Seed Forgiveness of Some Species of the Family Lamiaceae Introduced in Tashkent Botanical Garden
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lamiales Newsletter
LAMIALES NEWSLETTER LAMIALES Issue number 4 February 1996 ISSN 1358-2305 EDITORIAL CONTENTS R.M. Harley & A. Paton Editorial 1 Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK The Lavender Bag 1 Welcome to the fourth Lamiales Universitaria, Coyoacan 04510, Newsletter. As usual, we still Mexico D.F. Mexico. Tel: Lamiaceae research in require articles for inclusion in the +5256224448. Fax: +525616 22 17. Hungary 1 next edition. If you would like to e-mail: [email protected] receive this or future Newsletters and T.P. Ramamoorthy, 412 Heart- Alien Salvia in Ethiopia 3 and are not already on our mailing wood Dr., Austin, TX 78745, USA. list, or wish to contribute an article, They are anxious to hear from any- Pollination ecology of please do not hesitate to contact us. one willing to help organise the con- Labiatae in Mediterranean 4 The editors’ e-mail addresses are: ference or who have ideas for sym- [email protected] or posium content. Studies on the genus Thymus 6 [email protected]. As reported in the last Newsletter the This edition of the Newsletter and Relationships of Subfamily Instituto de Quimica (UNAM, Mexi- the third edition (October 1994) will Pogostemonoideae 8 co City) have agreed to sponsor the shortly be available on the world Controversies over the next Lamiales conference. Due to wide web (http://www.rbgkew.org. Satureja complex 10 the current economic conditions in uk/science/lamiales). Mexico and to allow potential partici- This also gives a summary of what Obituary - Silvia Botta pants to plan ahead, it has been the Lamiales are and some of their de Miconi 11 decided to delay the conference until uses, details of Lamiales research at November 1998. -
Research Paper the Effect of Salinity Stress and Temperature Levels
Academia Journal of Medicinal Plants 9(6): 070-077, June 2021 DOI: 10.15413/ajmp.2021.0107 ISSN: 2315-7720 ©2021 Academia Publishing Research Paper The effect of salinity stress and temperature levels on germination characteristics of four medicinal plants seed Accepted 9th March, 2021 ABSTRACT Cultivation of medicinal plants has been economically beneficial for pharmacy and medicine. These plants are stores of active and valuable secondary metabolites that can be converted into various drugs, some of which are life-saving. However, it is difficult to start a large-scale and commercial cultivation of these plants because most of the arable land is used to produce strategically essential crops. Other uncultivable lands are often affected by various abiotic stresses, one of the most important of which is salinity. Germination of plants is one of the important stages during their growth period that is often affected by environmental stresses, especially salinity. In this study, the seeds of medicinal plants such as Lavender (Lavandula angustifolia), hyssop (Hyssopus officinalis), black cumin (Nigella sativa L.) and Scrophularia (Scrophularia striata) were subjected to salinity stress at 20, 25 and 30°C in order to determine the germination characteristics of their seeds. The results of this experiment generally showed that with increasing salinity stress at different temperatures, all germination characteristics including germination percentage, germination rate, shoot length, root length, shoot dry weight, root dry weight and seed vigor index decreased. It seemed that in order to Yousef Hakimi grow plants commercially, low salinity soil and water are needed to get the best yield. Department of Horticulture, Faculty of Agriculture and Natural Resources, University Key words: Medicinal plants, salt stress, seed treatment, germination, lavender of Tehran, Karaj, Iran. -
Distribution and Significance of Hyssopus Officinalis (Labiatae) in Bulgaria
Jivka Cemeva Distribution and significance of Hyssopus officinalis (Labiatae) in Bulgaria Abstract Cerrneva, l.: Distribution and significance of Hyssopus officinalis (Labiatae) in Bulgaria. - Bocconea 5: 637-641. 1997. - ISSN 1120-4060. The contradictory data on the distribution of Hyssopus taxa in Bulgaria are reviewed. H. offi cinalis subsp. pilifer is the wild plant growing in stony places with a temperate-continental climate. lts occurrence in two regions (Znepole and Mt Vitosa) is confirmed, and its alleged presence in the Predbalkan, W. Stara planina, and Mt Rila is discussed. The wild plants con tain camphor, but not as much pinocamphone as the cultivated ones (H. officinalis subsp. officinalis), which is why the native populations cannot be used for perfumery purposes. Introdnction The generai aim of OUT investigations is to find Bulgarian plant taxa that can be used as new SOUTces of essential oils, and to review their distribution in the country. In the years 1989-1992, the distribution and characteristics of Hyssopus officinalis L. have thus been investigated. The essential oil of Hyssopus officinalis subsp. officinalis, distilled from the fresh dried plant material, is widely used in perfumery and cosmetics industry, in Bulgaria and else where in the world. The distribution of Hyssopus in Bulgaria has been recorded by many authors (Velenovsky 1891, 1898; Hayek 1931; Stojanov & Stefanov 1924-1925, 1933, 1948; Stojanov & al. 1967). Ancev (1989) accepts Hyssopus officinalis subsp. aristatus (Godr.) Briq. as the single Bulgarian taxon, given as being present in two floristic regions: Zne pole (Golo Bardo, Mt Konjavska, Cepan, and Ruj) and the Vitosa Mts (southern slopes). -
