Project: a Gigabit Ethernet

Total Page:16

File Type:pdf, Size:1020Kb

Project: a Gigabit Ethernet Rivier College CS553A Introduction to Networking Technologies Project: A Gigabit Ethernet Author: Faron Ducharm e Author’s E-m ail fducharm [email protected] Due Date: 8th of Decem ber 2005 Professor: Vladim ir V. Riabov, PhD Table of Contents INTRODUCTION ..................................................................................................3 2 Technology Backround .....................................................................................................................4 2.1 Why has the Ethernet been so successful?...................................................................................4 2.2 Evolution of Standards ................................................................................................................5 2.3 Benefits of Gigabit.......................................................................................................................6 3 Network Topology .............................................................................................................................7 3.1 Network Diameter Limitations ....................................................................................................8 3.2 Load Balancing............................................................................................................................8 4 Network Architecture (Layers and Protocols) ........................................................................9 4.1 Physical Layer .............................................................................................................................9 4.2 Data Link Layer.........................................................................................................................10 4.3 Network Layer...........................................................................................................................13 4.4 Transport Layer .........................................................................................................................14 4.5 Application Layer......................................................................................................................16 5 Conclusions ......................................................................................................................................17 REFERENCES ...................................................................................................18 2 Introduction Com pany X is as m edium sized enterprise of 300 people (term inals) running and requiring access to the following: • Enterprise Resource Planning (ERP) Database and Application • E-m ail • Internet browsing • File Transfer Protocol (FTP) • Off-Site Backup • Storage Area Network (SAN) Along with proving the above, security is a param ount concern. The Ethernet operates at layers 1 and 2 of the OSI networking m odel but as an academ ic exercise we will also exam ine the Network, Transport and Application layers. STORAGE AREA NETWORK The ever expanding volum e of data produced by businesses today, is being driven by new technologies, custom er dem and and governm ent regulation: • Publishing com panies m oving towards digital pre-press publication. • Retailers selling to online custom ers. • Healthcare com panies abiding by the Health Insurance Portability and Accountability Act (HIPAA). • Organizations that m andate long-term archiving of everything from e-m ail m essages to corporate records. The Storage Area Network (SAN) was developed in response to this changing clim ate and the requirem ents of High Availability (HA), scalable growth and system perform ance. Som e estim ates project enterprise storage to double every 12-18 m onths. According to the IM EX Research “SANs will eventually be at the core of every enterprise’s data center.” i M ost of today’s SANs relay on Ethernet to transport data via Internet Sm all Com puter System Interface (iSCSI). ISCSI is a block-level storage protocol that lets users create a separate storage network using Ethernet. ISCSI uses Ethernet as a transport for data from servers to storage devices or storage-area networks. Because iSCSI uses Ethernet, it doesn't suffer from som e of the com plexity and distance lim itations that encum ber other storage protocols. Ethernet: A local-area network (LAN) architecture developed by Xerox Corporation in cooperation with DEC and Intel in 1976. Ethernet uses a bus or star topology and supports data transfer rates of 10 M bps. The Ethernet specification served as the basis for the IEEE 802.3 standard, which specifies the physical and lower software layers. Ethernet uses the CSM A/CD access m ethod to handle sim ultaneous dem ands. It is one of the m ost widely im plem ented LAN standards. 