Is the Higgs Boson Composed of Neutrinos?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
``Topcolor''; Invited Talk Presented At" Strongly Coupled Gauge Theories
FERMILAB-Conf-97/032-T TOPCOLOR1 CHRISTOPHER T. HILL Fermi National Accelerator Laboratory P.O. Box 500, Batavia, Illinois, 60510, USA We review a class of dynamical models in which top condensation occurs at the weak scale, giving rise to the large top quark mass and other phenomena. This typically requires a color embedding, SU(3) SU(3)1 SU(3)2, ergo “Topcolor.” Topcolor suggests c → × a novel route to technicolor models in which sequential quarks condense under the Topcolor interaction to break electroweak symmetries. 1 Top Quark Condensation 1.1 Preliminary The top quark has arrived with a mass of 175 GeV. This is remarkably ∼ large in comparison to all other known fundamental particles, and coin- cidently equals the natural scale of electroweak interactions, 1/ 2√2GF . The top quark mass may be dynamically generated, analogousq to a con- stituent quark mass in QCD. Then the relevant question becomes: “Are arXiv:hep-ph/9702320v1 12 Feb 1997 there new strong interactions that are revealing themselves through the large top mass?” If the answer is no, then the most sensible scenario for physics beyond the standard model is something like the minimal supersymmetric standard model (MSSM). In this case the top quark mass is given by the infra–red renormalization group fixed point [1], and many of the successful predictions of unification are tied to this fact [2]. By itself, this is remarkable, because the infra–red renormalization group fixed point is really a consequence of the approximate scale invariance of the unified theory over the range of 1Invited Talk presented at Strongly Coupled Gauge Theories ‘96, Nagoya, Nov. -
Two Composite Higgs Doublets: Is It the Low Energy Limit of A
Two Composite Higgs Doublets: Is it the Low Energy Limit of a Natural Strong Electroweak Symmetry Breaking Sector ? Alfonso R. Zerwekh∗ Centro de Estudios Subat´omicos and Instituto de F´ısica, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia,Chile Abstract In this paper, we propose an effective model scheme that describes the electroweak symmetry breaking sector by means of composite Higgs- like scalars, following the ideas of Minimal Walking Technicolor (MWT). We argue that, because of the general failure of Extended Technicolor (ETC) to explain the mass of the top quark, it is necessary to introduce two composite Higgs bosons: one of them originated by a MWT-ETC sector and the other one produced by a Topcolor sector. We focus on the phenomenological differences between the light composite Higgs present in our model and the fundamental Higgs boson predicted by the Standard Model and their production at the LHC. We show that in this scheme the main production channel of the lighter Higgs boson are the associated production with a gauge boson and WW fusion but not the gluon-gluon fusion channel which is substantially suppressed. 1 Introduction arXiv:0907.4690v3 [hep-ph] 25 Dec 2009 High Energy Physics is at the dawn of a new era. In the very near future the LHC will allow us to explore, for the first time, the physics responsible for the electroweak symmetry breaking. We are quite sure that something different to the minimal Higgs sector of the Standard Model will be found, but the conjectured alternatives, far from being unique, are varied and very different among them, going from Higgsless models to Supersymmetry. -
Higgs Bosons Strongly Coupled to the Top Quark
CERN-TH/97-331 SLAC-PUB-7703 hep-ph/9711410 November 1997 Higgs Bosons Strongly Coupled to the Top Quark Michael Spiraa and James D. Wellsb aCERN, Theory Division, CH-1211 Geneva, Switzerland bStanford Linear Accelerator Center Stanford University, Stanford, CA 94309† Abstract Several extensions of the Standard Model require the burden of electroweak sym- metry breaking to be shared by multiple states or sectors. This leads to the possibility of the top quark interacting with a scalar more strongly than it does with the Stan- dard Model Higgs boson. In top-quark condensation this possibility is natural. We also discuss how this might be realized in supersymmetric theories. The properties of a strongly coupled Higgs boson in top-quark condensation and supersymmetry are described. We comment on the difficulties of seeing such a state at the Tevatron and LEPII, and study the dramatic signatures it could produce at the LHC. The four top quark signature is especially useful in the search for a strongly coupled Higgs boson. We also calculate the rates of the more conventional Higgs boson signatures at the LHC, including the two photon and four lepton signals, and compare them to expectations in the Standard Model. CERN-TH/97-331 SLAC-PUB-7703 hep-ph/9711410 November 1997 †Work supported by the Department of Energy under contract DE-AC03-76SF00515. 1 Introduction Electroweak symmetry breaking and fermion mass generation are both not understood. The Standard Model (SM) with one Higgs scalar doublet is the simplest mechanism one can envision. The strongest arguments in support of the Standard Model Higgs mechanism is that no experiment presently refutes it, and that it allows both fermion masses and electroweak symmetry breaking. -
Model-Independent Constraints on Topcolor from Rb
MADPH-97-984 TUM-HEP-267/97 hep-ph/9702265 Model-independent Constraints on Topcolor from Rb Gustavo Burdman∗ Department of Physics, University of Wisconsin, Madison, WI 53706, USA and Dimitris Kominis† Institut f¨ur Theoretische Physik, Technische Universit¨at M¨unchen, James-Franck-Straße, 85748 Garching, Germany Abstract arXiv:hep-ph/9702265v2 8 May 1997 We identify and compute the main corrections to Rb in Topcolor theories. They are due to the top-pions, the pseudo-Goldstone bosons associated with the chiral symmetry breaking responsible for the top quark mass, and amount to (1 4)%, − − independent of the details of the Topcolor model. We show that the cancellation of this effect against the contributions from Topcolor vector and scalar resonances is unlikely, given the inherently distinct character of the two scales governing the potentially cancelling terms. The resulting value of Rb leads to severe constraints on Topcolor theories. ∗e-mail address: [email protected] †e-mail address: [email protected] 1 Introduction The large value of the top-quark mass has led to speculation that the properties of the top quark may be fundamentally different from those of the other known fermions. In theories of top condensation, for example, a new strong gauge interaction (Topcolor), which couples to the t-quark and perhaps to other fermions as well, drives the formation of a tt¯ condensate and imparts a large dynamical mass to the top quark. In the process, h i the chiral symmetries associated with the strongly interacting fermions are spontaneously broken and at least three Goldstone bosons emerge. -
Arxiv:1102.4624V1 [Hep-Th] 22 Feb 2011 (Sec
Renormalisation group and the Planck scale Daniel F. Litim∗ Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH, U.K. I discuss the renormalisation group approach to gravity, its link to S. Weinberg's asymptotic safety scenario, and give an overview of results with applications to particle physics and cosmology. I. INTRODUCTION Einstein's theory of general relativity is the remarkably successful classical theory of the gravitational force, charac- −11 3 2 terised by Newton's coupling constant GN = 6:67×10 m =(kg s ) and a small cosmological constant Λ. Experimen- tally, its validity has been confirmed over many orders of magnitude in length scales ranging from the sub-millimeter regime up to solar system size. At larger length scales, the standard model of cosmology including dark matter and dark energy components fits the data well. At shorter length scales, quantum effects are expected to become impor- tant. An order of magnitude estimate for the quantum scale of gravity { the Planck scale { is obtained by dimensional p 3 −33 analysis leading to the Planck length `Pl ≈ ~GN =c of the order of 10 cm, with c the speed of light. In particle physics units this translates into the Planck mass 19 MPl ≈ 10 GeV : (1) While this energy scale is presently out of reach for earth-based particle accelerator experiments, fingerprints of Planck-scale physics can nevertheless become accessible through cosmological data from the very early universe. From a theory perspective, it is widely expected that a fundamental understanding of Planck scale physics requires a quantum theory of gravity. -
Exploring Models for New Physics on the Lattice
Exploring Models for New Physics on the Lattice Ethan T. Neil∗ Fermi National Accelerator Laboratory E-mail: [email protected] Strongly-coupled gauge theories are an important ingredient in the construction of many exten- sions of the standard model, particularly for models of electroweak symmetry breaking in which the Higgs boson is a composite object. There is a large parameter space of such gauge theories with a rich phase structure, particularly in the presence of large numbers of fermionic degrees of freedom. Lattice simulation provides a non-perturbative way to explore this space of strongly- coupled theories, and to search for interesting dynamical features. Here I review recent progress in the simulation of such theories, with an eye towards applications to dynamical electroweak symmetry breaking. XXIX International Symposium on Lattice Field Theory July 10-16, 2011 Squaw Valley, Lake Tahoe, California ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Exploring Models for New Physics on the Lattice Ethan T. Neil 1. Introduction Lattice gauge theory has enjoyed considerable success as a non-perturbative method to study and understand quantum chromodynamics (QCD), the only example of a strongly coupled gauge theory observed in nature thus far. With modern computers and computational techniques, lattice QCD is attaining high levels of precision, with simulation parameters approaching the physical point. However, the success enjoyed by lattice QCD is no reason for us to restrict the attention of our lattice studies to that theory alone. QCD is far from unique as an example of an asymptotically free Yang-Mills gauge theory, inhabiting a large space of models, all of which are well-suited to numerical study on the lattice. -
Finite Quantum Gauge Theories
Finite quantum gauge theories Leonardo Modesto1,∗ Marco Piva2,† and Les law Rachwa l1‡ 1Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 200433 Shanghai, China 2Dipartimento di Fisica “Enrico Fermi”, Universit`adi Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy (Dated: August 24, 2018) We explicitly compute the one-loop exact beta function for a nonlocal extension of the standard gauge theory, in particular Yang-Mills and QED. The theory, made of a weakly nonlocal kinetic term and a local potential of the gauge field, is unitary (ghost-free) and perturbatively super- renormalizable. Moreover, in the action we can always choose the potential (consisting of one “killer operator”) to make zero the beta function of the running gauge coupling constant. The outcome is a UV finite theory for any gauge interaction. Our calculations are done in D = 4, but the results can be generalized to even or odd spacetime dimensions. We compute the contribution to the beta function from two different killer operators by using two independent techniques, namely the Feynman diagrams and the Barvinsky-Vilkovisky traces. By making the theories finite we are able to solve also the Landau pole problems, in particular in QED. Without any potential the beta function of the one-loop super-renormalizable theory shows a universal Landau pole in the running coupling constant in the ultraviolet regime (UV), regardless of the specific higher-derivative structure. However, the dressed propagator shows neither the Landau pole in the UV, nor the singularities in the infrared regime (IR). We study a class of new actions of fundamental nature that infinities in the perturbative calculus appear only for gauge theories that are super-renormalizable or finite up to some finite loop order. -
Outlook Post-Higgs
Outlook Post-Higgs Christopher T. Hill Fermilab UCLA Higgs Workshop March 22, 2013 A dynamical “Higgs” mechanism was supposed to explain the origin of electroweak mass A dynamical “Higgs” mechanism was supposed to explain the origin of electroweak mass We now know that, evidently, a fundamental Higgs Boson exists and explains the masses of quarks, leptons, W and Z A dynamical “Higgs” mechanism was supposed to explain the origin of electroweak mass We now know that, evidently, a fundamental Higgs Boson exists and explains the masses of quarks, leptons, W and Z The Higgs Boson does NOT explain the origin of the electroweak mass-scale A dynamical “Higgs” mechanism was supposed to explain the origin of electroweak mass We now know that, evidently, a fundamental Higgs Boson exists and explains the masses of quarks, leptons, W and Z The Higgs Boson does NOT explain the origin of the electroweak mass-scale i.e., what is the origin of the Higgs Boson mass itself? A dynamical “Higgs” mechanism was supposed to explain the origin of electroweak mass We now know that, evidently, a fundamental Higgs Boson exists and explains the masses of quarks, leptons, W and Z The Higgs Boson does NOT explain the origin of the electroweak mass-scale i.e., what is the origin of the Higgs Boson mass itself? This may present opportunities for a deeper understanding QCD beautifully explains the origin of strong mass : The magnificent scale anomaly: The scale current: = 0 in a scale invariant theory The magnificent scale anomaly: The scale current: = 0 in a scale invariant -
Single Top Production Associated with a Neutral Scalar at LHC in Topcolor-Assisted Technicolor
Chinese Physics C (HEP & NP) Vol. 32, No. 9, Sep., 2008 Single top production associated with a neutral scalar at LHC in topcolor-assisted technicolor LIU Guo-Li(7Iw)1 ZHANG Huan-Jun(Ü)2;1) 1 (Department of Physics, Zhengzhou University, Henan 450052, China) 2 (Department of Physics, Henan Normal University, Xinxiang 453007, China) Abstract The topcolor-assisted technicolor (TC2) model predicts a number of neutral scalars like the top-pion 0 0 (πt ) and the top-Higgs (ht ). These scalars have flavor-changing neutral-current (FCNC) top quark couplings, among which the top-charm transition couplings may be sizable. Such FCNC couplings induce single top productions associated with a neutral scalar at the CERN Large Hadron Collider (LHC) through the parton ! 0 ! 0 processes cg tπt and cg tht . In this paper we examine these productions and find their production rates can exceed the 3σ sensitivity of the LHC in a large part of parameter space. Since in the Standard Model and the minimal supersymmetric model such rare productions have unobservably small production rates at the LHC, these rare processes will serve as a good probe for the TC2 model. Key words top quark, technicolor, LHC PACS 14.65.Ha, 12.60.Fr, 12.60.Jv As the heaviest fermion in the Standard Model ated with a neutral scalar at the LHC through the 0 0 (SM), the top quark may be a sensitive probe of new parton processes cg tπt and cg tht . In this pa- [1] ! ! physics . So far there remain plenty of room for new per we examine these productions and figure out if physics in top quark sector due to the small statis- their rates can exceed the 3σ sensitivity of the LHC. -
Symmetry Breaking and Generational Mixing in Topcolor--Assisted
BUHEP–96–2 hep-ph/9602221 Symmetry Breaking and Generational Mixing in Topcolor–Assisted Technicolor Kenneth Lane† Department of Physics, Boston University 590 Commonwealth Avenue, Boston, MA 02215 Abstract Topcolor–assisted technicolor provides a dynamical explanation for electroweak and flavor symmetry breaking and for the large mass of the top quark without unnatural fine tuning. A major challenge is to generate the observed mixing between heavy and light generations while breaking the strong topcolor interactions near 1 TeV. I argue that these phenomena, as well as electroweak symmetry breaking, are intimately connected and I arXiv:hep-ph/9602221v1 4 Feb 1996 present a scenario for them based on nontrivial patterns of technifermion condensation. I also exhibit a class of models realizing this scenario. This picture leads to a rich phe- nomenology, especially in hadron and lepton collider experiments in the few hundred GeV to few TeV region and in precision electroweak tests at the Z0, atomic parity violation, and polarized Møller scattering. 2/96 † [email protected] 1. Introduction Topcolor–assisted technicolor (TC2) was proposed by Hill [1] to overcome major shortcomings of top–condensate models of electroweak symmetry breaking [2], [3] and of technicolor models of dynamical electroweak and flavor symmetry breaking [4], [5]. Technicolor and extended technicolor (ETC) have been unable to provide a natural and plausible understanding of why the top quark mass is so large [6]. On the other hand, models in which strong topcolor interactions drive top–quark condensation and elec- troweak symmetry breaking are unnatural. To reproduce the one–Higgs–doublet standard model consistent with precision electroweak measurements (especially of the parameter 2 2 2 ρ = M /M cos θW 1), the topcolor energy scale must be much greater than the W Z ≃ electroweak scale of (1 TeV). -
Higgs Boson Mass and New Physics Arxiv:1205.2893V1
Higgs boson mass and new physics Fedor Bezrukov∗ Physics Department, University of Connecticut, Storrs, CT 06269-3046, USA RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA Mikhail Yu. Kalmykovy Bernd A. Kniehlz II. Institut f¨urTheoretische Physik, Universit¨atHamburg, Luruper Chaussee 149, 22761, Hamburg, Germany Mikhail Shaposhnikovx Institut de Th´eoriedes Ph´enom`enesPhysiques, Ecole´ Polytechnique F´ed´eralede Lausanne, CH-1015 Lausanne, Switzerland May 15, 2012 Abstract We discuss the lower Higgs boson mass bounds which come from the absolute stability of the Standard Model (SM) vacuum and from the Higgs inflation, as well as the prediction of the Higgs boson mass coming from asymptotic safety of the SM. We account for the 3-loop renormalization group evolution of the couplings of the Standard Model and for a part of two-loop corrections that involve the QCD coupling αs to initial conditions for their running. This is one step above the current state of the art procedure (\one-loop matching{two-loop running"). This results in reduction of the theoretical uncertainties in the Higgs boson mass bounds and predictions, associated with the Standard Model physics, to 1−2 GeV. We find that with the account of existing experimental uncertainties in the mass of the top quark and αs (taken at 2σ level) the bound reads MH ≥ Mmin (equality corresponds to the asymptotic safety prediction), where Mmin = 129 ± 6 GeV. We argue that the discovery of the SM Higgs boson in this range would be in arXiv:1205.2893v1 [hep-ph] 13 May 2012 agreement with the hypothesis of the absence of new energy scales between the Fermi and Planck scales, whereas the coincidence of MH with Mmin would suggest that the electroweak scale is determined by Planck physics. -
Annual Report 2018 Annual Report 2018 Annual Report 2018 Helsinki Institute of Physics
Helsinki office CERN office P.O. Box 64 (Gustaf Hällströmin katu 2) CERN/PH FI-00014 University of Helsinki, Finland CH-1211 Geneva 23, Switzerland tel. +358-2-941 50557 tel. +41-22-76 73027 Annual Report 2018 www.hip.fi Annual Report 2018 Annual Report 2018 Helsinki Institute of Physics Vice-Rector Sari Lindblom unveiling the portrait of the former HIP Director, Vice-Rector Paula Eerola. Annual Report 2018 Helsinki Institute of Physics CONTENTS 1. Preface 4 2. Highlights of Research Results 6 3. Theory Programme 10 4. CMS Programme 16 5. Nuclear Matter Programme 22 6. Technology Programme 26 7. Detector Laboratory 32 8. CLOUD 34 9. Planck-Euclid 36 10. Education and Open Data 38 11. Joint Activities 39 12. Organization and Personnel 40 13. Seminars 43 14. Visitors 44 15. Conference participation, Talks and Visits by Personnel 45 16. Publications 53 17. Preprints 66 Annual Report 2018 Helsinki Institute of Physics, Preface PREFACE The Helsinki Institute of Physics (HIP) is a joint research institute of the Universities of Helsinki and Jyväskylä, Aalto University, Tampere University of Technology, and Lappeenranta-Lahti University of Technology LUT. The Finnish Radiation and Nuclear Safety Authority is an interim member of HIP for 2018–2019. The University of Helsinki is the host organisation of HIP. HIP addresses fundamental science questions from quarks to the Cosmos as well as technologies from semiconductors to medical applications and climate research. The Institute serves as a national institute for Finnish physics and related technology research and development at international accelerator laboratories. By mandate of the Finnish Ministry of KATRI HUITU Education and Culture, HIP is responsible for the Finnish research collaboration Helsinki Institute of Physics director with the European Organization for Nuclear Research CERN and the Facility for Antiproton and Ion Research FAIR GmbH, which is under construction at the GSI Accelerator Laboratory in Darmstadt.