimensional p 3 −33 analysis leading to the Planck length `Pl ≈ ~GN =c of the order of 10 cm, with c the speed of light. In particle physics units this translates into the Planck mass 19 MPl ≈ 10 GeV : (1) While this energy scale is presently out of reach for earth-based particle accelerator experiments, fingerprints of Planck-scale physics can nevertheless become accessible through cosmological data from the very early universe. From a theory perspective, it is widely expected that a fundamental understanding of Planck scale physics requires a quantum theory of gravity.
    [Show full text]
  • Exploring Models for New Physics on the Lattice
    Exploring Models for New Physics on the Lattice Ethan T. Neil∗ Fermi National Accelerator Laboratory E-mail: [email protected] Strongly-coupled gauge theories are an important ingredient in the construction of many exten- sions of the standard model, particularly for models of electroweak symmetry breaking in which the Higgs boson is a composite object. There is a large parameter space of such gauge theories with a rich phase structure, particularly in the presence of large numbers of fermionic degrees of freedom. Lattice simulation provides a non-perturbative way to explore this space of strongly- coupled theories, and to search for interesting dynamical features. Here I review recent progress in the simulation of such theories, with an eye towards applications to dynamical electroweak symmetry breaking. XXIX International Symposium on Lattice Field Theory July 10-16, 2011 Squaw Valley, Lake Tahoe, California ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Exploring Models for New Physics on the Lattice Ethan T. Neil 1. Introduction Lattice gauge theory has enjoyed considerable success as a non-perturbative method to study and understand quantum chromodynamics (QCD), the only example of a strongly coupled gauge theory observed in nature thus far. With modern computers and computational techniques, lattice QCD is attaining high levels of precision, with simulation parameters approaching the physical point. However, the success enjoyed by lattice QCD is no reason for us to restrict the attention of our lattice studies to that theory alone. QCD is far from unique as an example of an asymptotically free Yang-Mills gauge theory, inhabiting a large space of models, all of which are well-suited to numerical study on the lattice.
    [Show full text]
  • Universal Scaling Behavior of Non-Equilibrium Phase Transitions
    Universal scaling behavior of non-equilibrium phase transitions HABILITATIONSSCHRIFT der FakultÄat furÄ Naturwissenschaften der UniversitÄat Duisburg-Essen vorgelegt von Sven LubÄ eck aus Duisburg Duisburg, im Juni 2004 Zusammenfassung Kritische PhÄanomene im Nichtgleichgewicht sind seit Jahrzehnten Gegenstand inten- siver Forschungen. In Analogie zur Gleichgewichtsthermodynamik erlaubt das Konzept der UniversalitÄat, die verschiedenen NichtgleichgewichtsphasenubÄ ergÄange in unterschied- liche Klassen einzuordnen. Alle Systeme einer UniversalitÄatsklasse sind durch die glei- chen kritischen Exponenten gekennzeichnet, und die entsprechenden Skalenfunktionen werden in der NÄahe des kritischen Punktes identisch. WÄahrend aber die Exponenten zwischen verschiedenen UniversalitÄatsklassen sich hÄau¯g nur geringfugigÄ unterscheiden, weisen die Skalenfunktionen signi¯kante Unterschiede auf. Daher ermÄoglichen die uni- versellen Skalenfunktionen einerseits einen emp¯ndlichen und genauen Nachweis der UniversalitÄatsklasse eines Systems, demonstrieren aber andererseits in ubÄ erzeugender- weise die UniversalitÄat selbst. Bedauerlicherweise wird in der Literatur die Betrachtung der universellen Skalenfunktionen gegenubÄ er der Bestimmung der kritischen Exponen- ten hÄau¯g vernachlÄassigt. Im Mittelpunkt dieser Arbeit steht eine bestimmte Klasse von Nichtgleichgewichts- phasenubÄ ergÄangen, die sogenannten absorbierenden PhasenubÄ ergÄange. Absorbierende PhasenubÄ ergÄange beschreiben das kritische Verhalten von physikalischen, chemischen sowie biologischen
    [Show full text]
  • Thesis Reference
    Thesis On Testing Modified Gravity : with Solar System Experiments and Gravitational Radiation SANCTUARY, Hillary Adrienne Abstract Three theories of gravitation – general relativity, the chameleon and Horava gravity - are confronted with experiment, using standard and adapted post-Newtonian (PN) tools. The laboratory is provided by the Solar System, binary pulsars and future detections at gravitational wave observatories. We test Horava gravity by studying emission of gravitational radiation in the weak-field limit for PN sources using techniques that take full advantage of the parametrized post-Newtonian (PPN) formalism. In particular, we provide a generalization of Einstein’s quadrupole formula and show that a monopole persists even in the limit in which the PPN parameters are identical to those of General Relativity. Based on a technique called non-relativistic General Relativity, we propose a phenomenological way to measure deviations from General Relativity coming from an unknown UV completion. Finally, we systematically show that the self-interacting chameleon at orders three and higher do not jeopardize the chameleon theory for Solar System type objects. Reference SANCTUARY, Hillary Adrienne. On Testing Modified Gravity : with Solar System Experiments and Gravitational Radiation. Thèse de doctorat : Univ. Genève, 2012, no. Sc. 4524 Available at: http://archive-ouverte.unige.ch/unige:28935 Disclaimer: layout of this document may differ from the published version. [ Downloaded 07/04/2015 at 08:06:08 ] 1 / 1 UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES Département de physique théorique Professeur Michele Maggiore On Testing Modified Gravity with Solar System Experiments and Gravitational Radiation THÈSE présentée à la Faculté des Sciences de l’Université de Genève pour obtenir le grade de Docteur ès Sciences, mention Physique par Hillary Sanctuary de Montréal, Canada Thèse No 4524 Genève, juillet 2012 Reprographie EPFL Publications D.
