Configurable Nd-Visualization for Complex Building Information Models

Total Page:16

File Type:pdf, Size:1020Kb

Configurable Nd-Visualization for Complex Building Information Models Configurable nD-visualization for complex Building Information Models Helga Tauscher Schriftenreihe des Instituts f¨urBauinformatik Herausgeber: Univ.-Prof. Dr.-Ing. R. J. Scherer c Institut f¨urBauinformatik, Fakult¨atBauingenieurwesen TU Dresden, 2017 ISBN: 978-3-86780-526-1 Institut f¨urBauinformatik, TU Dresden Postanschrift: Besuchsanschrift: Technische Universit¨atDresden N¨urnberger Str. 31a 01062 Dresden 2. OG, Raum Nr. 204 01187 Dresden Tel.: +49 351 / 463-32966 Fax: +49 351 / 463-33975 Email: [email protected] www: http://cib.bau.tu-dresden.de Configurable nD-visualization for complex Building Information Models Konfigurierbare nD-Visualisierung f¨urkomplexe Building Information Models An der Fakult¨atBauingenieurwesen der Technischen Universit¨atDresden zur Erlangung des akademischen Grades einer Doktor-Ingenieurin (Dr.-Ing.) genehmigte Dissertation vorgelegt von Dipl.-Ing. Helga Tauscher geboren am 05. August 1976 in Rostock Erster Gutachter: Prof. Dr.-Ing. Raimar J. Scherer (TU Dresden) Zweiter Gutachter: Ao. Univ. Prof. Dr. techn. Bob Martens (TU Wien) Dritter Gutachter: Prof. Dr.-Ing. Frank Petzold (TU M¨unchen) Tag der Einreichung: 23. Februar 2016 Tag der Verteidigung: 18. Oktober 2016 Preface When I applied to the Institute of Construction Informatics in 2010, I did so with a research proposal that I had developed earlier at Bauhausuniversit¨atWeimar. I wanted to explore tool sets and workflows for energy{efficient building design and construction. However, Professor Scherer suggested a different research area to me, that was at that time part of the mefisto research project and to be included in other projects as well: that of visualization in the context of construction project management. Looking back I am surprised how well this suggestion allowed me to isolate a topic that would foster my curiosity, creativity, and commitment over a period of several years. This would not have been possible without the freedom to identify and follow my very own path into scientific waters. This freedom is a gift, but also poses the liability upon every PhD candidate, to assume responsibility for their own work without relying on detailed external guidance. I want to thank Professor Scherer who allowed for and called for this kind of early scientific independence and provided the environment, the resources and just the right impulses for this work to evolve. Frank Petzold from TU Munich and Bob Martens from TU Wien agreed to examine my work. Thank you for the patience to follow my arguments. Thinking and writing takes not a tremendous amount of resources, but it can't be carried out without basic needs covered first. I am happy to have been part of two projects under the auspices of the German Ministry of Education and Research and gratefully acknowledge their support. During the finalization stage I decided to fully commit to the concentrated work at the thesis and to refrain from further project obligations. During this time I received a short-time scholarship from TU Dresden and two travel grants from the German Academic Exchange Service (DAAD). These institutions facilitated the completion of this work, I appreciate their support. A good part of research is carried out in happy solitude, but at the same time heavily relies on scientific exchange and communication, be it during lunch breaks, at confer- ences, or through written publications. I want to thank my colleagues at CIB for the fruitful discussions and the cooperative attitude. Special thanks go to Romy Guruz, who shared a tiny room with me for the first year, reminded me to type quietly while main- taining speed, and became a close companion and friend later on. Sven-Eric Schapke as mefisto project leader introduced me to the intricacies of the project, but he also had a fair share in finding my research topic. I enjoyed working with Martin Voigt from the Institute for Multimedia Technology at the Faculty of Computer Science, who worked on a complementing aspect of visualizations in the mefisto project and was an inspir- v ing partner. I name these three colleagues to represent many persons I met during the years as colleagues at CIB, as project partners, or in research communities dedicated to computation in architecture and construction, who spured my thoughts through their comments and