The Chimerical and Multifaceted Marine Acoel Symsagittifera

Total Page:16

File Type:pdf, Size:1020Kb

The Chimerical and Multifaceted Marine Acoel Symsagittifera The chimerical and multifaceted marine acoel Symsagittifera roscoffensis: from photosymbiosis to brain regeneration Xavier Bailly, Laurent Laguerre, Gaëlle Correc, Sam Dupont, Thomas Kurth, Anja Pfannkuchen, Rolf Entzeroth, Ian Probert, Serge Vinogradov, Christophe Lechauve, et al. To cite this version: Xavier Bailly, Laurent Laguerre, Gaëlle Correc, Sam Dupont, Thomas Kurth, et al.. The chimeri- cal and multifaceted marine acoel Symsagittifera roscoffensis: from photosymbiosis to brain regen- eration. Frontiers in Microbiology, Frontiers Media, 2014, 5, pp.498. 10.3389/fmicb.2014.00498. hal-01100635 HAL Id: hal-01100635 https://hal.sorbonne-universite.fr/hal-01100635 Submitted on 6 Jan 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW ARTICLE published: 02 October 2014 doi: 10.3389/fmicb.2014.00498 The chimerical and multifaceted marine acoel Symsagittifera roscoffensis: from photosymbiosis to brain regeneration Xavier Bailly 1*, Laurent Laguerre 1, Gaëlle Correc 2, Sam Dupont 3, Thomas Kurth 4, Anja Pfannkuchen 4, Rolf Entzeroth 5, Ian Probert 6, Serge Vinogradov 7, Christophe Lechauve 8, Marie-José Garet-Delmas 9, Heinrich Reichert 10 and Volker Hartenstein 11 1 Université Pierre et Marie Curie -CNRS, FR2424, Functional Exploration in Marine Model Organisms - Centre de Ressources Biologiques Marines, Station Biologique de Roscoff, Roscoff, France 2 Université Pierre et Marie Curie -CNRS, UMR 7139, Marine Plants and Biomolecules, Station Biologique de Roscoff, Roscoff, France 3 Department of Biological and Environmental Sciences, The Sven Lovén Centre for Marine Sciences – Kristineberg, University of Gothenburg – Fiskebäckskil, Sweden 4 TU Dresden, DFG-Research Center for Regenerative Therapies Dresden, Dresden, Germany 5 Institute of Zoology, Technical University Dresden, Dresden, Germany 6 Université Pierre et Marie Curie -CNRS, FR2424, RCC (Roscoff Culture Collection) - Centre de Ressources Biologiques Marines, Station Biologique de Roscoff, Roscoff, France 7 Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, France 8 INSERM, UMR S 968, CNRS/Université Pierre et Marie Curie - Institut de la Vision/Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Paris, France 9 CNRS UMR 7144 and Université Pierre and Marie Curie, EPEP - Evolution of Protists and Pelagic Ecosystems, Station Biologique de Roscoff, Roscoff, France 10 Biozentrum, University of Basel, Basel, Switzerland 11 Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA, USA Edited by: A remarkable example of biological engineering is the capability of some marine animals to Ute Hentschel, University of take advantage of photosynthesis by hosting symbiotic algae. This capacity, referred to as Wuerzburg, Germany photosymbiosis, is based on structural and functional complexes that involve two distantly Reviewed by: unrelated organisms. These stable photosymbiotic associations between metazoans and Mary E. Rumpho, University of Connecticut, USA photosynthetic protists play fundamental roles in marine ecology as exemplified by Angela Elizabeth Douglas, Cornell reef communities and their vulnerability to global changes threats. Here we introduce University, USA a photosymbiotic tidal acoel flatworm, Symsagittifera roscoffensis, and its obligatory *Correspondence: green algal photosymbiont, Tetraselmis convolutae (Lack of the algal partner invariably Xavier Bailly, Station Biologique de results in acoel lethality emphasizing the mandatory nature of the photosymbiotic Roscoff, Place Georges Teissier, 29680 Roscoff, France algae for the animal’s survival). Together they form a composite photosymbiotic unit, e-mail: [email protected] which can be reared in controlled conditions that provide easy access to key life-cycle events ranging from early embryogenesis through the induction of photosymbiosis in aposymbiotic juveniles to the emergence of a functional “solar-powered” mature stage. Since it is possible to grow both algae and host under precisely controlled culture conditions, it is now possible to design a range of new experimental protocols