Palynological Evolutionary Trends Within the Tribe Mentheae with Special Emphasis on Subtribe Menthinae (Nepetoideae: Lamiaceae)
Plant Syst Evol (2008) 275:93–108 DOI 10.1007/s00606-008-0042-y ORIGINAL ARTICLE Palynological evolutionary trends within the tribe Mentheae with special emphasis on subtribe Menthinae (Nepetoideae: Lamiaceae) Hye-Kyoung Moon Æ Stefan Vinckier Æ Erik Smets Æ Suzy Huysmans Received: 13 December 2007 / Accepted: 28 March 2008 / Published online: 10 September 2008 Ó Springer-Verlag 2008 Abstract The pollen morphology of subtribe Menthinae Keywords Bireticulum Á Mentheae Á Menthinae Á sensu Harley et al. [In: The families and genera of vascular Nepetoideae Á Palynology Á Phylogeny Á plants VII. Flowering plantsÁdicotyledons: Lamiales (except Exine ornamentation Acanthaceae including Avicenniaceae). Springer, Berlin, pp 167–275, 2004] and two genera of uncertain subtribal affinities (Heterolamium and Melissa) are documented in Introduction order to complete our palynological overview of the tribe Mentheae. Menthinae pollen is small to medium in size The pollen morphology of Lamiaceae has proven to be (13–43 lm), oblate to prolate in shape and mostly hexacol- systematically valuable since Erdtman (1945) used the pate (sometimes pentacolpate). Perforate, microreticulate or number of nuclei and the aperture number to divide the bireticulate exine ornamentation types were observed. The family into two subfamilies (i.e. Lamioideae: bi-nucleate exine ornamentation of Menthinae is systematically highly and tricolpate pollen, Nepetoideae: tri-nucleate and hexa- informative particularly at generic level. The exine stratifi- colpate pollen). While the -
Melissa Officinalis L., a Valuable Medicine Plant: a Review
Journal of Medicinal Plants Research Vol. 4(25), pp. 2753-2759, 29 December Special Review, 2010 Available online at http://www.academicjournals.org/JMPR ISSN 1996-0875 ©2010 Academic Journals Review Melissa officinalis L., a valuable medicine plant: A review Moradkhani H.1, Sargsyan E.1, Bibak H.2, Naseri B.3, Sadat-Hosseini M.2, Fayazi-Barjin A.4 and Meftahizade H.5* 1Institute of Hydroponic Problems, National Academic of Sciences, Yerevan, Republic of Armenia. 2Department of plant production, faculty of Agriculture, university of Jiroft, Kerman, Iran. 3Faculty of Islamic Azad University, Ilam, Iran. 4Department of Plant Protection, University of Tehran, Iran. 5Researcher of ACECR Medicinal Plants Center, Ilam, Iran. Accepted 6 December, 2010 Melissa officinalis L., a valuable medicinal plant in herbal medicine is native to the eastern Mediterranean Region and western Asia. The constituent of the essential oil of the plant in various climates is different, but citral (geranial and neral), citronellal, geraniol are main components. Many parameters influencing essential oil composition and yield, such as light intensity, nutrient, temperature, cultural practice genotype, plant part age, harvesting time. Lemon balm has been traditionally used for different medical purposes as tonic, antispasmodic, carminative, diaphoretic, surgical dressing for wounds, sedative-hypnotic strengthening the memory, and relief of stress induced headache, but in modern pharmacology is value in the management of mild to moderate Alzheimer’s, against migraine and rheumatism, antitumel and antioxidant activities. Key words: Melissa officinalis, essential oil, pharmacology and antioxidant. INTRODUCTION Lemon balm, member of the family Lamiaceae (formerly years may no longer germinate (Zargari, 1991). Labiatae) is a perennial bushy plant and is upright, Lemon balm has a hairy root system with many lateral reaching a height of about 1 m. -
MEDICINAL PLANTS OPIUM POPPY: BOTANY, TEA: CULTIVATION to of NORTH AFRICA Opidjd CHEMISTRY and CONSUMPTION by Loutfy Boulos
hv'IERIGAN BCXtlNICAL COJNCIL -----New Act(uisition~---------l ETHNOBOTANY FLORA OF LOUISIANA Jllll!llll GUIDE TO FLOWERING FLORA Ed. by Richard E. Schultes and Siri of by Margaret Stones. 1991. Over PLANT FAMILIES von Reis. 1995. Evolution of o LOUISIANA 200 beautiful full color watercolors by Wendy Zomlefer. 1994. 130 discipline. Thirty-six chapters from and b/w illustrations. Each pointing temperate to tropical families contributors who present o tru~ accompanied by description, habitat, common to the U.S. with 158 globol perspective on the theory and and growing conditions. Hardcover, plates depicting intricate practice of todoy's ethnobotony. 220 pp. $45. #8127 of 312 species. