Life History of the Chironomidae Is Scattered Through a Wide Variety of Papers in Many Languages

Total Page:16

File Type:pdf, Size:1020Kb

Life History of the Chironomidae Is Scattered Through a Wide Variety of Papers in Many Languages Copyright 1971. All rights reserved LIFE mSTORY OF THE CHIRONOMIDAE 6008 D. R. OLIVER Entomology Research Institute, Canada Department of Agriculture, Ottawa, Ontario, Canada Information on the life history of the Chironomidae is scattered through a wide variety of papers in many languages. The present article is based mainly on papers that have been published since 1950 as the earlier papers were reviewed thoroughly in Chironomus by Thienemann (101). Additional references and information on most of the topics covered here may be found in this excellent book. Even with this restriction a high degree of selection is necessary and most of the papers on genetics, physiology, pro­ ductivity and biomass, and fish food are not considered. Many of the papers cited have been chosen because they are most likely to be useful for fur­ ther reference. CLASSIFICATION It seems necessary to comment briefly on the reasons for the confusion which exists in the classificationof the Chironomidae. Part of the confusion arises from the dual use of two family names. The name Tendipes Meigen 1800 was used rather than Chironomus Meigen 1803 by many taxonomists as the type genus of the family. A recent ruling of the International Com­ mission on Zoological Nomenclature has suppressed the Meigen 1800 names by University of Sussex on 05/26/12. For personal use only. in favor of his 1803 names (see Fittkau 39). As a result, the name Ten­ dipes was suppressed in favor of Chironomus, and similarly Pelopia was suppressed in favor of Tanypus. This action means that the correct name of the family is Chironomidae not Tendipedidae. Furthermore, it also estab­ Annu. Rev. Entomol. 1971.16:211-230. Downloaded from www.annualreviews.org lishes that the subfamily names Chironominae and Tanypodinae are correct. Although not covered by a ruling it is generally accepted that Orthocladii­ nae be used in place of Hydrobaeninae. Tanytarsus has been used as a ge­ nus in the tribe Chironomini, but another ruling (Bull. Zool. Nom. 18, Opin­ ion 616) established it as a genus in the tribe Tanytarsini. The classification of holometabolous insects presents special difficulties because the characteristics of all the life stages must be considered. Differ­ ent ecological requirements of each stage often result in greater diversity, both ecological and morphological, in one stage than in another. The adults of the Chironomidae are usually more uniform in structure than are the immature stages, especially the larvae. The adult stage is somewhat ephem- 211 212 OLIVER eral, completing the reproductive aspects of the life cycle in a fairly short time. Adults require only minimum shelter for mating, maturing eggs, and ovipositing. In contrast, the largest part of the life cycle is spent in the lar� val stage and the range of habitats occupied is perhaps unparalleled among other insect groups. All the energy required to complete the life cycle is built up in the larval stage, because the adults, with few exceptions, do not feed. This ecological diversity between the life stages is shown in the two systems of classification that have evolved; the larval and pupal system of Thienemann and his associates and the adult system of Edwards and Goet� ghebuer (in 13). The generic limits in the system based on the immature stages are frequently narrower than those based on adults. Fortunately, many recent studies have been based on all three stages (e.g., Brundin 13, 14; Fittkau 37), and a more stable system of classification is beginning to evolve. The general classification used as a basis for discussion in this publica� tion follows that of Brundin (14). Seven subfamilies, as follows, are recog� nized: Tanypodinae, Podonominae, Aphroteniinae, Telmatogetoninae, Diamesinae, Orthocladiinae, and Chironominae. Each subfamily, except the Telmatogetoninae, has several tribes, but only the tribes Chironomini and Tanytarsini belonging to the Chironominae are used here. DISTRIBUTION AND HABITAT DIVERSITY The distribution of the family is world�wide. The two species found in Antarctica are the southernmost free-living holometabolous insects known (106). Chironomids extend to the northern limits of land, and they make up one-fifth to one-half of the total number of species in the arctic insect fauna (80). Between these geographical extremes they have radiated into nearly every habitat that is aquatic or wet, including peripheral areas of the oceans (105). Some of these habitats have a very large number of species, e.g., 140 species live in Lake Innaren (11) and 168 in Lake Constance (86). There is no reliable estimate of the total number of species in the family: over 5000 by University of Sussex on 05/26/12. For personal use only. species have been described to date and the species living in large areas such as Asia are almost unknown. The distribution of each of the subfamilies, within their geographical Annu. Rev. Entomol. 