    [Show full text]
  • Universal Scaling Behavior of Non-Equilibrium Phase Transitions
    Universal scaling behavior of non-equilibrium phase transitions Sven L¨ubeck Theoretische Physik, Univerit¨at Duisburg-Essen, 47048 Duisburg, Germany, [email protected] December 2004 arXiv:cond-mat/0501259v1 [cond-mat.stat-mech] 11 Jan 2005 Summary Non-equilibrium critical phenomena have attracted a lot of research interest in the recent decades. Similar to equilibrium critical phenomena, the concept of universality remains the major tool to order the great variety of non-equilibrium phase transitions systematically. All systems belonging to a given universality class share the same set of critical exponents, and certain scaling functions become identical near the critical point. It is known that the scaling functions vary more widely between different uni- versality classes than the exponents. Thus, universal scaling functions offer a sensitive and accurate test for a system’s universality class. On the other hand, universal scaling functions demonstrate the robustness of a given universality class impressively. Unfor- tunately, most studies focus on the determination of the critical exponents, neglecting the universal scaling functions. In this work a particular class of non-equilibrium critical phenomena is considered, the so-called absorbing phase transitions. Absorbing phase transitions are expected to occur in physical, chemical as well as biological systems, and a detailed introduc- tion is presented. The universal scaling behavior of two different universality classes is analyzed in detail, namely the directed percolation and the Manna universality class. Especially, directed percolation is the most common universality class of absorbing phase transitions. The presented picture gallery of universal scaling functions includes steady state, dynamical as well as finite size scaling functions.
    [Show full text]
  • Advanced Information on the Nobel Prize in Physics, 5 October 2004
    Advanced information on the Nobel Prize in Physics, 5 October 2004 Information Department, P.O. Box 50005, SE-104 05 Stockholm, Sweden Phone: +46 8 673 95 00, Fax: +46 8 15 56 70, E-mail: [email protected], Website: www.kva.se Asymptotic Freedom and Quantum ChromoDynamics: the Key to the Understanding of the Strong Nuclear Forces The Basic Forces in Nature We know of two fundamental forces on the macroscopic scale that we experience in daily life: the gravitational force that binds our solar system together and keeps us on earth, and the electromagnetic force between electrically charged objects. Both are mediated over a distance and the force is proportional to the inverse square of the distance between the objects. Isaac Newton described the gravitational force in his Principia in 1687, and in 1915 Albert Einstein (Nobel Prize, 1921 for the photoelectric effect) presented his General Theory of Relativity for the gravitational force, which generalized Newton’s theory. Einstein’s theory is perhaps the greatest achievement in the history of science and the most celebrated one. The laws for the electromagnetic force were formulated by James Clark Maxwell in 1873, also a great leap forward in human endeavour. With the advent of quantum mechanics in the first decades of the 20th century it was realized that the electromagnetic field, including light, is quantized and can be seen as a stream of particles, photons. In this picture, the electromagnetic force can be thought of as a bombardment of photons, as when one object is thrown to another to transmit a force.