that address the mechanisms and evolution of photosymbiosis. S. roscoffensis thus represents an emerging model system with experimental advantages that complement those of other photosymbiotic species, in particular corals. The basal taxonomic position of S. roscoffensis (and acoels in general) also makes it a relevant model for evolutionary studies of development, stem cell biology and regeneration. Finally, it’s autotrophic lifestyle and lack of calcification make S. roscoffensis a favorable system to study the role of symbiosis in the response of marine organisms to climate change (e.g., ocean warming and acidification). In this article we summarize the state of knowledge of the biology of S. roscoffensis and its algal partner from studies dating back over a century, and provide an overview of ongoing research efforts that take advantage of this unique system. Keywords: acoel, roscoffensis, symbiosis, regeneration, brain, algae, tetraselmis, model INTRODUCTION photosymbiotic protists (unicellular eukaryotes) from the tax- Photosymbiosis represents around 50% of marine photosyn- onomic super-groups Rhizaria, Alveolates, and Stramenopiles thesis, as exemplified by corals and other reef animals as (Baldauf, 2008). An association between a host (multi- or uni- well as by the remarkable biomass and diversity of oceanic cellular) and an “algal” photosymbiont represents, in principle, www.frontiersin.org October 2014 | Volume 5 | Article 498 | 1 Bailly et al. An emerging photosymbiotic model a “domestication” of photosynthesis that can result in a trophic including development, ecology, and genetics. This lack of exper- independence as long as the partners are located in the euphotic imental progress is especially unfortunate for issues in metazoan zone in view of the infinite source of solar energy. As a con- evolution. This is because S. roscoffensis as an acoel represents sequence, photosymbiosis has a strong global ecological impact something of a Gordian knot in the debate concerning the and, hence, the adaptations and innovations that contribute to features of the ancestor of the all bilaterian animals (the so- photosymbiotic interactions require both in depth functional called “urbilaterian”). In this debate some scientists propose that and molecular analysis. This analysis is also important since all Bilateria are descendants of a primitively coelomate ances- the evolutionary success of photosymbiosis, based on inno- tor (archicoelomate hypothesis, Salvini-Plawen, 1978; Balavoine, vative combinations of hosts/photosynthetic symbionts, con- 1998) implying that flatworms have secondarily lost their coelom tributes markedly to marine diversity. Finally, a comprehensive and are thus not basal bilaterians, while others argue that acoel understanding of the mechanisms underlying the recruitment of flatworms are primarily simple and that their acoelomate condi- photosynthetic symbionts by heterotrophic organisms may also tion is representative of the ancestor of the Bilateria (planuloid- contribute to and understanding of the ancestral evolutionary acoeloid hypothesis, Salvini-Plawen, 1978; Baguna and Riutort, events of acquisition of plastid-like endosymbionts by a prim- 2004a). itive heterotrophic eukaryotic cells, i.e., primary and secondary Thus, from a historical point of view, the current renaissance in endosymbiosis. experimental investigations of S. roscoffensis represents a renewal We introduce here Symsagittifera roscoffensis (formerly with a rich and relevant background of over a century of studies Convoluta roscoffensis), a marine flatworm-like animal that dedicated to this acoel flatworm from the early 1870s until the belongs to the phylum Acoela (a = non, coela = cavity), as 1980s. In this report, we review the current state of knowledge an ideal photosymbiotic biological model system for exploring concerning the biology, ecology, and physiology of this animal, the functional biology, molecular biology and evolution of and we highlight the many new avenues of research made possible photosymbioses. S. roscoffensis, described as a “Plant-Animal” by the precise experimental control of the ontogeny of this marine (Keebles, 1910) a century ago, is endemic