3 1 TECHNOLOGY BACKROUND Invented by Robert M etcalfe, during his tim e at Xerox’s Palo Alto Research Center (PARC) the prototype system operated at 3 M bps and connected 100 com puters. W ithin a num ber of years Xerox, Intel Corporation and Digital Equipm ent Corporation had form ed an alliance and published a “Blue Book Standard” for the Ethernet, which subsequently form ed the basis for the IEEE 802.3 standard. Figure 2.1 M etcalfe’s original notes ii Today, the Ethernet is the m ost com m only em ployed LAN technology. According to the International Data Corporation (IDC) m ore than 85% of all network connections are Ethernet. WHY HAS THE ETHERNET BEEN SO SUCCESSFUL? Central to the success of the Ethernet, has been its ability to continue to evolve to m eet the every growing dem and for bandwidth. IT professionals have com e to rely on the Ethernet to be sim ple, easy to use and readily upgradeable. An organization can scale from 10 to 100 (Fast Ethernet) to 1000M bps (Gigabit Ethernet), assured that any new equipm ent will be backwards com patible with legacy equipm ent. This reduces the infrastructure investm ent that an organization m ust m ake. For a history of the Ethernet visit www.com puterhistory.org/. 4 International Data Corporation - is the world's leading provider of technology intelligence, industry analysis, m arket and strategic data. IDC provides global research with local content through m ore than 700 analysts in 43 countries worldwide. IDC is a division of IDG, which was founded in 1964 and has m ore than 12,000 em ployees worldwide. IDG m edia options reach m ore than 120 m illion technology buyers in 85 countries; representing 95% of worldwide IT spending. EVOLUTION OF STANDARDS The role-played by the Ethernet standards has been to provide a straightforward m igration path for com panies as their bandwidth requirem ents have increased. Figure 2.2 ii The Gigabit Ethernet has evolved from the original 10M bps Ethernet standards and a 10-Gigabit Ethernet standard is being ratified, supported by the IEEE and the 10- Gigabit Ethernet Alliance. 5 Figure 2.3 iii In June of 1998, the IEEE adopted a standard for Gigabit Ethernet over fiber optic cabling, IEEE 802.3z, and its im plem entation was widely supported. A year later, in June of 1999 the IEEE standardized IEEE 802.3ab Gigabit Ethernet over copper as 1000Base-T, allowing Gigabit speed to be transm itted over Cat-5 cable (figure 2.3). As a result com panies could rely on an well-understood standards-based approach to im prove traffic 1.1 BENEFITS OF GIGABIT Gigabit Ethernet is 100 tim es faster than regular 10M bps Ethernet and 10 tim es faster than 100M bps Fast Ethernet. The principal benefits of Gigabit Ethernet include: • Increased bandwidth for higher perform ance and elim ination of bottlenecks • Full-duplex capacity, allowing the effective bandwidth to be virtually doubled • Aggregating bandwidth to m ulti-Gigabit speeds using Gigabit server adapters and switches • Quality of Services (QoS) features to help elim inate jittery video or distorted audio • Low cost of acquisition and ownership • Full com patibility with the large installed base of Ethernet and Fast Ethernet nodes • Transferring large am ounts of data across a network quickly 6 2 NETWORK TOPOLOGY Com pany X will em ploy a Bus or Tree topology, all devices on the network connects via one trunk cable. This m akes it easy to install and configure and inexpensive. Figure 3.1 shows the proposed topology; geom etric arrangem ent. Figure 3.1 Com pany X’s Network Topology Other issues that should be considered during developm ent of the network topology are the physical lim itation of such a network and how to avoid any bottlenecks. VLAN: Short for virtual LAN, a network of com puters that behave as if they are connected to the sam e wire even though they m ay actually be physically located on different segm ents of a LAN. VLANs are configured through software rather than hardware, which m akes them extrem ely flexible. VLANs are often nam ed by color. A NETWORK DIAM ETER LIM ITATIONS There are two approaches to calculating the physical lim itations of the network topology. The first is a “cookbook” approach, ensuring the 5-4-3 Rule is adhered to. 5-4-3 Rule: divides the network into two types of physical segm ents: populated (user) segm ents, and unpopulated (link) segm ents. User segm ents have users' system s connected to them . Link segm ents are used to connect the network's repeaters together. The rule m andates that between any two nodes on the network, there can only be a m axim um of five segm ents, connected through four repeaters, or concentrators, and only three of the five segm ents m ay contain user connections. The Ethernet protocol requires that a signal sent out over the LAN reach every part of the network
Recommended publications
  • End-To-End Performance of 10-Gigabit Ethernet on Commodity Systems