discussions. During the final stages of the write-up the whole text had to be read and revised several times. I want to thank Lene and Lars for reading parts of the thesis in advance and commenting with fresh eyes. Ursula, Joachim, and Traudl provided me their most beautiful forest view and seaside rooms to immerse myself into writing. This work would not exist without friends and family who supported me and my adventurous undertaking with many more or less noticeable, but in any single case notable contributions. In particular, I want to thank J¨orn,Claudia, Anne and Henning for listening to my stories, sharing my concerns, encouraging my decisions, for just backing me up. This book is dedicated to my parents and grandparents who laid the foundations for what I am. I wish they could see what they brought up. When I left the software development team at conject AG to pursue a PhD, one of my former colleagues asked me why I would want to miss out on the development part in Research and Development and do only research that would be discontinued half-way through, long before it could be brought to any productive use. To me, it was a great pleasure to intensely focus on a question and to thoroughly think it through without the pressure of immediate commercial exploitability. At the same time I always had practical applications in mind and verified applicability through prototypical software implementations. I hope that some of the ideas developed in this thesis will be picked up in the future and get incorporated into productive software. Singapore, August 2017 Helga Tauscher vi Abstract With the ongoing development of building information modelling (BIM) towards a com- prehensive coverage of all construction project information in a semantically explicit way, visual representations became decoupled from the building information models. While traditional construction drawings implicitly contained the visual representation besides the information, nowadays they are generated on the fly, hard-coded in software applications dedicated to other tasks such as analysis, simulation, structural design or communication. Due to the abstract nature of information models and the increasing amount of digital information captured during construction projects, visual representations are essential for humans in order to access the information, to understand it, and to engage with it. At the same time digital media open up the new field of interactive visualizations. The full potential of BIM can only be unlocked with customized task-specific visual- izations, with engineers and architects actively involved in the design and development process of these visualizations. The visualizations must be reusable and reliably repro- ducible during communication processes. Further, to support creative problem solving, it must be possible to modify and refine them. This thesis aims at reconnecting building information models and their visual representations: on a theoretic level, on the level of methods and in terms of tool support. First, the research seeks to improve the knowledge about visualization generation in conjunction with current BIM developments such as the multimodel. The approach is based on the reference model of the visualization pipeline and addresses structural as well as quantitative aspects of the visualization generation. Second, based on the theoretic foundation, a method is derived to construct visual representations from given visualization specifications. To this end, the idea of a domain-specific language (DSL) is employed. Finally, a software prototype proofs the concept. Using the visualization framework, visual representations can be generated from a specific building information model and a specific visualization description. vii viii Kurzfassung Mit der fortschreitenden Entwicklung des Building Information Modelling (BIM) hin zu einer umfassenden Erfassung aller Bauprojektinformationen in einer semantisch expliziten Weise werden Visualisierungen von den Geb¨audeinformationen entkoppelt. W¨ahrendtraditionelle Architektur- und Bauzeichnungen die visuellen Repr¨asentationen implizit als Tr¨agerder Informationen enthalten, werden sie heute on-the-fly generiert. Die Details ihrer Generierung sind festgeschrieben in Softwareanwendungen, welche eigentlich f¨urandere Aufgaben wie Analyse, Simulation, Entwurf oder Kommunikation ausgelegt sind. Angesichts der abstrakten Natur von Informationsmodellen und der steigenden Menge digitaler Informationen, die