to the intertidal zone of flatworm including induced symbiogenesis through co-culture of European coasts of the Atlantic Ocean and the English Channel, the acoel and the algal symbiont. and at low tide forms huge colonies composed of millions of individuals (Figures 1, 2A–C). The vivid green color of the HISTORICAL BACKGROUND ON S. ROSCOFFENSIS AND ITS colonies is due to the abundant presence of a unicellular green SYMBIONT algal endosymbiont, namely the prasinophyte Tetraselmis con- Studies beginning in the late nineteenth century centered on volutae (Figure 3A). This animal presents a wealth of biological the origin and the role of the enigmatic “green cells” inhabiting
Recommended publications
  • Platyhelminthes, Nemertea, and "Aschelminthes" - A
    BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. III - Platyhelminthes, Nemertea, and "Aschelminthes" - A. Schmidt-Rhaesa PLATYHELMINTHES, NEMERTEA, AND “ASCHELMINTHES” A. Schmidt-Rhaesa University of Bielefeld, Germany Keywords: Platyhelminthes, Nemertea, Gnathifera, Gnathostomulida, Micrognathozoa, Rotifera, Acanthocephala, Cycliophora, Nemathelminthes, Gastrotricha, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera Contents 1. Introduction 2. General Morphology 3. Platyhelminthes, the Flatworms 4. Nemertea (Nemertini), the Ribbon Worms 5. “Aschelminthes” 5.1. Gnathifera 5.1.1. Gnathostomulida 5.1.2. Micrognathozoa (Limnognathia maerski) 5.1.3. Rotifera 5.1.4. Acanthocephala 5.1.5. Cycliophora (Symbion pandora) 5.2. Nemathelminthes 5.2.1. Gastrotricha 5.2.2. Nematoda, the Roundworms 5.2.3. Nematomorpha, the Horsehair Worms 5.2.4. Priapulida 5.2.5. Kinorhyncha 5.2.6. Loricifera Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS This chapter provides information on several basal bilaterian groups: flatworms, nemerteans, Gnathifera,SAMPLE and Nemathelminthes. CHAPTERS These include species-rich taxa such as Nematoda and Platyhelminthes, and as taxa with few or even only one species, such as Micrognathozoa (Limnognathia maerski) and Cycliophora (Symbion pandora). All Acanthocephala and subgroups of Platyhelminthes and Nematoda, are parasites that often exhibit complex life cycles. Most of the taxa described are marine, but some have also invaded freshwater or the terrestrial environment. “Aschelminthes” are not a natural group, instead, two taxa have been recognized that were earlier summarized under this name. Gnathifera include taxa with a conspicuous jaw apparatus such as Gnathostomulida, Micrognathozoa, and Rotifera. Although they do not possess a jaw apparatus, Acanthocephala also belong to Gnathifera due to their epidermal structure. ©Encyclopedia of Life Support Systems (EOLSS) BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol.
    [Show full text]
  • Spermiogenesis in the Acoel Symsagittifera Roscoffensis: Nucleus-Plasma
    bioRxiv preprint doi: https://doi.org/10.1101/828251; this version posted November 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Spermiogenesis in the acoel Symsagittifera roscoffensis: nucleus-plasma membrane contact sites and microtubules. Matthew J. Hayes1, Anne-C. Zakrzewski2, Tim P. Levine1 and Maximilian J. Telford2 1University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK 2 Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK Running title: Contact sites and microtubule rearrangements in spermiogenesis Summary sentence: During spermiogenesis in the acoel flatworm Symsagittifera roscoffensis, two previously unidentified contact sites contribute to the structure of the mature spermatozoon and the axonemal structures show direct continuity between doublet and dense core microtubules. Keywords: Contact-site, acrosome, gamete biology, spermatid, spermatogenesis, spermiogenesis, acoel. bioRxiv preprint doi: https://doi.org/10.1101/828251; this version posted November 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Symsagittifera roscoffensis is a small marine worm found in the intertidal zone of sandy beaches around the European shores of the Atlantic. S. roscoffensis is a member of the Acoelomorpha, a group of flatworms formerly classified with the Platyhelminthes, but now recognised as Xenacoelomorpha, a separate phylum of disputed affinity.