    END-TO-END PERFORMANCE OF 10-GIGABIT ETHERNET ON COMMODITY SYSTEMS INTEL’SNETWORK INTERFACE CARD FOR 10-GIGABIT ETHERNET (10GBE) ALLOWS INDIVIDUAL COMPUTER SYSTEMS TO CONNECT DIRECTLY TO 10GBE ETHERNET INFRASTRUCTURES. RESULTS FROM VARIOUS EVALUATIONS SUGGEST THAT 10GBE COULD SERVE IN NETWORKS FROM LANSTOWANS. From its humble beginnings as such performance to bandwidth-hungry host shared Ethernet to its current success as applications via Intel’s new 10GbE network switched Ethernet in local-area networks interface card (or adapter). We implemented (LANs) and system-area networks and its optimizations to Linux, the Transmission anticipated success in metropolitan and wide Control Protocol (TCP), and the 10GbE area networks (MANs and WANs), Ethernet adapter configurations and performed sever- continues to evolve to meet the increasing al evaluations. Results showed extraordinari- demands of packet-switched networks. It does ly higher throughput with low latency, so at low implementation cost while main- indicating that 10GbE is a viable intercon- taining high reliability and relatively simple nect for all network environments. (plug and play) installation, administration, Justin (Gus) Hurwitz and maintenance. Architecture of a 10GbE adapter Although the recently ratified 10-Gigabit The world’s first host-based 10GbE adapter, Wu-chun Feng Ethernet standard differs from earlier Ether- officially known as the Intel PRO/10GbE LR net standards, primarily in that 10GbE oper- server adapter, introduces the benefits of Los Alamos National ates only over fiber and only in full-duplex 10GbE connectivity into LAN and system- mode, the differences are largely superficial. area network environments, thereby accom- Laboratory More importantly, 10GbE does not make modating the growing number of large-scale obsolete current investments in network infra- cluster systems and bandwidth-intensive structure.
    [Show full text]
  • 40 and 100 Gigabit Ethernet Overview
    Extreme Networks White Paper 40 and 100 Gigabit Ethernet Overview Abstract This paper takes a look at the main forces that are driving Ethernet bandwidth upwards. It looks at the standards and architectural practices adopted by the different segments, how the different speeds of Ethernet are used and how its popularity has resulted in an ecosystem spanning data centers, carrier networks, enterprise networks, and consumers. Make Your Network Mobile © 2011 Extreme Networks, Inc. All rights reserved. Do not reproduce. Extreme Networks White Paper: 40 and 100 Gigabit Ethernet Overview and how its popularity has resulted in a complex ecosys- Overview tem between carrier networks, enterprise networks, and consumers. There are many reasons driving the need for higher bandwidth Ethernet, however, the main reason is our insatiable appetite for content. The definition of content Driving the Need for Speed in itself has evolved over time – where once the majority of traffic on an Ethernet network may have been occa- Ethernet in the Enterprise and Data sional file transfers, emails and the like, today technology Center is allowing us to push and receive richer content such Data center virtualization, which includes storage and as voice, video and high definition multimedia. Simi- server virtualization, is all about the efficient use of larly, mechanisms for delivering content have evolved resources. In the data center this is multifaceted. On over time to reflect this demand. While there were a few the one hand data center managers are trying to bring technologies competing for LAN dominance in the early power, cooling and space utilization under control, while days of networks, Ethernet has become the clear choice.
    [Show full text]
  • Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern
    Switched, Fast, and Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern.. Page 1 of 36 [Figures are not included in this sample chapter] Switched, Fast, and Gigabit Ethernet - 3 - Ethernet, Fast Ethernet, and Gigabit Ethernet Standards This chapter discusses the theory and standards of the three versions of Ethernet around today: regular 10Mbps Ethernet, 100Mbps Fast Ethernet, and 1000Mbps Gigabit Ethernet. The goal of this chapter is to educate you as a LAN manager or IT professional about essential differences between shared 10Mbps Ethernet and these newer technologies. This chapter focuses on aspects of Fast Ethernet and Gigabit Ethernet that are relevant to you and doesn’t get into too much technical detail. Read this chapter and the following two (Chapter 4, "Layer 2 Ethernet Switching," and Chapter 5, "VLANs and Layer 3 Switching") together. This chapter focuses on the different Ethernet MAC and PHY standards, as well as repeaters, also known as hubs. Chapter 4 examines Ethernet bridging, also known as Layer 2 switching. Chapter 5 discusses VLANs, some basics of routing, and Layer 3 switching. These three chapters serve as a precursor to the second half of this book, namely the hands-on implementation in Chapters 8 through 12. After you understand the key differences between yesterday’s shared Ethernet and today’s Switched, Fast, and Gigabit Ethernet, evaluating products and building a network with these products should be relatively straightforward. The chapter is split into seven sections: l "Ethernet and the OSI Reference Model" discusses the OSI Reference Model and how Ethernet relates to the physical (PHY) and Media Access Control (MAC) layers of the OSI model.