im Verlauf von Bauprojekten erfasst werden, sind visuelle Repr¨asentationen essentiell, um sich die Information erschließen, sie verstehen, durch- dringen und mit ihnen arbeiten zu k¨onnen.Gleichzeitig entwickelt sich durch die digi- talen Medien eine neues Feld der interaktiven Visualisierungen. Das volle Potential von BIM kann nur mit angepassten aufgabenspezifischen Visual- isierungen erschlossen werden, bei denen Ingenieur*innen und Architekt*innen aktiv in den Entwurf und die Entwicklung dieser Visualisierungen einbezogen werden. Die Visualisierungen m¨ussen wiederverwendbar sein und in Kommunikationsprozessen zuverl¨assigreproduziert werden k¨onnen. Außerdem muss es m¨oglich sein, Visual- isierungen zu modifizieren und neu zu definieren, um das
Recommended publications
  • Alvar Aalto's Associative Geometries
    Alvar Aalto Researchers’ Network Seminar – Why Aalto? 9-10 June 2017, Jyväskylä, Finland Alvar Aalto’s associative geometries Holger Hoffmann Prof. Dipl.-Ing., Architekt BDA Fay Jones School of Architecture and Design Why Aalto?, 3rd Alvar Aalto Researchers Network Seminar, Jyväskylä 2017 Prof. Holger Hoffmann, Bergische Universität Wuppertal, April 30th, 2017 Paper Proposal ALVAR AALTO‘S ASSOCIATIVE GEOMETRIES This paper, written from a practitioner’s point of view, aims at describing Alvar Aalto’s use of associative geometries as an inspiration for contemporary computational design techniques and his potential influence on a place-specific version of today’s digital modernism. In architecture the introduction of digital design and communication techniques during the 1990s has established a global discourse on complexity and the relation between the universal and the specific. And however the great potential of computer technology lies in the differentiation and specification of architectural solutions, ‘place’ and especially ‘place-form’ has not been of greatest interest since. Therefore I will try to build a narrative that describes the possibilities of Aalto’s “elastic standardization” as a method of well-structured differentiation in relation to historical and contemporary methods of constructing complexity. I will then use a brief geometrical analysis of Aalto’s “Neue Vahr”-building to hint at a potential relation of his work to the concept of ‘difference and repetition’ that is one of the cornerstones of contemporary ‘parametric design’. With the help of two projects (one academic, one professional) I will furthermore try to show the capability of such an approach to open the merely generic formal vocabulary of so-called “parametricism” to contextual or regional necessities in a ‘beyond-digital’ way.
    [Show full text]
  • 189 09 Aju 03 Bryon 8/1/10 07:25 Página 31
    189_09 aju 03 Bryon 8/1/10 07:25 Página 31 Measuring the qualities of Choisy’s oblique and axonometric projections Hilary Bryon Auguste Choisy is renowned for his «axonometric» representations, particularly those illustrating his Histoire de l’architecture (1899). Yet, «axonometric» is a misnomer if uniformly applied to describe Choisy’s pictorial parallel projections. The nomenclature of parallel projection is often ambiguous and confusing. Yet, the actual history of parallel projection reveals a drawing system delineated by oblique and axonometric projections which relate to inherent spatial differences. By clarifying the intrinsic demarcations between these two forms of parallel pro- jection, one can discern that Choisy not only used the two spatial classes of pictor- ial parallel projection, the oblique and the orthographic axonometric, but in fact manipulated their inherent differences to communicate his theory of architecture. Parallel projection is a form of pictorial representation in which the projectors are parallel. Unlike perspective projection, in which the projectors meet at a fixed point in space, parallel projectors are said to meet at infinity. Oblique and axonometric projections are differentiated by the directions of their parallel pro- jectors. Oblique projection is delineated by projectors oblique to the plane of pro- jection, whereas the orthographic axonometric projection is defined by projectors perpendicular to the plane of projection. Axonometric projection is differentiated relative to its angles of rotation to the picture plane. When all three axes are ro- tated so that each is equally inclined to the plane of projection, the axonometric projection is isometric; all three axes are foreshortened and scaled equally.