1971.16:211-230. Downloaded from www.annualreviews.org range, is primarily governed by the availability of water ecologically suited to the requirements of the larvae. The Aphroteniinae, the smallest subfam­ ily, with eight species, is strictly rheophilic; it is more or less confined to swift mountain streams in southern South America, South Africa, and Aus� tralia. The Podonominae, primarily rheophilic and cold-adapted, is much more common in the Southern Hemisphere, particularly the southern part where 130 species have been found, than in the Northern Hemisphere, where only 20 species have been recorded. One genus, Lasiodiamesa, has become adapted to warm pools in sphagnum bogs. The Diamesinae is also a rheophilic and cold-adapted group, though a few genera occur in lentic hab� itats; they inhabit the colder parts of the circumpolar lands and the moun- LIFE HISTORY OF CHIRONOMIDS 213 tain ranges throughout the world. All these subfamilies are absent in the tropical lowlands (14). Most of the species in the family belong to one of the subfamilies Tany­ podinae, Chironominae or Orthocladiinae, which are more or less world­ wide in distribution. Most of the Tanypodinae and Chironominae are essen­ tially thermophilous and adapted to living in standing water, though species of each do occur in cool habitats and in mnning water. Both subfamilies occur in all geographical regions except Antarctica. They are very abun­ dant in the warmer parts of the Holoarctic and decrease in numbers with increasing latitude, or its climatological equivalent. Eighty percent of the chironomids living in forest streams of the central Amazon region are Chi­ ronominae (38). The Tanypodinae also are common in the tropics but they are probably more boreal (37). The Orthoc1adiinae occupy the widest range of habitats of all chironomids. It is the dominant subfamily in the arctic region (80) and, in contrast with the Chironominae and the Tanypodinae, decreases in numbers in increasingly warmer regions, though they are not uncommon in many warm habitats (e.g., 38). The larvae of this primar­ ily cold-adapted subfamily live in all types of lentic and lotic habitats. It is the only subfamily with terrestrial species (13, 14) that live not only in the wet margins of water bodies but also in quite nonaquatic habitats such as cow dung (61). The Telmatogetoninae, the largest marine group, is associated with rocky peripheral areas that are usually subjected to tidal action. The larvae are euryhaline and are often found in areas that receive freshwater runoff; one species of Telmatogeton lives in swift mountain streams in Hawaii (105). These peripheral marine habitats, as well as brackish rock pools, also ha ve been invaded by larvae of the Orthoc1adiinae and Chironominae (46, 47,83). Brundin (14) believes that the primitive habitat in which chironomid evolution began was the upper reaches of mountain streams that arose from cool springs and ran through hygrophilous, temperate forests. It was a by University of Sussex on 05/26/12. For personal use only. rather stable habitat, rich in dissolved oxygen and diatoms, with moderate annual variation in temperature and water level. In his account of the evo­ lution of the Chironomidae within the framework of Hennig's sister group Annu. Rev. Entomol. 1971.16:211-230. Downloaded from www.annualreviews.org theory, Brundin (14) shows that the "pleisomorph lines" have remained rheobiontic, whereas the "apomorph lines" adapted to the different types of lentic water. As he points out, there are exceptions, e.g., the Tanypodinae are primarily lcntic but the occurrence of the genera Rheopelopia, Concha­ pelopia, and Macropelopia in running water is a secondary adaptation. The Tanypodinae is considered to be the "apomorph" sister group of the Aphro­ teniinae and the Podonominae. Together these three subfamilies form the sister group of the remaining four subfamilies. Within this latter group the Chironominae is considered to be the "apomorph" sister group of the Tel­ matogetoninae, Diamesinae, and Orthocladiinae. As previollsly mentioned, many of the larvae in these two "apomorphic" subfamilies (Tanypodinae 214 OLIVER and Chironominae) within each major sister group are lentic and thermoph­ ilous. Accepting the thesis that the larvae of the Chironomidae were ini­ tially cool-adapted, the success of the family in the colder regions is not surprising. In the arctic region and in cold mountain streams larvae develop at temperatures close to the limit of life and no major special adaptations appear to have evolved (14, 80), except the ability of some larvae to with­ ' stand freezing (2). In contrast, a number of ecological and physiological specializations have evolved to accommodate conditions found in warm standing water, such as the free-living pupae of the Tanypodinae (14), the presence of hemoglobin in the larvae of the Chironominae (14, 102), and the most unusual ability of Polypedilum vanderplankii larvae to completely dehydrate and remain viable under dry conditions for months (51). THE LIFE CYCLE The four life stages, egg, larva, pupa, and adult, are treated separately.