    [Show full text]
  • Xenacoelomorpha's Significance for Understanding Bilaterian Evolution
    Available online at www.sciencedirect.com ScienceDirect Xenacoelomorpha’s significance for understanding bilaterian evolution Andreas Hejnol and Kevin Pang The Xenacoelomorpha, with its phylogenetic position as sister biology models are the fruitfly Drosophila melanogaster and group of the Nephrozoa (Protostomia + Deuterostomia), plays the nematode Caenorhabditis elegans, in which basic prin- a key-role in understanding the evolution of bilaterian cell types ciples of developmental processes have been studied in and organ systems. Current studies of the morphological and great detail. It might be because the field of evolutionary developmental diversity of this group allow us to trace the developmental biology — EvoDevo — has its origin in evolution of different organ systems within the group and to developmental biology and not evolutionary biology that reconstruct characters of the most recent common ancestor of species under investigation are often called ‘model spe- Xenacoelomorpha. The disparity of the clade shows that there cies’. Criteria for selected representative species are cannot be a single xenacoelomorph ‘model’ species and primarily the ease of access to collected material and strategic sampling is essential for understanding the evolution their ability to be cultivated in the lab [1]. In some cases, of major traits. With this strategy, fundamental insights into the a supposedly larger number of ancestral characters or a evolution of molecular mechanisms and their role in shaping dominant role in ecosystems have played an additional animal organ systems can be expected in the near future. role in selecting model species. These arguments were Address used to attract sufficient funding for genome sequencing Sars International Centre for Marine Molecular Biology, University of and developmental studies that are cost-intensive inves- Bergen, Thormøhlensgate 55, 5008 Bergen, Norway tigations.
    [Show full text]
  • Improved Protocol for the Preparation of Tetraselmis Suecica Axenic
    36 The Open Biotechnology Journal, 2010, 4, 36-46 Open Access Improved Protocol for the Preparation of Tetraselmis suecica Axenic Culture and Adaptation to Heterotrophic Cultivation Mojtaba Azma1, Rosfarizan Mohamad1, Raha Abdul Rahim2 and Arbakariya B. Ariff*,1 1Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia 2Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia Abstract: The effectiveness of various physical and chemical methods for the removal of contaminants from the microal- gae, Tetraselmis suecica, culture was investigated. The information obtained was used as the basis for the development of improved protocol for the preparation of axenic culture to be adapted to heterotrophic cultivation. Repeated centrifugation and rinsing effectively removed the free bacterial contaminants from the microalgae culture while sonication helped to loosen up the tightly attached bacterial contaminants on the microalgae cells. Removal of bacterial spores was accom- plished using a mixture of two antibiotics, 5 mg/mL vancomycine and 10 mg/mL neomycine. Walne medium formulation with natural seawater was preferred for the enhancement of growth of T. suecica. Adaptation of growth from photoautot- rophic to heterotrophic conditions was achieved by the repeated cultivation of photoautotrophic culture with sequential reduction in illumination time, and finally the culture was inoculated into the medium containing 10 g/L glucose, incu- bated in total darkness to obtain heterotrophic cells. Changes in the morphology and composition of T. suecica cells dur- ing the adaptation from photoautotrophic to heterotrophic condition, as examined under Transmission Electron Micro- scope, were also reported.