    [Show full text]
  • Smart Sketch System for 3D Reconstruction Based Modeling
    Smart Sketch System for 3D Reconstruction Based Modeling Ferran Naya1, Julián Conesa2, Manuel Contero1, Pedro Company3, Joaquim Jorge4 1 DEGI - ETSII, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain {fernasan, mcontero}@degi.upv.es 2 DEG, Universidad Politécnica de Cartagena, C/ Dr. Fleming 30202 Cartagena, Spain [email protected] 3 Departamento de Tecnología, Universitat Jaume I de Castellón, Campus Riu Sec 12071 Castellón, Spain [email protected] 4 Engª. Informática, IST, Av.Rovisco Pais 1049-001 Lisboa, Portugal [email protected] Abstract. Current user interfaces of CAD systems are still not suited to the ini- tial stages of product development, where freehand drawings are used by engi- neers and designers to express their visual thinking. In order to exploit these sketching skills, we present a sketch based modeling system, which provides a reduced instruction set calligraphic interface to create orthogonal polyhedra, and an extension of them we named quasi-normalons. Our system allows users to draw lines on free-hand axonometric-like drawings, which are automatically tidied and beautified. These line drawings are then converted into a three- dimensional model in real time because we implemented a fast reconstruction process, suited for quasi-normalon objects and so-called axonometric inflation method, providing in this way an innovative integrated 2D sketching and 3D view visualization work environment. 1 Introduction User interfaces of most CAD applications are based on the WIMP (Windows, Icons, Menus and Pointing) paradigm, that is not enough flexible to support sketching activi- ties in the conceptual design phase. Recently, work on sketch-based modeling has looked at a paradigm shift to change the way geometric modeling applications are built, in order to focus on user-centric systems rather than systems that are organized around the details of geometry representation.
    [Show full text]
  • 2D to 3D Image Conversion Using Trimetric Projection and Depth-Map Estimation
    ISSN (Online) 2278-1021 IJARCCE ISSN (Print) 2319 5940 International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified Vol. 5, Issue 7, July 2016 2D to 3D Image Conversion using Trimetric Projection and Depth-map Estimation Rashmi Snawer1, Asst. Prof. Ms. Anubhooti Papola2 Department of Computer Science, Uttarakhand Technical University Dehradun1, 2 Abstract: The three-dimensional (3D) displays needed the axes and angle information for dimensional view which is engaged in the predictable 2D substance. This work presents a novel methodology that involuntarily converts 2D images into 3D which is easily available for users with the help of our mM desktop application. Here we are working on axonometric projection and focusing on axis of any object or image, in this methodology we are going to merge three different axonometric projections and showing this as a new technique in Tri-metric projection. Projection applies in 2D records which we have to convert in 3D. This technique is helpful in 2d to 3D conversion with a better view and it takes less time for conversion since researchers are using three different projection techniques together for an exceptional result. Keywords: Predictable 2D substance, focusing on axis of any object or image, 2D records which we have to convert in 3D help of our mM desktop application 1. INTRODUCTION In the 2D structure, we use only two coordinates X and Y it an idea of the outer world, how objects are near or how other than in 3D an extra coordinate Z is new. 3D graphics they are far.
    [Show full text]
  • Download Download
    O'SHAUNGHNESSY | The 1866 Vercoe and Harding map and the axonometric: the object of subjective representation AHA: Architectural History Aotearoa (2010) vol 7:58-65 The 1866 Vercoe and Harding map and the axonometric: the object of subjective representation Katherine O'Shaunghnessy ABSTRACT: The 1866 Vercoe and Harding map of Auckland provides a visual description of colonial development during the 1860s. This map is a static representation of the past and the backdrop to an exploration of the site via architectural drawing. This paper outlines the process of excavating a site through axonometric drawing looking specifically at an area within Freemans Bay. It explains how the two dimensional Vercoe and Harding map has been extruded into a three dimensional representation of the site. The idea of the map as a subjective representation of the past will be explored alongside the use of what might be considered an objective drawing type to create a subjective visualization of the site. The paper will investigate the process of creating this axonometric and the way in which this drawing relies on both historical fact and historical assumption. It will address how this process produces an understanding of the site, namely, the ability to translate each building based on the simple outline of its plan. This paper is part of a wider investigation into the documentation of heritage sites and the use of drawing to create an understanding of place. Thus, this drawing alone does not create this awareness of place, but rather, informs a new understanding of the 1866 map and a representation of what Freemans Bay might have been during the 1860s.