    [Show full text]
  • Spec TEG-S40TXD(English).Pdf
    TRENDnet TRENDware, USA TEG-S40TXD What's Next in Networking 4-Port 10/100/1000Mbps Copper Gigabit Ethernet Switch TRENDnet’s TEG-S40TXD Copper Gigabit Switch consist of four 10/100/1000Mbps Copper Gigabit Ethernet ports with each port having Auto-negotiation and Auto-MDIX features. The Switch offers a reliable and affordable LAN solution to meet immediate bandwidth demand. Users can connect Server(s) to the Gigabit port(s) to increase network performance or cascade Copper Gigabit Switches together to create high-bandwidth Gigabit backbones. TRENDnet’s TEG- S40TXD provides simple migration, scalability, and flexibility to handle new applications and data types making it a highly reliable and cost effective solution for high-speed network connectivity. Features Benefits 4 x 10/100/1000Mbps Copper Gigabit Ethernet Integration Friendly: Ports Plug-n-Play. Connects with current Fast Ethernet Cat. 5 cables. Full/Half duplex transfer mode for each port (1000Mbps in full-duplex only) Flexible: All ports automatically negotiate Auto-MDIX on each port 10/100/1000Mbps network speed. All ports are Auto-MDIX; connection can Supports store-and-forward switching architecture be made with either a straight through with non-blocking full wire-speed performance or a crossover cable. Supports aging function and 802.3x flow control for Expandability: full-duplex mode and back pressure flow control for Cascade Gigabit Switches together to half-duplex mode operation create a Gigabit backbone. Up to 8K unicast addresses entities per device Performance: Gigabit
    [Show full text]
  • Draft Stable Implementation Agreement for Open
    NBS PUBLICATIONS U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Institute for Computer Sciences and Technology A 11 IDE 7 E T M NBSIR 87-3674 Draft Stable Implementation Agreements for Open Systems Interconnection Protocols NBS Workshop for Implementors of Open Systems Interconnection Version 1 Edition 0 October 1987 DRAFT STABLE IMPLEMENTATION AGREEMENTS Based on the Proceeding of the NBS/OSI Implementor’s Workshop Plenary Assembly Held October 9, 1987 National Bureau of Standards Gaithersburg, MD 20899 U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS — QC 100 - U 5 6 87-3674 1987 C • 2 U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Institute for Computer Sciences and Technology Research Information Center NBSIR 87-3674 National r>ureau of Standards Gaithersburg, Maryland 20899 A) BSc DRAFT STABLE IMPLEMENTATION QCtoo AGREEMENTS FOR OPEN SYSTEMS < USy INTERCONNECTION PROTOCOLS m., 1921 c.> NBS Workshop for Implementors of Open Systems Interconnection Version 1 Edition 0 October 1987 DRAFT STABLE IMPLEMENTATION AGREEMENTS Based on the Proceeding of the NBS/OSI Implementor’s Workshop Plenary Assembly Held October 9, 1987 National Bureau of Standards Gaithersburg, MD 20899 U.S. DEPARTMENT OF COMMERCE, C. William Verity, Acting Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director 21 Table of Contents 1. GENERAL INFORMATION 1 1.1 PURPOSE OF THIS DOCUMENT * 1 1.2 PURPOSE OF THE WORKSHOP 1 1.3 WORKSHOP ORGANIZATION 1 2. SUB NETWORKS 1 2.1 LOCAL AREA NETWORKS 1 2.1.1 IEEE 802.2 LOGICAL LINK CONTROL 1 2.1.2 IEEE 802.3 CSMA/CD ACCESS METHOD 1 2.1.3 IEEE 802.4 TOKEN BUS ACCESS METHOD 1 2.1.4 IEEE 802.5 Token Ring Access Method 3 2.2 WIDE AREA NETWORKS 4 2.2.1 CCITT RECOMMENDATION X.25 4 2.3 PRIVATE SUBNETWORKS 4 2.3.1 PRIVATE SUBNETWORKS' 4 3.
    [Show full text]
  • Ethernet and Wifi
    Ethernet and WiFi hp://xkcd.com/466/ CSCI 466: Networks • Keith Vertanen • Fall 2011 Overview • Mul?ple access networks – Ethernet • Long history • Dominant wired technology – 802.11 • Dominant wireless technology 2 Classic Ethernet • Ethernet – luminferous ether through which electromagne?c radiaon once thought to propagate – Carrier Sense, Mul?ple Access with Collision Detec?on (CSMA/CD) – IEEE 802.3 Robert Metcalfe, co- inventor of Ethernet 3 Classic Ethernet • Ethernet – Xerox Ethernet standardized as IEEE 802.3 in 1983 – Xerox not interested in commercializing – Metcalfe leaves and forms 3Com 4 Ethernet connec?vity • Shared medium – All hosts hear all traffic on cable – Hosts tapped the cable – 2500m maximum length – May include repeaters amplifying signal – 10 Mbps bandwidth 5 Classic Ethernet cabling Cable aSer being "vampire" tapped. Thick Ethernet cable (yellow), 10BASE-5 transceivers, cable tapping tool (orange), 500m maximum length. Thin Ethernet cable (10BASE2) with BNC T- connector, 185m maximum length. 6 Ethernet addressing • Media Access Control address (MAC) – 48-bit globally unique address • 281,474,976,710,656 possible addresses • Should last ?ll 2100 • e.g. 01:23:45:67:89:ab – Address of all 1's is broadcast • FF:FF:FF:FF:FF:FF 7 Ethernet frame format • Frame format – Manchester encoded – Preamble products 10-Mhz square wave • Allows clock synch between sender & receiver – Pad to at least 64-bytes (collision detec?on) Ethernet 802.3 AlternaWng 0's 48-bit MAC and 1's (except addresses SoF of 11) 8 Ethernet receivers • Hosts listens to medium – Deliver to host: • Any frame with host's MAC address • All broadcast frames (all 1's) • Mul?cast frames (if subscribed to) • Or all frames if in promiscuous mode 9 MAC sublayer • Media Access Control (MAC) sublayer – Who goes next on a shared medium – Ethernet hosts can sense if medium in use – Algorithm for sending data: 1.
    [Show full text]
  • Gigabit Ethernet
    Ethernet Technologies and Gigabit Ethernet Professor John Gorgone Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 1 Topics • Origins of Ethernet • Ethernet 10 MBS • Fast Ethernet 100 MBS • Gigabit Ethernet 1000 MBS • Comparison Tables • ATM VS Gigabit Ethernet •Ethernet8SummaryCopyright 1998, John T. Gorgone, All Rights Reserved 2 Origins • Original Idea sprang from Abramson’s Aloha Network--University of Hawaii • CSMA/CD Thesis Developed by Robert Metcalfe----(1972) • Experimental Ethernet developed at Xerox Palo Alto Research Center---1973 • Xerox’s Alto Computers -- First Ethernet Ethernet8systemsCopyright 1998, John T. Gorgone, All Rights Reserved 3 DIX STANDARD • Digital, Intel, and Xerox combined to developed the DIX Ethernet Standard • 1980 -- DIX Standard presented to the IEEE • 1980 -- IEEE creates the 802 committee to create acceptable Ethernet Standard Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 4 Ethernet Grows • Open Standard allows Hardware and Software Developers to create numerous products based on Ethernet • Large number of Vendors keeps Prices low and Quality High • Compatibility Problems Rare Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 5 What is Ethernet? • A standard for LANs • The standard covers two layers of the ISO model – Physical layer – Data link layer Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 6 What is Ethernet? • Transmission speed of 10 Mbps • Originally, only baseband • In 1986, broadband was introduced • Half duplex and full duplex technology • Bus topology Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 7 Components of Ethernet • Physical Medium • Medium Access Control • Ethernet Frame Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 8 CableCable DesignationsDesignations 10 BASE T SPEED TRANSMISSION MAX TYPE LENGTH Ethernet8 Copyright 1998, John T.