    [Show full text]
  • Zootaxa, Platyhelminthes, Acoela, Acoelomorpha, Convolutidae
    Zootaxa 1008: 1–11 (2005) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1008 Copyright © 2005 Magnolia Press ISSN 1175-5334 (online edition) Waminoa brickneri n. sp. (Acoela: Acoelomorpha) associated with corals in the Red Sea MAXINA V. OGUNLANA1, MATTHEW D. HOOGE1,4, YONAS I. TEKLE3, YEHUDA BENAYAHU2, ORIT BARNEAH2 & SETH TYLER1 1Department of Biological sciences, The University of Maine, 5751 Murray Hall, Orono, ME 04469-5751, USA., e-mail: [email protected], [email protected], [email protected] 2 Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel., e-mail: [email protected] 3 Department of Systematic Zoology, Evolutionary Biology Centre, Upsala University, Norbyvägen 18D, SE- 752 36 Uppsala, Sweden., e-Mail: [email protected] 4 Author of correspondence Abstract While the majority of acoels live in marine sediments, some, usually identified as Waminoa sp., have been found associated with corals, living closely appressed to their external surfaces. We describe a new species collected from the stony coral Plesiastrea laxa in the Red Sea. Waminoa brickneri n. sp. can infest corals in high numbers, often forming clusters in non-overlapping arrays. It is bronze-colored, owing to the presence of two types of dinoflagellate endosymbionts, and speckled white with small scattered pigment spots. Its body is disc-shaped, highly flattened and cir- cular in profile except for a small notch at the posterior margin where the reproductive organs lie. The male copulatory organ is poorly differentiated, but comprises a seminal vesicle weakly walled by concentrically layered muscles, and a small penis papilla with serous glands at its juncture with the male pore.
    [Show full text]
  • A Phylogenetic Analysis of Myosin Heavy Chain Type II Sequences Corroborates That Acoela and Nemertodermatida Are Basal Bilaterians
    A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians I. Ruiz-Trillo*, J. Paps*, M. Loukota†, C. Ribera†, U. Jondelius‡, J. Bagun˜ a` *, and M. Riutort*§ *Departament de Gene`tica and †Departament de Biologia Animal, Universitat Barcelona, Av. Diagonal, 645 08028 Barcelona, Spain; and ‡Evolutionary Biology Centre, University Uppsala, Norbyva¨gen 18D, 752 36 Uppsala, Sweden Communicated by James W. Valentine, University of California, Berkeley, CA, June 28, 2002 (received for review April 15, 2002) Bilateria are currently subdivided into three superclades: Deuter- across all bilaterians. However different, this scheme also suited ostomia, Ecdysozoa, and Lophotrochozoa. Within this new taxo- alternative hypotheses such as the ‘‘set-aside cells’’ theory (13, nomic frame, acoelomate Platyhelminthes, for a long time held to 14) and the colonial ancestor theory (15). be basal bilaterians, are now considered spiralian lophotrochozo- This new status quo was soon questioned. A SSU-based study ans. However, recent 18S rDNA [small subunit (SSU)] analyses have using a large set of Platyhelminthes acoels and other metazoans shown Platyhelminthes to be polyphyletic with two of its orders, showed acoels to be the extant earliest branching bilaterians the Acoela and the Nemertodermatida, as the earliest extant (16), turning Platyhelminthes into a polyphyletic group. In bilaterians. To corroborate such position and avoid the criticisms of addition, Jenner (17) noted that phylogenies put forward to back saturation and long-branch effects thrown on the SSU molecule, the new metazoan molecular trees (10–12, 18) were incomplete we have searched for independent molecular data bearing good and heavily pruned.