    [Show full text]
  • A Brief History of Data Visualization
    A Brief History of Data Visualization Michael Friendly Psychology Department and Statistical Consulting Service York University 4700 Keele Street, Toronto, ON, Canada M3J 1P3 in: Handbook of Computational Statistics: Data Visualization. See also BIBTEX entry below. BIBTEX: @InCollection{Friendly:06:hbook, author = {M. Friendly}, title = {A Brief History of Data Visualization}, year = {2006}, publisher = {Springer-Verlag}, address = {Heidelberg}, booktitle = {Handbook of Computational Statistics: Data Visualization}, volume = {III}, editor = {C. Chen and W. H\"ardle and A Unwin}, pages = {???--???}, note = {(In press)}, } © copyright by the author(s) document created on: March 21, 2006 created from file: hbook.tex cover page automatically created with CoverPage.sty (available at your favourite CTAN mirror) A brief history of data visualization Michael Friendly∗ March 21, 2006 Abstract It is common to think of statistical graphics and data visualization as relatively modern developments in statistics. In fact, the graphic representation of quantitative information has deep roots. These roots reach into the histories of the earliest map-making and visual depiction, and later into thematic cartography, statistics and statistical graphics, medicine, and other fields. Along the way, developments in technologies (printing, reproduction) mathematical theory and practice, and empirical observation and recording, enabled the wider use of graphics and new advances in form and content. This chapter provides an overview of the intellectual history of data visualization from medieval to modern times, describing and illustrating some significant advances along the way. It is based on a project, called the Milestones Project, to collect, catalog and document in one place the important developments in a wide range of areas and fields that led to mod- ern data visualization.
    [Show full text]
  • Lehigh Preserve Institutional Repository
    Lehigh Preserve Institutional Repository The feasibility of an enhancement of Geometric Design Processor (GDP) to include dimensioning / Glemser, Raymond Gerald 1985 Find more at https://preserve.lib.lehigh.edu/ This document is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion by an authorized administrator of Lehigh Preserve. For more information, please contact [email protected]. THE FEASIBILITY OF AN ENHANCEMENT OF GEOMETRIC DESIGN PROCESSOR {GDP) TO INCLUDE DIMENSIONING · by Raymond Gerald Glemser A Thesis Presented to the Graduate committee of Lehigh University in canaidacy for Degree of ~aster of science in Industrial Engineering Lehigh University 1984 Certificate of Approval This thesis is accepted and approved in partial fulfillment·. of the requirements for the degree of Master of Science.: --~--1;-~?!f::._~i)°(ie _At~~----- _Chairman of Department ii Acknowledgements I wish to thank Dr. Emory w. Zimrners, Jr. 0£ Lehigh Uni­ versity, my thesis advisor, for providing me with the direc­ tion and resources necessary for this design. I extend many thanks to Bill Fitzgerald, Bob Wolfe, and Franklyn Gracer for their continuing interest in and suggestions concerning the integration of dimensioning with the existing GDP sys­ tem. I express a special thanks to Adel Ali of Lehigh Uni­ versity for his contributions to our dimensioning and tolerancinq discussions, and to carol Riggin £or her pio­ neering GDP research at Lehigh. I dedicate this thesis to my parents £or their encourage­ ment throughout my years at Lehigh University. iii TABLE_OF CONTENTS ABSTRACT . 1 Background • . .. , . 4 Projections 4 Current GDP Vie'l Capabilities .