Recommended publications
  • (Diptera: Chironomidae), with The
    Zootaxa 2497: 1–36 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) The problems with Polypedilum Kieffer (Diptera: Chironomidae), with the description of Probolum subgen. n. OLE A. SÆTHER1, TROND ANDERSEN2,5, LUIZ C. PINHO3 & HUMBERTO F. MENDES4 1, 2 & 4Department of Natural History, Bergen Museum, University of Bergen, Pb. 7800, N-5020 Bergen, Norway. 3Departamento de Biologia, FFCLRP-USP, Avenida Bandeirantes, n. 3900, CEP 14040-901, Ribeirão Preto - SP, Brazil. E-mails: [email protected], [email protected], [email protected], [email protected] 5Corresponding author. E-mail: [email protected] Table of contents Abstract ............................................................................................................................................................................... 2 Introduction ......................................................................................................................................................................... 2 Material and methods .......................................................................................................................................................... 3 Systematics .......................................................................................................................................................................... 3 Polypedilum subgenus Tripedilum Kieffer .......................................................................................................................
    [Show full text]
  • Genomanalyse Von Prodiamesa Olivacea
    Genomanalyse von Prodiamesa olivacea Dissertation zur Erlangung des Grades Doktor der Naturwissenschaften (Dr. rer. nat.) am Fachbereich Biologie der Johannes Gutenberg-Universität in Mainz Sarah Brunck geb. 08.08.1987 in Mainz Mainz, 2016 Dekan: 1. Berichterstatter: 2. Berichterstatter: Tag der mündlichen Prüfung: ii Inhaltsverzeichnis Inhaltsverzeichnis ................................................................................................................................ iii 1 Einleitung ........................................................................................................................................... 1 1.1 Die Familie der Chironomiden ................................................................................................. 1 1.1.1 Die Gattung Chironomus ..................................................................................................... 3 1.1.2 Die Gattung Prodiamesa ....................................................................................................... 6 1.2 Die Struktur von Insekten-Genomen am Beispiel der Chironomiden ............................... 9 1.2.1 Hochrepetitive DNA-Sequenzen ..................................................................................... 11 1.2.2 Mittelrepetitive DNA-Sequenzen bzw. Gen-Familien ................................................. 13 1.2.3 Gene und genregulatorische Sequenzen ........................................................................ 17 1.3 Zielsetzung ...............................................................................................................................