    [Show full text]
  • QUESTION 20-1/2 Examination of Access Technologies for Broadband Communications
    International Telecommunication Union QUESTION 20-1/2 Examination of access technologies for broadband communications ITU-D STUDY GROUP 2 3rd STUDY PERIOD (2002-2006) Report on broadband access technologies eport on broadband access technologies QUESTION 20-1/2 R International Telecommunication Union ITU-D THE STUDY GROUPS OF ITU-D The ITU-D Study Groups were set up in accordance with Resolutions 2 of the World Tele- communication Development Conference (WTDC) held in Buenos Aires, Argentina, in 1994. For the period 2002-2006, Study Group 1 is entrusted with the study of seven Questions in the field of telecommunication development strategies and policies. Study Group 2 is entrusted with the study of eleven Questions in the field of development and management of telecommunication services and networks. For this period, in order to respond as quickly as possible to the concerns of developing countries, instead of being approved during the WTDC, the output of each Question is published as and when it is ready. For further information: Please contact Ms Alessandra PILERI Telecommunication Development Bureau (BDT) ITU Place des Nations CH-1211 GENEVA 20 Switzerland Telephone: +41 22 730 6698 Fax: +41 22 730 5484 E-mail: [email protected] Free download: www.itu.int/ITU-D/study_groups/index.html Electronic Bookshop of ITU: www.itu.int/publications © ITU 2006 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU. International Telecommunication Union QUESTION 20-1/2 Examination of access technologies for broadband communications ITU-D STUDY GROUP 2 3rd STUDY PERIOD (2002-2006) Report on broadband access technologies DISCLAIMER This report has been prepared by many volunteers from different Administrations and companies.
    [Show full text]
  • Medium Access Control Layer
    Telematics Chapter 5: Medium Access Control Sublayer User Server watching with video Beispielbildvideo clip clips Application Layer Application Layer Presentation Layer Presentation Layer Session Layer Session Layer Transport Layer Transport Layer Network Layer Network Layer Network Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller Data Link Layer Data Link Layer Data Link Layer Computer Systems and Telematics (CST) Physical Layer Physical Layer Physical Layer Institute of Computer Science Freie Universität Berlin http://cst.mi.fu-berlin.de Contents ● Design Issues ● Metropolitan Area Networks ● Network Topologies (MAN) ● The Channel Allocation Problem ● Wide Area Networks (WAN) ● Multiple Access Protocols ● Frame Relay (historical) ● Ethernet ● ATM ● IEEE 802.2 – Logical Link Control ● SDH ● Token Bus (historical) ● Network Infrastructure ● Token Ring (historical) ● Virtual LANs ● Fiber Distributed Data Interface ● Structured Cabling Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.2 Design Issues Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.3 Design Issues ● Two kinds of connections in networks ● Point-to-point connections OSI Reference Model ● Broadcast (Multi-access channel, Application Layer Random access channel) Presentation Layer ● In a network with broadcast Session Layer connections ● Who gets the channel? Transport Layer Network Layer ● Protocols used to determine who gets next access to the channel Data Link Layer ● Medium Access Control (MAC) sublayer Physical Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.4 Network Types for the Local Range ● LLC layer: uniform interface and same frame format to upper layers ● MAC layer: defines medium access ..