    [Show full text]
  • 1. Introduction
    INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN ICED 03 STOCKHOLM, AUGUST 19-21, 2003 CONCEPTUAL MODELING TOOL AT THE EARLY DESIGN PHASE Ferran Naya, Manuel Contero, Joaquim Jorge, Julián Conesa Abstract Although CAD systems have evolved considerably in functionality, expressiveness and modeling power over the last decades, their user interfaces are still tied to legacy principles and are not suited to the initial stages of product development. They exhibit steep learning curves, cumbersome and overly structured dialogues, including hundreds of commands. While much of this functionality may be required by the sheer complexity of the tasks these systems are designed to help, we believe the user interface could benefit from simpler paradigms based on sketching and drawing to reduce unneeded complexity, especially in the conceptual design phase. In what follows, we present the CIGRO system that provides a reduced instruction set calligraphic interface to create polyhedral objects using an incremental drawing paradigm evocative of paper and pencil drawings. Users sketch lines on an axonometric projection, which are automatically beautified and connected to existing parts of the drawing. Such line drawings are then converted to a three-dimensional model through a reconstruction process guided by an axonometric inflation method. While much work remains to be done, comparative usability evaluation tests conducted with expert and new users yielded very promising results. Keywords: computer-aided design, engineering drawing, geometric modeling, solid modeling 1. Introduction In spite of recent advances in Computer Aided Design, it is still difficult to capture the drawing language used in the initial phases of product development, where designers prefer pencil and paper over computer-based tools.
    [Show full text]
  • Abstracts 2012
    100TH ANNUAL CONFERENCE L O S A N G E L E S FEBRUARY 22–25, 2012 ABSTRACTS ABSTRACTS 2012 100th Annual Conference, Los Angeles Wednesday, February 22–Saturday, February 25, 2012 50 Broadway, 21st Floor New York, NY 10004 www.collegeart.org College Art Association 50 Broadway, 21st Floor New York, NY 10004 www.collegeart.org Copyright © 2012 College Art Association All rights reserved. Printed in the United States of America. Sessions are listed alphabetically according to the name of the chair. Abstracts 2012 is produced on a very abbreviated schedule. Although every effort is made to avoid defects, information in this book is subject to change. CAA regrets any editorial errors or omissions. We extend our special thanks to the CAA Annual Conference Committee members responsible for the 2012 program: Sue Gollifer, University of Brighton, vice president for Annual Conference, chair; Sharon Matt Atkins, Brooklyn Museum of Art; Peter Barnet, The Metropolitan Museum of Art; Brian Bishop, Framingham State University; Connie Cortez, Texas Tech University; Ken Gonzales-Day, Scripps College; and Sabina Ott, Columbia College Chicago. Regional Representatives: Stephanie Barron, Los Angeles County Museum of Art, and Margaret Lazzari, University of Southern California. We also thank all the volunteers and staff members who made the conference possible. Cover: Photograph provided by Security Pacific National Bank Collection, Los Angeles Public Library. Design: Ellen Nygaard CAA2012 FEBRUARY 22–25 3 Contents CAA International Committee 11 Concerning the Spiritual in Art: Kandinsky’s 19 Confrontation in Global Art History: Past/Present; Pride/ Radical Work at 100 Prejudice Surrounding Art and Artists Chairs: Susan J.