    [Show full text]
  • R. P. LANE (Department of Entomology), British Museum (Natural History), London SW7 the Diptera of Lundy Have Been Poorly Studied in the Past
    Swallow 3 Spotted Flytcatcher 28 *Jackdaw I Pied Flycatcher 5 Blue Tit I Dunnock 2 Wren 2 Meadow Pipit 10 Song Thrush 7 Pied Wagtail 4 Redwing 4 Woodchat Shrike 1 Blackbird 60 Red-backed Shrike 1 Stonechat 2 Starling 15 Redstart 7 Greenfinch 5 Black Redstart I Goldfinch 1 Robin I9 Linnet 8 Grasshopper Warbler 2 Chaffinch 47 Reed Warbler 1 House Sparrow 16 Sedge Warbler 14 *Jackdaw is new to the Lundy ringing list. RECOVERIES OF RINGED BIRDS Guillemot GM I9384 ringed 5.6.67 adult found dead Eastbourne 4.12.76. Guillemot GP 95566 ringed 29.6.73 pullus found dead Woolacombe, Devon 8.6.77 Starling XA 92903 ringed 20.8.76 found dead Werl, West Holtun, West Germany 7.10.77 Willow Warbler 836473 ringed 14.4.77 controlled Portland, Dorset 19.8.77 Linnet KC09559 ringed 20.9.76 controlled St Agnes, Scilly 20.4.77 RINGED STRANGERS ON LUNDY Manx Shearwater F.S 92490 ringed 4.9.74 pullus Skokholm, dead Lundy s. Light 13.5.77 Blackbird 3250.062 ringed 8.9.75 FG Eksel, Belgium, dead Lundy 16.1.77 Willow Warbler 993.086 ringed 19.4.76 adult Calf of Man controlled Lundy 6.4.77 THE DIPTERA (TWO-WINGED FLffiS) OF LUNDY ISLAND R. P. LANE (Department of Entomology), British Museum (Natural History), London SW7 The Diptera of Lundy have been poorly studied in the past. Therefore, it is hoped that the production of an annotated checklist, giving an indication of the habits and general distribution of the species recorded will encourage other entomologists to take an interest in the Diptera of Lundy.
    [Show full text]
  • Chironomus Frontpage No 28
    CHIRONOMUS Journal of Chironomidae Research No. 30 ISSN 2387-5372 December 2017 CONTENTS Editorial Anderson, A.M. Keep the fuel burning 2 Current Research Epler, J. An annotated preliminary list of the Chironomidae of Zurqui 4 Martin, J. Chironomus strenzkei is a junior synonym of C. stratipennis 19 Andersen, T. et al. Two new Neo- tropical Chironominae genera 26 Kuper, J. Life cycle of natural populations of Metriocnemus (Inermipupa) carmencitabertarum in The Netherlands: indications for a southern origin 55 Lin, X., Wang, X. A redescription of Zavrelia bragremia 67 Short Communications Baranov, V., Nekhaev, I. Impact of the bird-manure caused eutrophication on the abundance and diversity of chironomid larvae in lakes of the Bolshoy Aynov Island 72 Namayandeh, A., Beresford, D.V. New range extensions for the Canadian Chironomidae fauna from two urban streams 76 News Liu, W. et al. The 2nd Chinese Symposium on Chironomidae 81 In memoriam Michailova, P., et al. Prof. Dr. Wolfgang Friedrich Wülker 82 Unidentified male, perhaps of the Chironomus decorus group? Photo taken in the Madrona Marsh Preserve, California, USA. Photo: Emile Fiesler. CHIRONOMUS Journal of Chironomidae Research Editors Alyssa M. ANDERSON, Department of Biology, Chemistry, Physics, and Mathematics, Northern State University, Aberdeen, South Dakota, USA. Torbjørn EKREM, NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway. Peter H. LANGTON, 16, Irish Society Court, Coleraine, Co. Londonderry, Northern Ireland BT52 1GX. The CHIRONOMUS Journal of Chironomidae Research is devoted to all aspects of chironomid research and serves as an up-to-date research journal and news bulletin for the Chironomidae research community.
