B18577234.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

B18577234.Pdf FORAGING AND REPRODUCTIVE PATTERNS F THE HYPERPARASITOID WASP, DE OCERUS CARPENTERI (MEGASPILIDAE) Andrew Chow B.Sc. R.), The University of British Columbia, 1984 4.Sc., Simon Fraser University, 1989 THESI JBMITTED IN PARTIAL FULFILLMENT OF QUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of Biological Sciences 0 Andrew Chow 1997 SIMON FRASER UNIVERSITY April 1997 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author. National Library Bibliotheque nationale I*[of Canada du Canada Amuisitions and Acquisitions et Bibliographic ~edices services bibliographiques 395 Wellington Street 395. rue Wellington Ottawa ON KIA ON4 Onawa ON KIA ON4 Canada Canada Your hk Vorre relerence Our hle Norre relerence The author has granted a non- L'auteur a accorde une licence non exclusive licence allowing the exclusive pennettant a la National Library of Canada to Bibliotheque nationale du Canada de reproduce, loan, distribute or sell ' reproduire, preter, hstribuer ou copies of hsthesis in microform, vendre des copies de cette these sous paper or electronic formats. la forme de microfiche/film, de reproduction sur papier ou sur format electronique. The author retains ownership of the L'auteur conserve la propriete du copyright in thesis. Neither the droit d'auteur qui protege cette these. thesis nor substantial extracts from it Ni la these ni des extraits substantiels may be printed or othenvise de celle-ci ne doivent ktre imprimes reproduced without the author's ou autrement reproduits sans son permission. autorisation. APPROVAL Name: ' Andrew Chow # Degree: Doctor of Philosophy . Title of Thesis: $ FORAGING AND REPRODUCTIVE PATTE~NSOF THE HYPERPARASITOID WASP, DENDROCERUS CARPENTEN (MEGASPILIDAE). Exahining Committee: Chair: f~r.L. Dill, Prof&or , Senior Supervisor tees, SFU - Dr. G. Gries. As: date ~roksdr Department of &ogical Scie&ks. SFU Dr. B. Roitberg, Professor Department of Biological Sciences. SFU Dr. A. Harestad, Associate rlofessor Department of Biological Sciences, SFU Public Examiner Dr. j.'~osknheim, Associate Professor Department of Entomology Univ. of California. Davis External Examiner Date Approved: ~/+xr2v- iii ABSTRACT Forag in 9 reproductive behaviour of Dendrocerus carpenteri (Hymenopter zgaspilidae), a solitary hyperparasitoid of aphids, was studied in thc 31-atory using as hosts the pea aphid (Acyrthosiphon pisum) and t: primary hymenopterous parasitoids (Aphidius ervi, Ephedrus cal, icus, and Praon pequodorum). Examination and oviposition ti by females of D. carpen teri varied with the species and the deve ~entalstages of the primary parasitoids within mummified a s; host choice was influenced more by the development lge than by the species of primary parasitoid. Female: >.carpenteri located single or clumped mummies on plants with ec success, but the structure of the plant canopy influenced se ing behaviour and efficiency. When the density of mummies on ~fwas increased, females responded by increasing patch time ar ood size in a density-dependent manner. Giving-up time increase th host density and the decision to leave a patch was apparently ir Iced by re-encounters with self-marked hosts, but not by prior 1 ing experience. Brood sex ratio did not vary with host density. Female D. carpenteri produced non-binomial sex ratios of offspring by i ;ting the sequence of male and female eggs laid during a sing iposition bout. Both the order and type of sequentially tlrLumteredhosts influenced the allocation of offspring sexes. The production schedule of sons and daughters was reset after a period during which no hosts were encountered. Re-encounters with self-marked hosts affected the ratio of male to female eggs laid in broods. Females appear to use simple decision rules to ensure that daughters will find mates regardless of variations in host quality and patch size. Pea aphids containing larvae of A. ervi, A. pisivorus, Monoctonus paulensis, and P. pequodorum remained at their feeding sites. In contrast, those containing immature E. californicus generally dispersed from their colonies prior to mummification; dispersal increased with density but was inhibited in the absence of light. The foraging and reproductive xns of D. carpenteri may have evolved as a result of the physiolog ind behavioural interactions among its host complex. ACKNOWLEDGEMENTS The cor tion of this project would not have been possible without the ; ance of many people. I thank my senior supervisor, Dr. M. Macka or his support, guidance and patience. I also thank both Dr. B. Rc rg and Dr. G. Gries for serving on my supervisory committee ar oviding helpful feedback. Gratitu extended to Dr. H. R. MacCarthy for his encourageme ~d a much appreciated 'writing tune-up' when I was misfiring anc ling. Thanks go to Ms. A. Chau, Dr. J. P. Michaud, Dr. C. Nicol, and