    [Show full text]
  • The Essential Guide to Audio Over IP for Broadcasters 2 5
    The Essential Guide To Audio OverIP FOR BROADCASTERS Powerful Performance | Powerful Control | Powerful Savings i 1. Why IP for Broadcast Audio? Reasons to Migrate to Audio over IP ..........................................................................................................8 1. Flexibility ..................................................................................................................................................................................8 2. Cost ...........................................................................................................................................................................................8 3. Scalability ................................................................................................................................................................................9 4. Reliability (yes really!) .........................................................................................................................................................9 5. Availability ..............................................................................................................................................................................9 6. Control and Monitoring .....................................................................................................................................................9 7. Network Consolidation ......................................................................................................................................................9
    [Show full text]
  • Towards 100 Gbps Ethernet: Development of Ethernet / Physical Layer Aspects
    SEMINAR ON TOPICS IN COMMUNICATIONS ENGINEERING 1 Towards 100 Gbps Ethernet: Development of Ethernet / Physical Layer Aspects Ömer Bulakci Abstract — Physical layer features of Ethernet from the first released clauses and ongoing architecture researches for 100 realization towards the 100 Gb Ethernet (100 GbE) development GbE are elaborated. have been considered. Comparisons of these features are made according to the standardized data rates. Feasible physical layer TABLE I options are then discussed for high data rates. Milestones of 802.3 IEEE Standard I. INTRODUCTION Clause Date of Bit Physical THERNET is the most widely deployed Local Area Name Release Rate Medium Network (LAN) protocol and has been extended to E 802.3a Single Metropolitan Area Networks (MAN) and Wide Area (Thin Ethernet) 1985 10 Mbps Thin Coaxial Networks (WAN) [1]. The major advantages that characterize (Cheapernet) Cable Ethernet can be stated as its cost efficiency, traditional tenfold bit rate increase (from 10 Mbps to 100 Gbps), simplicity, high 802.3i 1990 10 Mbps TP Copper transmission reliability and worldwide interoperability 802.3j 1993 10 Mbps Two MMFs between vendors [2]. TP Copper The first experimental Ethernet was developed during the 802.3u 1995 100 Mbps Two Fibers early 1970s by XEROX Corporation in a coaxial cable (Fast Ethernet) (MMF,SMF) network with a data rate about 3 Mbps [3]. The initial 802.3z 1998 1 Gbps MMF, SMF standardization process of Ethernet was started in 1979 by (Gigabit Ethernet) Digital Equipment Corporation (DEC), Intel and Xerox. In 802.3ab 1999 1 Gbps TP Copper 1980, DIX Standard known as the “Thick Ethernet” was 802.3ae 2002 10 Gbps MMF,SMF released.
    [Show full text]
  • Gigabit Ethernet Gigabit Ethernet
    Gigabit Ethernet Gigabit Ethernet Vijay Moorthy, ([email protected]) Ethernet is the world's most pervasive networking technology. Gigabit Ethernet is the latest version of Ethernet. It offers 1000 Mbps ( 1 Gbps ) raw bandwidth, that is 100 times faster than the original Ethernet, yet is compatible with existing Ethernets, as it uses the same CSMA/CD and MAC protocols. When Gigabit Ethernet enters the market it will compete directly with ATM. This paper presents a survey of Gigabit Ethernet technology. Other Reports on Recent Advances in Networking Back to Raj Jain's Home Page Table of Contents 1. Introduction 1.1 History of Ethernet 1.2 Gigabit Ethernet Alliance 2. Physical Layer 2.1 1000Base-X 2.2 1000Base-T 3. MAC Layer 3.1 Carrier Extension 3.2 Packet Bursting 4. GMII ( Gigabit Media Independent Interface ) 4.1 PCS (Physical Coding Sublayer) 4.2 PMA (Physical Medium Attachment) 4.3 PMD (Physical Medium Dependent) 5. Buffered Distributor 6. Topologies 6.1 Upgrading server-switch connections 6.2 Upgrading switch-switch connections 6.3 Upgrading a Fast Ethernet backbone 6.4 Upgrading a Shared FDDI Backbone 6.5 Upgrading High Performance Workstations 7. ATM vs. Gigabit Ethernet 8. Summary 9. Bibliography and Links http://www.cis.ohio-state.edu/~jain/cis788-97/gigabit_ethernet/index.htm (1 of 12) [2/7/2000 12:24:48 PM] Gigabit Ethernet 1. Introduction Ethernet is the world's most pervasive networking technology , since the 1970's. It is estimated that in 1996, 82% of all networking equipment shipped was Ethernet. In 1995 ,the Fast Ethernet Standard was approved by the IEEE.
    [Show full text]