    [Show full text]
  • Composites, Conventions, Axonometrics from Thin to Thick
    Composites, Conventions, Axonometrics From Thin to Thick 1 First And Second Positions Axonometric Position PLANE OF PROJECTION ORTHOGRAPHIC AXONOMETRIC Theory of Axonometric Projection Image by MIT OpenCourseWare. 2 AXONOMETRIC4.105: AxonometricCONSTRUCTIONS Constructions matrix of projectionmatrix of projection types types 3 trimetric as projection 4.105: Axonometric Constructions matrix of projection types TRIMETRICtrimetric AS PROJECTION as projection 4 TRIMETRICtrimetric AS PROJECTION as projection trimetric as projection all axes are foreshortened trimetric as projection TRIMETRICtrimetric AS PROJECTION as projection all axes are foreshortened all axes are foreshortened ISOMETRICisometric AS PROJECTION as projection special casespecial trimetric: case trimetric:all axes are all foreshortened axes are foreshortened equally equally 7 isometric as construction all axes are drawn true length - all shapes reconstructed isometric as projection special case trimetric: all axes are foreshortened equally ISOMETRICisometric AS PROJECTION as construction all axes are drawn true length - all shapes reconstructed all axes are drawn true length - all shapes reconstructed 8 ARCHITECTURALarchitectural AXONOMETRIC axonometric as AS projection PROJECTION parallel obliqueparallel projection oblique projection - projection - projection plane parallel plane to parallel one face to one face 9 architectural axonometric as construction cavalier axo: all axes are drawn true length - plan shape preserved [cavalier] architectural axonometric as projection parallel
    [Show full text]
  • Isometric Projections
    Acknowledgement • Main contributors of Engineering Drawing lecture slides preparation and modification as well as lab/tutorial questions preparation are: – Prof. S.C. Mishra, IIT Guwahati – Prof. C.V.R. Murty, IIT Kanpur – Prof. P.S. Robi, IIT Guwahati – Dr. Subhasis Dutta, IIT Guwahati – Dr. Sujit Dash, IIT Guwahati • This is to acknowledge that some slides are downloaded from internet. • Thanks to Dr. Rajib Bhattacharjya and Dr. Arindam Dey for uploading the final lecture slides in internet. • Thanks to all other colleagues and academic staff members, whose name I missed to mention in this page. ME 111: Engineering Drawing Date: 17/10/2011 Lecture 15 Isometric Projections Indian Institute of Technology Guwahati Guwahati – 781039 2 Announcement • Makeup lab class (Lab 12): – Inform the respective Tutor one week before lab 12 or during lab 11, about the lab (only one) you want to perform as makeup class. – Give Your Name, Roll No., Group No. and Lab details • End semester examination: – 19th Nov. 2011 (Saturday), and – 20th Nov. 2011 (Sunday) The axonometric projection is produced by multiple parallel lines of sight perpendicular to the plane of projection, with the observer at infinity and the object rotated about an axis to produce a pictorial view Axonometric projection - is a parallel projection technique used to create a pictorial drawing of an object by rotating the object on an axis relative to a projection or picture plane. The differences between a multiview drawing and an axonometric drawing are that, in a multiview, only two dimensions of an object are visible in each view and more than one view is required to define the object; whereas, in an axonometric drawing, the object is rotated about an axis to display all three dimensions, and only one view is required.
    [Show full text]
  • Computing Different Projections of a Polyhedral Scene from a Single 2D Sketch
    Computing Different Projections of a Polyhedral Scene from a Single 2D Sketch François Guéna 1, Louis-Paul Untersteller 2 1-2 ARIAM-LAREA, Ecole Nationale Supérieure d’Architecture de Paris La Villette,Paris,France www.ariam-larea.archi.fr 1 [email protected], 2 [email protected] Abstract. This paper presents the development of a tool which is capable of compute several projections of a polyhedral scene from a single axonometric or perspective projection. This projection is hand-drawn and may be incomplete. This sketch can be rotated with a kind of trackball and the tool computes in real- time new projections. In that way the designer can choose another view from which he is able to control and complete the sketch and carry on designing. So this tool can be useful for exploring architectural forms in the early phases of the design process. Unlike others freehand sketching interfaces, the system does not operate any reconstruction in 3D. Everything is computed in a 2D world. Keywords: Architectural Design; Sketching; Projective Geometry; Duality; 3D Reconstruction. Introduction projection is a more difficult problem. Sosnov, and al. (2002) proposed a method founded on a geo- Despite the growing use of CAD tools in architectural metrical constraint engine. The engine computes a design, architects still prefer pencil and paper dur- 3D model from a set of constraints that defines geo- ing preliminary stages of design. The interfaces of metrical relationships (i.e. planarity, incidence, paral- CAD tools seem to disturb the designer flow of ideas lelism, and orthogonality) between lines and cycles and interfere with creativity.
    [Show full text]