    [Show full text]
  • Chironominae 8.1
    CHIRONOMINAE 8.1 SUBFAMILY CHIRONOMINAE 8 DIAGNOSIS: Antennae 4-8 segmented, rarely reduced. Labrum with S I simple, palmate or plumose; S II simple, apically fringed or plumose; S III simple; S IV normal or sometimes on pedicel. Labral lamellae usually well developed, but reduced or absent in some taxa. Mentum usually with 8-16 well sclerotized teeth; sometimes central teeth or entire mentum pale or poorly sclerotized; rarely teeth fewer than 8 or modified as seta-like projections. Ventromental plates well developed and usually striate, but striae reduced or vestigial in some taxa; beard absent. Prementum without dense brushes of setae. Body usually with anterior and posterior parapods and procerci well developed; setal fringe not present, but sometimes with bifurcate pectinate setae. Penultimate segment sometimes with 1-2 pairs of ventral tubules; antepenultimate segment sometimes with lateral tubules. Anal tubules usually present, reduced in brackish water and marine taxa. NOTESTES: Usually the most abundant subfamily (in terms of individuals and taxa) found on the Coastal Plain of the Southeast. Found in fresh, brackish and salt water (at least one truly marine genus). Most larvae build silken tubes in or on substrate; some mine in plants, dead wood or sediments; some are free- living; some build transportable cases. Many larvae feed by spinning silk catch-nets, allowing them to fill with detritus, etc., and then ingesting the net; some taxa are grazers; some are predacious. Larvae of several taxa (especially Chironomus) have haemoglobin that gives them a red color and the ability to live in low oxygen conditions. With only one exception (Skutzia), at the generic level the larvae of all described (as adults) southeastern Chironominae are known.
    [Show full text]
  • Genetic Control of Diurnal and Lunar Emergence Times Is Correlated in the Marine Midge Clunio Marinus Tobias S Kaiser1,2*, Dietrich Neumann3 and David G Heckel1
    Kaiser et al. BMC Genetics 2011, 12:49 http://www.biomedcentral.com/1471-2156/12/49 RESEARCHARTICLE Open Access Timing the tides: Genetic control of diurnal and lunar emergence times is correlated in the marine midge Clunio marinus Tobias S Kaiser1,2*, Dietrich Neumann3 and David G Heckel1 Abstract Background: The intertidal zone of seacoasts, being affected by the superimposed tidal, diurnal and lunar cycles, is temporally the most complex environment on earth. Many marine organisms exhibit lunar rhythms in reproductive behaviour and some show experimental evidence of endogenous control by a circalunar clock, the molecular and genetic basis of which is unexplored. We examined the genetic control of lunar and diurnal rhythmicity in the marine midge Clunio marinus (Chironomidae, Diptera), a species for which the correct timing of adult emergence is critical in natural populations. Results: We crossed two strains of Clunio marinus that differ in the timing of the diurnal and lunar rhythms of emergence. The phenotype distribution of the segregating backcross progeny indicates polygenic control of the lunar emergence rhythm. Diurnal timing of emergence is also under genetic control, and is influenced by two unlinked genes with major effects. Furthermore, the lunar and diurnal timing of emergence is correlated in the backcross generation. We show that both the lunar emergence time and its correlation to the diurnal emergence time are adaptive for the species in its natural environment. Conclusions: The correlation implies that the unlinked genes affecting lunar timing and the two unlinked genes affecting diurnal timing could be the same, providing an unexpectedly close interaction of the two clocks.
    [Show full text]
  • Comments on Some Species in Tribe Chironomini
    Comments on some species in tribe Chironomini Henk Vallenduuk Prof. Gerbrandystraat 10, 5463BK Veghel, Netherlands. E-mail: [email protected] During the work of identifying Chironomini collected at various localities in the Netherlands, I made some observations in species interpretation that I think are useful to share with the readers of the Chironomus Newsletter on Chironomidae Research. I hope that in particular ecologists and other users of larval identi- fication keys will find the below comments helpful. Reinterpretation of some species in Chironomus Chironomus macani I obtained males and females from single-reared larvae. Peter Langton identified them as Chironomus (Chaetolabis) macani Freeman, 1948 and confirmed that the male imagines are conspecific with the holo- type of Chironomus (Chaetolabis) macani, held in the Natural History Museum in London, but not with those of Prof. Wolfgang Wülker presently kept in the Zoologische Staatssammlung, München. The Wül- ker’s specimens thus do not belong to the true C. macani and should be renamed (Langton & Vallenduuk 2013). The larvae of both species are morphologically very similar but can be differentiated. Chironomus dorsalis Chironomus (Lobochironomus) longipes Staeger, 1839 was listed as a junior synonym of Chironomus (Lo- bochironomus) dorsalis Meigen, 1818 by Spies & Sæther (2004). However, the name Chironomus (Chi- ronomus) dorsalis Meigen, 1818 has also been used (e.g. Strenzke 1959). Chironomus dorsalis Meigen sensu Strenzke is a misidentification and synonymous withC. alpestris Goetghebuer, 1934 (Sæther & Spies 2013). I reared single larvae of C. dorsalis Meigen and C. alpestris Goetghebuer. It appears that the imago of C. longipes described by Shilova (1980) as Einfeldia does not match with C.
    [Show full text]
  • A Guide for the Identification of Two Subfamilies of Larval Chironomidae
    Envlronment Canada Environnement Canada Fisheries Service des pêches .1 and Marine Service et des sciences de la mer L .' 1 '; ( 1 l r A Guide for the Identification of Two Subfamil ies of Larval Chironomidae: ,1"'--- The Chironominae and Tanypodlnae . : - - . ) / Found .in Benthic Studies Jin the / r~---.-_ c L___ r - - '" - .Ç"'''''-. Winnipeg River in the Vicinity ot Pine Falls, Manitoba in 1971 and 1972 by P. L. Stewart J.S. Loch Technical Report Series No. CEN/T-73-12 Resource Management Branch Central Region DEPARTMÈNT OF THE ENViRONMENT FISHERIES AND MARINE SERViCE Fisheries Operations Directorate Central Region Technical Reports Series No. CEN/T-73-12 A guide for the identification of two subfami lies of larva l Chironomidae~ the Chironominae and Tanypodinae found in benthic studies in the Winnipeg Riv~r in the vicinity of Pine Falls, Manitoba, in 1971 and 1972. by: P.L. Stewart qnd J.S. Loch ERRATA Page13: The caption for Figure 5A should read: Mentum and ventromental plates..•... instead of: submentum and ventromental plates..•.. Page 14: The caption for Figure 5B should read: Mentum and ventromental plates . instead of: submentum and ventromental plates.... DEPARTMENT OF THE ENVIRONMENT FISHERIES AND MARINE SERVICE Fisheries Operations Directorate Central Region Technical Report Series No: CEN/T-73-12 A GUIDE FOR THE IDENTIFICATION OF IWO SUBF.AMILIES OF LARVM.... CHIRONOMIDAE: THE CHIRONOMINAE AND TANYPODINAE FOUND IN BENTHIC STUDIES IN THE WINNIPEG RIVER IN THE vrCINITY OF PINE FM....LS, MANITOBA IN 1971 and 1972 by P. L. Stewart and J. S. Loch Resource Management Branch Fisheries Operations Directorate Central Region, Winnipeg November 1973 i ABSTRACT Identifying characteristics of the genera of two subfamilies of larvae of the midge family, C~onomldae (Vlpt~a), the C~ono­ mlnae and the Tanypodlnae, are presented with illustrations for the purpose of simplifying identification of these two groups by novice and more experienced personnel involved in assessment of benthic faunal composition.
    [Show full text]
  • Biodiversity Assessment Protocol Assessmenty of Two Proposed Regional Flood Retention Areas State Land Corp
    BIODIVERSITY ASSESSMENT PROTOCOL ASSESSMENTY OF TWO PROPOSED REGIONAL FLOOD RETENTION AREAS STATE LAND CORP. DEVELOPMENT TABLE OF CONTENTS Page Number 1.0 INTRODUCTION 1 1.1 Preliminary Assessment Activities 2 2.0 SURVEY METHODS 3 2.1 Plants 3 2.2 Birds 3 2.3 Reptiles and Amphibians 4 2.4 Mammals and Insects 5 3.0 ANALYSIS OF FIELD DATA 5 3.1 Nearby Reference Sites 5 4.0 FIELD FINDINGS 6 4.1 Vegetation 6 4.2 Avian (Bird) Species 7 4.3 Amphibians and Reptile Species 8 4.4 Mammalian Species 8 4.5 Insect Species 8 TOC-1 BIODIVERSITY ASSESSMENT PROTOCOL ASSESSMENTY OF TWO PROPOSED REGIONAL FLOOD RETENTION AREAS STATE LAND CORP. DEVELOPMENT TABLE OF CONTENTS CONTINUED Page Number 5.0 ANALYSIS 8 5.1 Second Growth Hardwood Forest (SGHF) 9 5.2 Freshwater Wetland – Closed Canopy (FW-CC) 9 5.3 Freshwater Wetland Open Canopy (FW-OP) 9 5.4 Forested Intermittent Watercourse (FIW) 10 6.0 ENDANGERED, THREATENED AND SPECIES OF SPECIAL CONCERN 10 6.1 Species Rarity 11 6.2 Breeding Birds 11 7.0 DEVELOPMENT-ASSOCIATED AND DEVELOPMENT-SPECIALISTS 12 7.1 Specialists and Generalists 12 9.0 POTENTIAL IMPACTS AND RECOMMENDATIONS 13 9.1 Potential Impacts 13 9.2 Recommendations 14 TOC-2 BIODIVERSITY ASSESSMENT PROTOCOL ASSESSMENTY OF TWO PROPOSED REGIONAL FLOOD RETENTION AREAS STATE LAND CORP. DEVELOPMENT LIST OF FIGURES Follows Page FIGURE 1-1 SITE LOCATION MAP 1 FIGURE 1-2 BIODIVERSITY SURVEY TARGET SITES/HABITAT AREAS A, B AND C 2 FIGURE 4-1 VEGETATION CUMMUNITY COVER MAP 7 APPENDICES APPENDIX A - BIODIVERSITY ASSESSMENT PROTOCOL FOR ASSESSING TWO REGIONAL FLOOD RETENTION AREAS, JULY 2012 APPENDIX B - PHOTOGRAPHS APPENDIX C - LIST OF REFERENCE GUIDES/AUDIO RECORDINGS AND AGENCY PUBLISHED DOCUMENTS APPENDIX D - TABLES 4-1 THROUGH 4-6 AND TABLES 6-1 THROUGH 6-5 APPENDIX E - PRELIMINARY WETLAND MITIGATION PLAN TOC-3 1.0 INTRODUCTION During July through August 2012, a Biodiversity Assessment was completed of two freshwater wetlands (including immediately adjoining areas), which are located completely, or partially, within the boundaries of the Sylvan Glen Preserve.
    [Show full text]
  • Nabs 2004 Final
    CURRENT AND SELECTED BIBLIOGRAPHIES ON BENTHIC BIOLOGY 2004 Published August, 2005 North American Benthological Society 2 FOREWORD “Current and Selected Bibliographies on Benthic Biology” is published annu- ally for the members of the North American Benthological Society, and summarizes titles of articles published during the previous year. Pertinent titles prior to that year are also included if they have not been cited in previous reviews. I wish to thank each of the members of the NABS Literature Review Committee for providing bibliographic information for the 2004 NABS BIBLIOGRAPHY. I would also like to thank Elizabeth Wohlgemuth, INHS Librarian, and library assis- tants Anna FitzSimmons, Jessica Beverly, and Elizabeth Day, for their assistance in putting the 2004 bibliography together. Membership in the North American Benthological Society may be obtained by contacting Ms. Lucinda B. Johnson, Natural Resources Research Institute, Uni- versity of Minnesota, 5013 Miller Trunk Highway, Duluth, MN 55811. Phone: 218/720-4251. email:[email protected]. Dr. Donald W. Webb, Editor NABS Bibliography Illinois Natural History Survey Center for Biodiversity 607 East Peabody Drive Champaign, IL 61820 217/333-6846 e-mail: [email protected] 3 CONTENTS PERIPHYTON: Christine L. Weilhoefer, Environmental Science and Resources, Portland State University, Portland, O97207.................................5 ANNELIDA (Oligochaeta, etc.): Mark J. Wetzel, Center for Biodiversity, Illinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820.................................................................................................................6 ANNELIDA (Hirudinea): Donald J. Klemm, Ecosystems Research Branch (MS-642), Ecological Exposure Research Division, National Exposure Re- search Laboratory, Office of Research & Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268- 0001 and William E.