    [Show full text]
  • The Search for the Universality Class of Metric Quantum Gravity
    universe Article The Search for the Universality Class of Metric Quantum Gravity Riccardo Martini 1 , Alessandro Ugolotti 2 and Omar Zanusso 3,* 1 Okinawa Institute of Science, Technology Graduate University, Kunigami District, Okinawa 904-0495, Japan; [email protected] 2 Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany; [email protected] 3 Università di Pisa and INFN—Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy * Correspondence: [email protected] Abstract: On the basis of a limited number of reasonable axioms, we discuss the classification of all the possible universality classes of diffeomorphisms invariant metric theories of quantum gravity. We use the language of the renormalization group and adopt several ideas which originate in the context of statistical mechanics and quantum field theory. Our discussion leads to several ideas that could affect the status of the asymptotic safety conjecture of quantum gravity and give universal arguments towards its proof. Keywords: quantum gravity; asymptotic safety 1. Introduction Citation: Martini, R.; Ugolotti, A.; A well-known fact is that in four dimensions a quantum theory of Einstein–Hilbert Zanusso, O. The Search for the gravity displays perturbatively non-renormalizable divergences starting at two loops [1,2]. Universality Class of Metric This happens because Newton’s constant has negative mass dimension, which in turn Quantum Gravity. Universe 2021, 7, requires a re-interpretation of the perturbative series as an effective expansion in inverse 162. https://doi.org/10.3390/ powers of the Planck mass, making the theory an effective IR model, rather than a UV universe7060162 complete one [3].
    [Show full text]
  • Annual Report 2018 Annual Report 2018 Annual Report 2018 Helsinki Institute of Physics
    Helsinki office CERN office P.O. Box 64 (Gustaf Hällströmin katu 2) CERN/PH FI-00014 University of Helsinki, Finland CH-1211 Geneva 23, Switzerland tel. +358-2-941 50557 tel. +41-22-76 73027 Annual Report 2018 www.hip.fi Annual Report 2018 Annual Report 2018 Helsinki Institute of Physics Vice-Rector Sari Lindblom unveiling the portrait of the former HIP Director, Vice-Rector Paula Eerola. Annual Report 2018 Helsinki Institute of Physics CONTENTS 1. Preface 4 2. Highlights of Research Results 6 3. Theory Programme 10 4. CMS Programme 16 5. Nuclear Matter Programme 22 6. Technology Programme 26 7. Detector Laboratory 32 8. CLOUD 34 9. Planck-Euclid 36 10. Education and Open Data 38 11. Joint Activities 39 12. Organization and Personnel 40 13. Seminars 43 14. Visitors 44 15. Conference participation, Talks and Visits by Personnel 45 16. Publications 53 17. Preprints 66 Annual Report 2018 Helsinki Institute of Physics, Preface PREFACE The Helsinki Institute of Physics (HIP) is a joint research institute of the Universities of Helsinki and Jyväskylä, Aalto University, Tampere University of Technology, and Lappeenranta-Lahti University of Technology LUT. The Finnish Radiation and Nuclear Safety Authority is an interim member of HIP for 2018–2019. The University of Helsinki is the host organisation of HIP. HIP addresses fundamental science questions from quarks to the Cosmos as well as technologies from semiconductors to medical applications and climate research. The Institute serves as a national institute for Finnish physics and related technology research and development at international accelerator laboratories. By mandate of the Finnish Ministry of KATRI HUITU Education and Culture, HIP is responsible for the Finnish research collaboration Helsinki Institute of Physics director with the European Organization for Nuclear Research CERN and the Facility for Antiproton and Ion Research FAIR GmbH, which is under construction at the GSI Accelerator Laboratory in Darmstadt.
    [Show full text]
  • Arxiv:1012.0653V3
    Quantum phase transitions in transverse field spin models: From Statistical Physics to Quantum Information Amit Dutta∗ Department of Physics, Indian Institute of Technology, Kanpur 208 016, India Uma Divakaran† Theoretische Physik, Universit¨at des Saarlandes, 66041 Saarbr¨ucken, Germany Diptiman Sen‡ Centre for High Energy Physics, Indian Institute of Science, Bangalore 560 012, India Bikas K. Chakrabarti§ Theoretical Condensed Matter Physics Division and Centre for Applied Mathematics and Computational Science, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064, India Thomas F. Rosenbaum¶ Department of Physics and the James Franck Institute, University of Chicago, Chicago, IL 60637 Gabriel Aeppli∗∗ London Centre for Nanotechnology and Department of Physics and Astronomy, UCL, London, WC1E 6BT, United Kingdom We review quantum phase transitions of spin systems in transverse magnetic fields taking the examples of some paradigmatic models, namely, the spin-1/2 Ising and XY models in a transverse field in one and higher spatial dimensions. Beginning with a brief overview of quantum phase transitions, we introduce the model Hamiltonians and discuss the equivalence between the quantum phase transition in such a model and the finite temperature phase transition in a higher dimensional classical model. We then provide exact solutions in one spatial dimension connecting them to conformal field theoretical studies when possible. We also discuss Kitaev models, and some other exactly solvable spin systems in this context. Studies of quantum phase transitions in the presence of quenched randomness and with frustrating interactions are presented in details. We discuss novel phenomena like Griffiths-McCoy singularities associated with quantum phase transitions of low- dimensional transverse Ising models with random interactions and transverse fields.
    [Show full text]