    [Show full text]
  • Gc – Ms) Analysis
    Academic Sciences International Journal of Pharmacy and Pharmaceutical Sciences ISSN- 0975-1491 Vol 5, Issue 3, 2013 Research Article EVALUATION OF ANTIMICROBIAL METABOLITES FROM MARINE MICROALGAE TETRASELMIS SUECICA USING GAS CHROMATOGRAPHY – MASS SPECTROMETRY (GC – MS) ANALYSIS V. DOOSLIN MERCY BAI1 AND S. KRISHNAKUMAR2* 1Department of Biomedical Engineering Rajiv Gandhi College of Enginnering and Technology.Puducherry 607402, India, 2Department of Biomedical Engineering, Sathyabama University, Chennai 600119, Tamil Nadu, India. Email: [email protected] Received: 15 Mar 2013, Revised and Accepted: 23 Apr 2013 ABSTRACT Objective: Marine natural products have been considered as one of the most promising sources of antimicrobial compounds in recent years. Marine microalgae Tetraselmis suecica (Kylin) was selected for the present antimicrobial investigation. Methods: The effects of pH, temperature and salinity were tested for the growth of microalgae. The antibacterial effect of different solvent extracts of marine microalgae Tetraselmis suecica against selected human pathogens such as Vibrio cholerae, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Salmonella sp, Proteus sp., Streptococcus pyogens, Staphylococcus aureus, Bacillus megaterium and Bacillus subtilis were investigated. The GC-MS analysis was done with standard specification to identify the active principle of bioactive compound. Results: The highest cell density was observed when the medium adjusted with 40ppt of salinity in pH of 9.0 at 250C during 9th day of incubation period. Methanol + chloroform (1:1) crude extract of Tetraselmis suecica was confirmed considerable activity against gram negative bacteria than gram positive human pathogen. GC-MS analysis revealed the presence of unique chemical compounds like 1-ethyl butyl 3-hexyl hydroperoxide (MW: 100) and methyl heptanate (MW: 186) respectively for the crude extract of Tetraselmis suecica.
    [Show full text]
  • Frontiers in Zoology Biomed Central
    Frontiers in Zoology BioMed Central Research Open Access Myogenesis in the basal bilaterian Symsagittifera roscoffensis (Acoela) Henrike Semmler*1, Xavier Bailly2 and Andreas Wanninger1 Address: 1University of Copenhagen, Department of Biology, Research Group for Comparative Zoology, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark and 2Station Station Biologique de Roscoff, Place Georges Teissier BP74, F-29682 Roscoff Cedex, France Email: Henrike Semmler* - [email protected]; Xavier Bailly - [email protected]; Andreas Wanninger - [email protected] * Corresponding author Published: 19 September 2008 Received: 5 May 2008 Accepted: 19 September 2008 Frontiers in Zoology 2008, 5:14 doi:10.1186/1742-9994-5-14 This article is available from: http://www.frontiersinzoology.com/content/5/1/14 © 2008 Semmler et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: In order to increase the weak database concerning the organogenesis of Acoela – a clade regarded by many as the earliest extant offshoot of Bilateria and thus of particular interest for studies concerning the evolution of animal bodyplans – we analyzed the development of the musculature of Symsagittifera roscoffensis using F-actin labelling, confocal laserscanning microscopy, and 3D reconstruction software. Results: At 40% of development between egg deposition and hatching short subepidermal fibres form. Muscle fibre development in the anterior body half precedes myogenesis in the posterior half. At 42% of development a grid of outer circular and inner longitudinal muscles is present in the bodywall.
    [Show full text]
  • "Phycology". In: Encyclopedia of Life Science
    Phycology Introductory article Ralph A Lewin, University of California, La Jolla, California, USA Article Contents Michael A Borowitzka, Murdoch University, Perth, Australia . General Features . Uses The study of algae is generally called ‘phycology’, from the Greek word phykos meaning . Noxious Algae ‘seaweed’. Just what algae are is difficult to define, because they belong to many different . Classification and unrelated classes including both prokaryotic and eukaryotic representatives. Broadly . Evolution speaking, the algae comprise all, mainly aquatic, plants that can use light energy to fix carbon from atmospheric CO2 and evolve oxygen, but which are not specialized land doi: 10.1038/npg.els.0004234 plants like mosses, ferns, coniferous trees and flowering plants. This is a negative definition, but it serves its purpose. General Features Algae range in size from microscopic unicells less than 1 mm several species are also of economic importance. Some in diameter to kelps as long as 60 m. They can be found in kinds are consumed as food by humans. These include almost all aqueous or moist habitats; in marine and fresh- the red alga Porphyra (also known as nori or laver), an water environments they are the main photosynthetic or- important ingredient of Japanese foods such as sushi. ganisms. They are also common in soils, salt lakes and hot Other algae commonly eaten in the Orient are the brown springs, and some can grow in snow and on rocks and the algae Laminaria and Undaria and the green algae Caulerpa bark of trees. Most algae normally require light, but some and Monostroma. The new science of molecular biology species can also grow in the dark if a suitable organic carbon has depended largely on the use of algal polysaccharides, source is available for nutrition.
    [Show full text]
  • Comparative Analysis of Acoel Embryonic Development
    Comparative analysis of acoel embryonic development Viviana Cetrangolo Thesis for the degree of Philosophiae Doctor (PhD) University of Bergen, Norway 2020 Comparative analysis of acoel embryonic development Viviana Cetrangolo ThesisAvhandling for the for degree graden of philosophiaePhilosophiae doctorDoctor (ph.d (PhD). ) atved the Universitetet University of i BergenBergen Date of defense:2017 02.10.2020 Dato for disputas: 1111 © Copyright Viviana Cetrangolo The material in this publication is covered by the provisions of the Copyright Act. Year: 2020 Title: Comparative analysis of acoel embryonic development Name: Viviana Cetrangolo Print: Skipnes Kommunikasjon / University of Bergen ! ! ! ! ! ! ! ! ! ! ! ! ! !!!!"##!$%&$!'()!$()*%!! +()!,%&-./0! !"##!$%&$!'()!,%&-./! !!!!!!!!!!!!!!!!,%&-./1!'()0! !!!!!!!!!!!!!2%/!(-#'!#&1$3-.!$4)$%! !!!!!!!!!!!!51!,%&-./0! !!!!!!!!!!!!"#$%&'%!()$*+,! ! ! ! ! ""! "#$%&'$($#!%&)$*+&,%&'! #$%!&'()!*(%+%,-%.!",!-$"+!-$%+"+!&/+!0',.10-%.!",!-$%!2/3'(/-'(4!'5!-$%!6('57!8(!9%:,'2;!/-! </(+!=,-%(,/-"',/2!>%,-(%!5'(!?/(",%!?'2%012/(!@"'2'A4;!B,"C%(+"-4!'5!@%(A%,;!D'(&/47!#$%! -$%+"+!"+!*/(-!'5!-$%!6$8!*('A(/E!'5!-$%!8%*/(-E%,-!'5!@"'2'A"0/2!<0"%,0%+!'5!-$%!B,"C%(+"-4! '5!@%(A%,7! ! ! """! -#.&+/0%12%,%&'3! =!&'12.!2")%!-'!+-/(-!-'!-$/,)!E4!+1*%(C"+'(!6('57!8(!F,.(%/+!9%:,'27!G"(+-24;!5'(!A"C",A!E%! -$%!'**'(-1,"-4!-'!0'E%!-'!$"+!2/3!&$%,!=!&/+!/!5(%+$24!A(/.1/-%.!/,.!,/HC%!+-1.%,-;!/,.! +%0',./("24!5'(!-%/0$",A!E%!-$/-!-$%!6$8!0/,!3%!/!(%/224!$/(.!-"E%!'5!4'1(!2"5%;!31-!"5!4'1!/(%! E'-"C/-%.!%,'1A$!/,.!*1+$!4'1(+%25!-$('1A$!-$%!."55"012-"%+;!"-!5",/224!0'E%+!-'!/,!%,.I!<';!