Mr. M. Otto fc eir friendship and cooperation during my stay in the lab. I am in( ?d to Mr. R. Long for his outstanding photographic work and Dr. asner for identification of specimens from my hyperparasitc Aonies. Finally, ink my parents for both their love and understanding throughout n ademic trials. v i TABLE OF CONTENTS Approval page ii Abstract iii Acknowledgements v List of Tables viii List of Figures xiii CHAPTER 1. Background to the Research 1 INTRODUCTION 2 GENERAL MATERIALS AND METHODS 13 CHAPTER 2. Effects of Immature Aphidiids on Aphid Behaviour 16 INTRODUCTION 17 METHODS 20 RESULTS 26 DISCUSSION 36 CHAPTER 3. Host Handling and Acceptance by Dendrocerus carpen teri INTRODUCTION OVIPOSITION AND HOST HANDLING BEHAVIOUR OF DENDROCERUS CARPENTER1 vii METHODS RESULTS DISCUSSION CHAPTER 4. Foraging Behaviour of Dendrocerus carpen teri INTRODUCTION MEMODS RESULTS DISCUSSION CHAPTER 5. Progeny and Sex Allocation by Dendrocerus carpen teri INTRODUCTION MEMODS RESULTS DISCUSSION CHAPTER 6. General Discussion and Conclusions REFERENCES viii LIST OF TABLES Table 1. Location of mummified Acyrthosiphon pisum containing immature of one of five species of primary parasitoids. One hundred aphids were confined with six female parasitoids of the same species for 2 h. The aphids were released onto a potted broad-bean plant and kept within a plexi-glass cage at 20 _+ l%, 50 _+ 10 % RH, with continuous light until all parasitized aphids had mummified. All aphids were reared at 20% and 72 _+ 4 h old when exposed to parasitoids. 27 Table 2. Location of mummified Acyrthosiphon pisum containing immature of one of three species of primary parasitoids. Fifty aphids were confined for 2 h with six female Ephedrus californicus and another fifty were confined with six female Aphidius ervi or Monocton us paulensis. The two groups of aphids were combined and released onto a potted broad-bean plant and confined in a plex-glass cage at 20 _+ l%, 50 _+ 10 % RH, with continuous light until all parasitized aphids had mummified. All aphids were reared at 20% and 72 _+ 4 h old when exposed to parasitoids. 28 Table 3. Distribution of parasitized and non-parasitized Acyrthosiphon pisum within the canopy of broad bean plants. Forty aphids (72 _+ 4 h old) were confined in a cup with six female parasitoids of the same species or without parasitoids for 2 h. The aphids were released onto a potted broad-bean plant and kept within a plexi- glass cage at 20 _+ PC,50 _+ 10 % RH, with continuous light and their locations were recorded 96 h later. The aphidiid species used to parasitize aphids were A nhidius ervi and Ewhedrus californicus. 3 1 Table 4. Distribution of mummified Acyrthosiphon pisum containing Aphidius ervi or Ephedrus californicus. Forty aphids (72 _+ 4 h old) were confined in a cup with six female parasitoids of the same species for 2 h. The aphids were released onto a potted broad-bean plant and kept within a plexi-glass cage at 20 _+ PC,50 _+ 10 % RH, with continuous light until all parasitized aphids had mummified. 32 Table 5. Influence of light on the location of mummified Acyrthosiphon pisum containing immature of Ephedrus californicus or Aphidius ervi. One hundred aphids were confined with six female parasitoids of the same species for 2 h. The aphids were released onto a potted broad-bean plant and kept at 20 _+ l%, 50 _+ 10 % RH, with continuous light for 240 h or continuous light for 120 h followed by 120 h without light. All aphids were reared at 20% and 72 _+ 4 h old when exposed to parasitoids. 35 Table 6. Combinations of immature A. end and E. californicus used in preference tests for females of Dendrocerus carpen teri. 47 Table 7. Handling behaviour by females of Dendrocerus carpenteri for mummies of three aphidiid species. A female wasp sequentially handled six mummies, three of each kind of mummy, in each of 10 replicates for each combination of hosts. 53 Table 8. Specificity by females of Dendrocerus carpen teri for larval and pupal stages of Aphidius en4 and Ephedrus / californicus. A female wasp was singly confined for 5 h with thirty mummies of each kind of host in each combination of hosts. 58 Table 9. Handling behaviour of mated and non-mated Dendrocerus carpenteri on Aphidius ervi mummies. Each female was given a mummy containing a 9-day old A. ervi. Female A. ervi were given second-instar pea aphids (72 _+ 4 h) to parasitize and all parasitized aphids were reared on broad bean at 20 _+ PC, 40-60% RH, with continuous lighting. Female D. carpen teri were 6 to 8 days old when used for experiments. 62 Table 10. Hyperparasitism of immature aphidiid wasps by female Dendrocerus carpenteri among different numbers of mummified pea aphids on a broad bean leaf. Hosts were 9-day old Aphidius ervi or 11-day old Ephedrus californicus reared on pea aphid at 20% Only one aphidiid species was used as a host in each trial.
Recommended publications
  • Carolyn Trietsch
    CAROLYN TRIETSCH Frost Entomological Museum Department of Entomology at the Pennsylvania State University 501 ASI Building, University Park, PA 16802 [email protected] | @CarolynTrietsch http://sites.psu.edu/carolyntrietsch/ orcid.org/0000-0003-2781-6838 EDUCATION AND RESEARCH EXPERIENCE 2014– PhD. Candidate, Entomology. The Pennsylvania State University, Present University Park, PA Advisor: Andrew R. Deans, PhD Project: Taxonomic revision of the genus Conostigmus (Hymenoptera: Megaspilidae) in the Nearctic GPA: 4.0 2012–2014 M.S., Biology. Adelphi University, Garden City, NY Advisor: Matthias Foellmer, PhD Thesis: Arthropod Biodiversity Across Isolated Salt Marsh Patches in the South Shore Estuary GPA: 4.0 2009–2012 B.S., Biology, English Minor. Magna Cum Laude, Honors College, Adelphi University, Garden City, NY Honors Thesis: Biodiversity and Analysis of Food Webs in the South Shore Estuary Advisor: Matthias Foellmer, PhD Cumulative GPA: 3.8 PEER-REVIEWED PUBLICATIONS Trietsch C, Mikó I, Deans AR. (in press) A Photographic Catalog of Ceraphronoidea Types at the Muséum National d'Histoire Naturelle, Paris (MNHN), with comments on unpublished notes from Paul Dessart. Submitted to the European Journal of Taxonomy. Mikó I, Trietsch C, Masner L, Ulmer J, Yoder MJ, Zuber M, Baumbach T, Deans AR, van de Kamp T. (in press) Revision of Trassedia (Hymenoptera: Ceraphronidae), an evolutionary relict with an unusual distribution. Submitted to PeerJ. Mikó I, van de Kamp T, Trietsch C, Ulmer JM, Zuber M, Baumbach T, Deans AR. (2018) A new megaspilid wasp from Eocene Baltic amber (Hymenoptera: Ceraphronoidea), with notes on two non-ceraphronoid families: Radiophronidae and Stigmaphronidae. PeerJ 6:e5174 https://doi.org/10.7717/peerj.5174 Trietsch C, Mikó I, Notton D, Deans AR.
    [Show full text]
  • Hymenoptera: Ceraphronoidea), with Notes on Two Non-Ceraphronoid Families: Radiophronidae and Stigmaphronidae
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by KITopen A new megaspilid wasp from Eocene Baltic amber (Hymenoptera: Ceraphronoidea), with notes on two non-ceraphronoid families: Radiophronidae and Stigmaphronidae István Mikó1, Thomas van de Kamp2, Carolyn Trietsch1, Jonah M. Ulmer1, Marcus Zuber2, Tilo Baumbach2,3 and Andrew R. Deans1 1 Frost Entomological Museum, Department of Entomology, Pennsylvania State University, University Park, PA, United States of America 2 Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany 3 Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany ABSTRACT Ceraphronoids are some of the most commonly collected hymenopterans, yet they remain rare in the fossil record. Conostigmus talamasi Mikó and Trietsch, sp. nov. from Baltic amber represents an intermediate form between the type genus, Megaspilus, and one of the most species-rich megaspilid genera, Conostigmus. We describe the new species using 3D data collected with synchrotron-based micro-CT equipment. This non-invasive technique allows for quick data collection in unusually high resolution, revealing morphological traits that are otherwise obscured by the amber. In describing this new species, we revise the diagnostic characters for Ceraphronoidea and discuss possible reasons why minute wasps with a pterostigma are often misidentified as cer- aphronoids. Based on the lack of
    [Show full text]
  • Hymenoptera: Ceraphronoidea) of the Neotropical Region
    doi:10.12741/ebrasilis.v10i1.660 e-ISSN 1983-0572 Publication of the project Entomologistas do Brasil www.ebras.bio.br Creative Commons Licence v4.0 (BY-NC-SA) Copyright © EntomoBrasilis Copyright © Author(s) Taxonomy and Systematic / Taxonomia e Sistemática Annotated keys to the species of Megaspilidae (Hymenoptera: Ceraphronoidea) of the Neotropical Region Registered on ZooBank: urn:lsid:zoobank.org:pub: 4CD7D843-D7EF-432F-B6F1-D34F1A100277 Cleder Pezzini¹ & Andreas Köhler² 1. Universidade Federal do Rio Grande do Sul, Faculdade de Agronomia, Departamento de Fitossanidade. 2. Universidade de Santa Cruz do Sul, Departamento de Biologia e Farmácia, Laboratório de Entomologia. EntomoBrasilis 10 (1): 37-43 (2017) Abstract. A key to the species of Megaspilidae occurring in Neotropical Region is given, and information on the 20 species in four genera is provided, including data on their distribution and host associations. The Megaspilidae fauna is still poorly known in the Neotropical region and more studies are necessary. Keywords: Biodiversity; Insect; Megaspilid; Parasitoid wasps; Taxonomy. Chaves de identificação para as espécies de Megaspilidae (Hymenoptera: Ceraphronoidea) na Região Neotropical Resumo. É fornecida chave de identificação para os quatro gêneros e 20 espécies de Megaspilidae que ocorrem na Região Neotropical assim como dados sobre as suas distribuições e associações. A fauna de Megaspilidae da Região Neotropical é pouco conhecida e mais estudos são necessários. Palavras-Chave: Biodiversidade; Inseto; Megaspilídeos; Taxonomia; Vespas parasitoides. pproximately 800 species of Ceraphronoidea are Typhlolagynodes Dessart, 1981, restricted to Europe; Holophleps described worldwide, although it is estimated that Kozlov, 1966, to North America and Europe; Lagynodes Förster, there are about 2,000 (MASNER 2006).
    [Show full text]
  • Aphid-Parasitoid (Insecta) Diversity and Trophic Interactions in South Dakota
    Proceedings of the South Dakota Academy of Science, Vol. 97 (2018) 83 APHID-PARASITOID (INSECTA) DIVERSITY AND TROPHIC INTERACTIONS IN SOUTH DAKOTA Abigail P. Martens* and Paul J. Johnson Insect Biodiversity Lab South Dakota State University Brookings, SD 57007 *Corresponding author email: [email protected] ABSTRACT Parasitoid wasps of the subfamily Aphidiinae (Hymenoptera: Braconidae) specialize on aphids (Hemiptera: Aphididae) as hosts. The diversity of known and probable aphidiine wasps from South Dakota is itemized, with represen- tation by 13 genera and 42 species, 43% of which are probably adventitious. The wasps and aphids are central to various combinations of multitrophic relationships involving host plants and secondary parasitoids. Selected native and introduced aphid host taxa were quantitatively and qualitatively collected from diverse native and crop host plants in eastern South Dakota and western Iowa. Wasps were reared to confirm plant association, host aphid association, taxonomic diversity, and native or introduced status of the wasps. Acanthocaudus tissoti (Smith) and Aphidius (Aphidius) ohioensis (Smith) were found together on the native aphid Uroleucon (Uroleucon) nigrotuberculatum (Olive), a new host aphid species for both wasps on Solidago canadensis L. (Asterales: Asteraceae). The native waspLysiphlebus testaceipes (Cresson) was repeatedly reared in mas- sive numbers from mummies of invasive Aphis glycines Matsumura on soybean, Glycine max (L.) Merr. This wasp was also reared from the non-nativeAphis nerii Boyer de Fonscolombe and the native Aphis asclepiadis Fitch, both on Asclepias syriaca L. The introduced wasp Binodoxys communis (Gahan) was not recovered from any Aphis glycines population. Hyperparasitoids from the genus Dendrocerus Ratzeburg (Hymenoptera: Megaspilidae), and the pteromalid (Hymenoptera: Pteromalidae) genera Asaphes Walker, and Pachyneuron Walker were reared from mummies of Uroleucon (Uroleucon) nigrotuberculatum parasitized by either Acanthocaudus tissoti or Aphidius (Aphidius) ohioensis.
    [Show full text]
  • POPULATION DYNAMICS of the SYCAMORE APHID (Drepanosiphum Platanoidis Schrank)
    POPULATION DYNAMICS OF THE SYCAMORE APHID (Drepanosiphum platanoidis Schrank) by Frances Antoinette Wade, B.Sc. (Hons.), M.Sc. A thesis submitted for the degree of Doctor of Philosophy of the University of London, and the Diploma of Imperial College of Science, Technology and Medicine. Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire, SL5 7PY, U.K. August 1999 1 THESIS ABSTRACT Populations of the sycamore aphid Drepanosiphum platanoidis Schrank (Homoptera: Aphididae) have been shown to undergo regular two-year cycles. It is thought this phenomenon is caused by an inverse seasonal relationship in abundance operating between spring and autumn of each year. It has been hypothesised that the underlying mechanism of this process is due to a plant factor, intra-specific competition between aphids, or a combination of the two. This thesis examines the population dynamics and the life-history characteristics of D. platanoidis, with an emphasis on elucidating the factors involved in driving the dynamics of the aphid population, especially the role of bottom-up forces. Manipulating host plant quality with different levels of aphids in the early part of the year, showed that there was a contrast in aphid performance (e.g. duration of nymphal development, reproductive duration and output) between the first (spring) and the third (autumn) aphid generations. This indicated that aphid infestation history had the capacity to modify host plant nutritional quality through the year. However, generalist predators were not key regulators of aphid abundance during the year, while the specialist parasitoids showed a tightly bound relationship to its prey. The effect of a fungal endophyte infecting the host plant generally showed a neutral effect on post-aestivation aphid dynamics and the degree of parasitism in autumn.
    [Show full text]
  • Contributions of the American Entomological Institute Catalog of Systematic Literature of the Superfamily Ceraphronoidea
    CONTRIBUTIONS OF THE AMERICAN ENTOMOLOGICAL INSTITUTE Volume 33, Number 2 CATALOG OF SYSTEMATIC LITERATURE OF THE SUPERFAMILY CERAPHRONOIDEA (HYMENOPTERA) by Norman F. Johnson and Luciana Musetti Department of Entomology Museum of Biological Diversity The Ohio State University 1315 Kinnear Road Columbus, OH 43212-1192, USA The American Entomological Institute 3005 SW 56th Avenue Gainesville, FL 32608-5047 2004 ISSN: 0569-4450 Copyright © 2004 by The American Entomological Institute Table of Contents Abstract 5 Introduction 5 CERAPHRONOIDEA 8 CERAPHRONIDAE 9 Abacoceraphron Dessart 10 Aphanogmus Thomson 10 Ceraphron Jurine 24 Cyoceraphron Dessart 45 Donadiola Dessart 46 Ecitonetes Brues 46 Elysoceraphron Szelenyi 47 Gnathoceraphron Dessart & Bin 47 Homaloceraphron Dessart & Masner 47 Kenitoceraphron Dessart 48 Microceraphron Szelenyi 48 Pteroceraphron Dessart 48 Retasus Dessart 49 Synarsis Forster 49 MEGASPILIDAE 50 Lagynodinae 51 Aetholagynodes Dessart 51 Archisynarsis Szabo 51 Holophleps Kozlov 51 Lagynodes Forster 52 Prolagynodes Alekseev & Rasnitsyn 58 Typhlolagynodes Dessart 58 Megaspilinae 58 Conostigmus Dahlbom 59 Creator Alekseev 83 Dendrocerus Ratzeburg 83 Megaspilus Westwood 106 Platyceraphron Kieffer 110 Trassedia Cancemi Ill Trichosteresis Forster Ill Megaspilidae of Uncertain Position 114 STIGMAPHRONIDAE 114 Allocotidus Muesebeck 114 Aphrostigmon Rasnitsyn 114 Elasmomorpha Kozlov 115 Hippocoon Kozlov 115 Stigmaphron Kozlov 115 Collection Codens 116 Literature Cited 117 Index 135 CATALOG OF SYSTEMATIC LITERATURE OF THE SUPERFAMILY CERAPHRONOIDEA (HYMENOPTERA) Norman F. Johnson and Luciana Musetti Department of Entomology, The Ohio State University Columbus, OH 43212-1192 Abstract: The systematic literature through September, 2003 is summarized for the superfamily Ceraphronoidea, comprising the families Ceraphronidae 90 (302 species), Megaspilidae 91 (301 species), and the extinct Stigmaphronidae 7678 (7 species). Aphanogmus sagena new name is proposed as a replacement name for A.
    [Show full text]
  • Molecular Markers for Identification of the Hyperparasitoids Dendrocerus
    BioControl (2006) 51:183–194 Ó Springer 2006 DOI 10.1007/s10526-005-1518-0 Molecular markers for identification of the hyperparasitoids Dendrocerus carpenteri and Alloxysta xanthopsis in Lysiphlebus testaceipes parasitizing cereal aphids YI CHEN1, KEITH S. PIKE2, MATTHEW H. GREENSTONE3,4 and KEVIN A. SHUFRAN3,* 1Natural Science Division, Alderson-Broaddus College, Campus Box 2096, Philippi, WV, 26416, USA; 2Irrigated Agriculture Research and Extension Center, Washington State University, 24106 N. Bunn Rd., Prosser, WA, 99350, USA; 3USDA-ARS, Wheat, Peanut and Other Field Crops Research Unit, 1301 N. Western Rd., Stillwater, OK, 74075, USA; 4USDA-ARS, Insect Biocontrol Laboratory, Room 214, Bldg 011A, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA *Author for correspondence; e-mail: [email protected] Received 29 April 2005; accepted in revised form 1 August 2005 Abstract. Polymerase chain reaction (PCR)-based molecular markers have been developed to detect the presence of primary parasitoids in cereal aphids and used to estimate primary parasitism rates. However, the presence of secondary parasitoids (hyperparasitoids) may lead to underestimates of primary parasitism rates based on PCR markers. This is because even though they kill the primary parasitoid, it’s DNA can still be amplified, leading to an erroneous interpretation of a positive result. Another issue with secondary parasitoids is that adults are extremely difficult to identify using mor- phological characters. Therefore, we developed species-specific molecular markers to detect hyperparasitoids. A 16S ribosomal RNA mitochondrial gene fragment was amplified by PCR and sequenced from two secondary parasitoid species, Dendrocerus carpenteri (Curtis) (Hymenoptera: Megaspilidae) and Alloxysta xanthopsis (Ashmead) (Hymenoptera: Charipidae), four geographic isolates of the primary parasitoid, Lysi- phlebus testaceipes (Cresson) (Hymenoptera: Braconidae), and six aphid species common to cereal crops.
    [Show full text]
  • Background and General Information 2
    United States Department of National Program 304: Agriculture Agricultural Crop Protection and Research Service Quarantine National Program Staff August 2007 TABLE OF CONTENTS Background and General Information 2 Component I: Identification and Classification of Insects and Mites 5 Component II: Biology of Pests and Natural Enemies (Including Microbes) 8 Component III: Plant, Pest, and Natural Enemy Interactions and Ecology 17 Component IV: Postharvest, Pest Exclusion, and Quarantine Treatment 24 Component V: Pest Control Technologies 30 Component VI: Integrated Pest Management Systems and Areawide Suppression 41 Component VII: Weed Biology and Ecology 48 Component VIII: Chemical Control of Weeds 53 Component IX: Biological Control of Weeds 56 Component X: Weed Management Systems 64 APPENDIXES – Appendix 1: ARS National Program Assessment 70 Appendix 2: Documentation of NP 304 Accomplishments 73 NP 304 Accomplishment Report, 2001-2006 Page 2 BACKGROUND AND GENERAL INFORMATION THE AGRICULTURAL RESEARCH SERVICE The Agricultural Research Service (ARS) is the intramural research agency for the U.S. Department of Agriculture (USDA), and is one of four agencies that make up the Research, Education, and Economics mission area of the Department. ARS research comprises 21 National Programs and is conducted at 108 laboratories spread throughout the United States and overseas by over 2,200 full-time scientists within a total workforce of 8,000 ARS employees. The research in National Program 304, Crop Protection and Quarantine, is organized into 140 projects, conducted by 236 full-time scientists at 41 geographic locations. At $102.8 million, the fiscal year (FY) 2007 net research budget for National Program 304 represents almost 10 percent of ARS’s total FY 2007 net research budget of $1.12 billion.
    [Show full text]
  • Aphid Hyperparasites of the Genus Dendrocerus Ratzeburg Occurring in Japan (Hymenoptera: Ceraphronidae)
    STUDIES ON APHID HYPERPARASITES OF JAPAN, 1 - APHID HYPERPARASITES OF THE GENUS Title DENDROCERUS RATZEBURG OCCURRING IN JAPAN (HYMENOPTERA : CERAPHRONIDAE) - Author(s) TAKADA, Hajimu Citation Insecta matsumurana. Series entomology. New series, 2: 1-37 Issue Date 1973-11 Doc URL http://hdl.handle.net/2115/9772 Right Type bulletin Additional Information Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP INSECTA MATSUMURANA NEW SERIES 2: 1-37 NOVEMBER, 1973 STUDIES ON APHID HYPERPARASITES OF JAPAN, I APHID HYPERPARASITES OF THE GENUS DENDROCERUS RATZEBURG OCCURRING IN JAPAN (HYMENOPTERA: CERAPHRONIDAE) By HAJIMU T AKADA Abstract TAKADA, H. 1973. Studies on aphid hyperparasites of Japan, 1. Aphid hyperparasites of the genus Dendrocerus Ratzeburg occurring in Japan (Hymenoptera: Ceraphronidae). Ins. matsum. n. s. 2: 1-37, 3 tabs., 47 figs. (1 text-fig., 6 pis.). Six aphid-hyperparasitic species of Dendrocerus occurring in Japan are dealt with. A key to the species, redescriptions, illustrations and biological notes are given on the basis of about 1,300 specimens reared. Host aphid-hyperparasite/primary parasite and primary j)arasite/host aj>hid-hyperparasite lists are added. D. laticeps (Hedicke), D. laevis (Ratze­ burg) and D. bicolor (Kieffer) are new to Japan. Lygocerus koebelei Ashmead is synonymized with D. carpenteri (Curtis), and L. jaj>onicus Ashmead and D. ratzeburgi Ashmead with D. ramicornis (Boheman). D. laevis is recorded as an aphid hyperparasite for the first time. As hosts of these hyperparasites 50 species of aphids in 35 genera and 36 species of aphidiids in 12 genera are recorded, and 118 different host aphid-primary parasite­ hyperparasite relationships are recognized.
    [Show full text]
  • Morphology and Function of the Ovipositor Mechanism in Ceraphronoidea
    JHR 33: 25–61 (2013)Morphology and function of the ovipositor mechanism in Ceraphronoidea... 25 doi: 10.3897/JHR.33.5204 RESEARCH ARTICLE www.pensoft.net/journals/jhr Morphology and function of the ovipositor mechanism in Ceraphronoidea (Hymenoptera, Apocrita) Andrew F. Ernst1, István Mikó1,2, Andrew R. Deans1,2 1 North Carolina State University, Department of Entomology, Raleigh, NC 27695-7613 USA 2 Pennsylva- nia State University, Department of Entomology, 501 ASI Building, University Park, PA 16802 USA Corresponding author: István Mikó ([email protected]) Academic editor: M. Yoder | Received 25 March 2013 | Accepted 4 July 2013 | Published 1 August 2013 Citation: Ernst AF, István Mikó I, Deans AR (2013) Morphology and function of the ovipositor mechanism in Ceraphronoidea (Hymenoptera, Apocrita). Journal of Hymenoptera Research 33: 25–61. doi: 10.3897/JHR.33.5204 Abstract The ovipositor of apocritan Hymenoptera is an invaluable source of phylogenetically relevant characters, and our understanding of its functional morphology stands to enlighten us about parasitoid life history strategies. Although Ceraphronoidea is one of the most commonly collected Hymenoptera taxa with considerable economic importance, our knowledge about their natural history and phylogenetic relation- ships, both to other apocritan lineages and within the superfamily itself, is limited. As a first step towards revealing ceraphronoid natural diversity we describe the skeletomuscular system of the ceraphronoid ovi- positor for the first time. Dissections and Confocal Laser Scanning Microscopy 3D media files were used to visualize the ovipositor complex and to develop character concepts. Morphological structures were described in natural language and then translated into a character-character state format, whose terminol- ogy was linked to phenotype-relevant ontologies.
    [Show full text]
  • Male Terminalia of Ceraphronoidea: Morphological Diversity in an Otherwise Monotonous Taxon
    Insect Systematics & Evolution 44 (2013) 261–347 brill.com/ise Male terminalia of Ceraphronoidea: morphological diversity in an otherwise monotonous taxon István Mikóa,*, Lubomir Masnerb, Eva Johannesc, Matthew J. Yoderd and Andrew R. Deansa aDepartment of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA 16802, USA bAgriculture and Agri-Food Canada, Ottawa, ON, Canada K1A 0C6 cNCSU-NSCORT, Department of Plant Biology, 2115 Gardner Hall Box 7612, North Carolina State University Raleigh, NC 27695, USA dIllinois Natural History Survey, 1816 South Oak Street, MC 652, Champaign, IL 61820, USA *Corresponding author, e-mail: [email protected] Published 25 October 2013 Abstract The skeletomuscular system of male terminalia in Evaniomorpha (Hymenoptera) is described and the functional morphology of male genitalia is discussed. Confocal laser scanning microscopy is the primary method used for illustrating anatomical phenotypes, and a domain-specific anatomy ontology is employed to more explicitly describe anatomical structures. A comprehensive data set of ceraphronoid male genitalia is analyzed, yielding the first phylogeny of the superfamily. One hundred and one taxa, including three outgroups, are scored for 48 characters. Ceraphronoidea are recovered as sister to the remaining Evaniomorpha in the implied weighting analyses. Numerous character states suggest that Ceraphronoidea is a relatively basal apocritan lineage. Ceraphronoidea, Ceraphronidae, and Megaspilinae are each retrieved as monophyletic in all analyses. Megaspilidae is not recovered as monophyletic. Lagynodinae is monophy- letic in the implied weighting analyses with strong support and is a polytomy in the equal weighting analy- sis. Lagynodinae shares numerous plesiomorphies with both Megaspilinae and Ceraphronidae. Relationships among genera are weakly corroborated.
    [Show full text]
  • Plasmopara Viticola) G
    IOBC / WPRS Working Group “Integrated Protection and Production in Viticulture” OILB / SROP Groupe de Travail “Lutte Intégrée et Production Intégrée en Viticulture” Proceedings of the Meeting Compte Rendu de la Réunion at / à Volos (Hellas) March 18-22, 2003 Edited by Carlo Lozzia IOBC wprs Bulletin Bulletin OILB srop Vol. 26 (8) 2003 The IOBC/WPRS Bulletin is published by the International Organization for Biological and Integrated Control of Noxious Animals and Plants, West Palearctic Regional Section (IOBC/WPRS) Le Bulletin OILB/SROP est publié par l‘Organisation Internationale de Lutte Biologique et Intégrée contre les Animaux et les Plantes Nuisibles, section Regionale Ouest Paléarctique (OILB/SROP) Copyright: IOBC/WPRS 2003 The Publication Commission of the IOBC/WPRS: Horst Bathon Luc Tirry Federal Biological Research Center University of Gent for Agriculture and Forestry (BBA) Laboratory of Agrozoology Institute for Biological Control Department of Crop Protection Heinrichstr. 243 Coupure Links 653 D-64287 Darmstadt (Germany) B-9000 Gent (Belgium) Tel +49 6151 407-225, Fax +49 6151 407-290 Tel +32-9-2646152, Fax +32-9-2646239 e-mail: [email protected] e-mail: luc.tirry@ rug.ac.be Address General Secretariat: INRA – Centre de Recherches de Dijon Laboratoire de recherches sur la Flore Pathogène dans le Sol 17, Rue Sully, BV 1540 F-21034 DIJON CEDEX France ISBN 92-9067-156-2 Editorial The meeting that was held in Volos, supported by the Benaki Institute, has ratified the 30 years of the working groups that today have become Integrated Protection and Production in Viticulture. It is my intention to remind and thank all those who, with their work, have contributed to the birth, the development and the extraordinary vitality of this group.
    [Show full text]