    [Show full text]
  • Characterisation of Pristine Polish River Systems and Their Use As Reference Conditions for Dutch River Systems
    1830 Rapport 1367.qxp 20-9-2006 16:49 Pagina 1 Characterisation of pristine Polish river systems and their use as reference conditions for Dutch river systems Rebi Nijboer Piet Verdonschot Andrzej Piechocki Grzegorz Tonczyk´ Malgorzata Klukowska Alterra-rapport 1367, ISSN 1566-7197 Characterisation of pristine Polish river systems and their use as reference conditions for Dutch river systems Commissioned by the Dutch Ministry of Agriculture, Nature and Food Quality, Research Programme ‘Aquatic Ecology and Fisheries’ (no. 324) and by the project Euro-limpacs which is funded by the European Union under2 Thematic Sub-Priority 1.1.6.3. Alterra-rapport 1367 Characterisation of pristine Polish river systems and their use as reference conditions for Dutch river systems Rebi Nijboer Piet Verdonschot Andrzej Piechocki Grzegorz Tończyk Małgorzata Klukowska Alterra-rapport 1367 Alterra, Wageningen 2006 ABSTRACT Nijboer, Rebi, Piet Verdonschot, Andrzej Piechocki, Grzegorz Tończyk & Małgorzata Klukowska, 2006. Characterisation of pristine Polish river systems and their use as reference conditions for Dutch river systems. Wageningen, Alterra, Alterra-rapport 1367. 221 blz.; 13 figs.; 53 tables.; 26 refs. A central feature of the European Water Framework Directive are the reference conditions. The ecological quality status is determined by calculating the distance between the present situation and the reference conditions. To describe reference conditions the natural variation of biota in pristine water bodies should be measured. Because pristine water bodies are not present in the Netherlands anymore, water bodies (springs, streams, rivers and oxbow lakes) in central Poland were investigated. Macrophytes and macroinvertebrates were sampled and environmental variables were measured. The water bodies appeared to have a high biodiversity and a good ecological quality.
    [Show full text]
  • Abstracts Submitted for Presentation During The
    Abstracts submitted for presentation during the Compiled By Leonard C. Ferrington Jr. 17 July 2003 ABSTRACT FOR THE THIENEMANN HONORARY LECTURE THE ROLE OF CHROMOSOMES IN CHIRONOMID SYSTEMATICS, ECOLOGY AND PHYLOGENY WOLFGANG F. WUELKER* Chironomids have giant chromosomes with useful characters: different chromosome number, different combination of chromosome arms, number and position of nucleolar organizers, amount of heterochromatin, presence of puffs and Balbiani rings, banding pattern. For comparison of species, it is important that the bands or groups of bands can be homologized. Chromosomes are nearly independent of environmental factors, however they show variability in form of structural modifications and inversion polymorphism. Systematic aspects: New species of chironomids have sometimes been found on the basis of chromosomes, e.g. morphologically well defined "species" turned out to contain two or more karyotypes. Chromosome preparations were also sometimes declared as species holotypes. Moreover, chromosomes were helpful to find errors in previous investigations or to rearrange groups.- Nevertheless, where morphology and chromosomal data are not sufficient for species identification, additional results of electrophoresis of enzymes or hemoglobins as well as molecular-biological data were often helpful and necessary . Ecological, parasitological and zoogeographical aspects: An example of niche formation are the endemic Sergentia-species of the 1500 m deep Laike Baikal in Siberia. Some species are stenobathic and restricted to certain depth regions. The genetic sex of nematode-infested Chironomus was unresolved for a long time. External morphological characters were misleading, because parasitized midges have predominantly female characters. However, transfer of the parasites to species with sex-linked chromosomal characters (strains of Camptochironomus) could show that half of the parasitized midges are genetic males.
    [Show full text]