    [Show full text]
  • Acoela, Acoelomorpha) from British Waters
    Arxius de Miscel·lània Zoològica, 11 (2013): 153–157 ISSN:Vila–Farré 1698– et0476 al. First record of Oligochoerus limnophilus (Acoela, Acoelomorpha) from British waters M. Vila–Farré, M. Álvarez–Presas & J. G. Achatz Vila–Farré, M., Álvarez–Presas, M. & Achatz, J. G., 2013. First record of Oligochoerus limnophilus (Acoela, Acoelomorpha) from British waters. Arxius de Miscel·lània Zoològica, 11: 153–157, Doi: https://doi.org/10.32800/amz.2013.11.0153 Abstract First record of Oligochoerus limnophilus (Acoela, Acoelomorpha) from British waters.— We report the occurrence of the acoel Oligochoerus limnophilus (Acoelomorpha) from the British Islands, based on specimens captured in the river Thames (locally known as the river Isis) in Oxford, England, thereby considerably widening the distributional range of the species that had formerly been reported only from continental Europe. We further present live images and CLSM–projections of systematically informative structures that corroborate a close relationship with the genus Convoluta Ørsted, 1843. Key words: Acoela, Oligochoerus, Limnic, Thames. Resumen Primera cita de Oligochoerus limnophilus (Acoela, Acoelomorpha) en aguas británicas.— Informamos de la existencia de poblaciones del acelo Oligochoerus limnophilus (Acoelo- morpha) en las islas Birtánicas, basándonos en los especímenes capturados en el río Támesis (también conocido localmente como río Isis) a su paso por Oxford, Inglaterra, ampliando así considerablemente el área de distribución de la especie, restringida hasta ahora al continente europeo. La información gráfca que aportamos, imágenes de especí- menes vivos y proyecciones CLSM de estructuras seleccionadas por su valor sistemático, corrobora su estrecha relación con los miembros del género Convoluta Ørsted, 1843. Palabras clave: Acoela, Oligochoerus, Límnico, Támesis.
    [Show full text]
  • Nemertean and Phoronid Genomes Reveal Lophotrochozoan Evolution and the Origin of Bilaterian Heads
    Nemertean and phoronid genomes reveal lophotrochozoan evolution and the origin of bilaterian heads Author Yi-Jyun Luo, Miyuki Kanda, Ryo Koyanagi, Kanako Hisata, Tadashi Akiyama, Hirotaka Sakamoto, Tatsuya Sakamoto, Noriyuki Satoh journal or Nature Ecology & Evolution publication title volume 2 page range 141-151 year 2017-12-04 Publisher Springer Nature Macmillan Publishers Limited Rights (C) 2017 Macmillan Publishers Limited, part of Springer Nature. Author's flag publisher URL http://id.nii.ac.jp/1394/00000281/ doi: info:doi/10.1038/s41559-017-0389-y Creative Commons Attribution 4.0 International (http://creativecommons.org/licenses/by/4.0/) ARTICLES https://doi.org/10.1038/s41559-017-0389-y Nemertean and phoronid genomes reveal lophotrochozoan evolution and the origin of bilaterian heads Yi-Jyun Luo 1,4*, Miyuki Kanda2, Ryo Koyanagi2, Kanako Hisata1, Tadashi Akiyama3, Hirotaka Sakamoto3, Tatsuya Sakamoto3 and Noriyuki Satoh 1* Nemerteans (ribbon worms) and phoronids (horseshoe worms) are closely related lophotrochozoans—a group of animals including leeches, snails and other invertebrates. Lophotrochozoans represent a superphylum that is crucial to our understand- ing of bilaterian evolution. However, given the inconsistency of molecular and morphological data for these groups, their ori- gins have been unclear. Here, we present draft genomes of the nemertean Notospermus geniculatus and the phoronid Phoronis australis, together with transcriptomes along the adult bodies. Our genome-based phylogenetic analyses place Nemertea sis- ter to the group containing Phoronida and Brachiopoda. We show that lophotrochozoans share many gene families with deu- terostomes, suggesting that these two groups retain a core bilaterian gene repertoire that ecdysozoans (for example, flies and nematodes) and platyzoans (for example, flatworms and rotifers) do not.
    [Show full text]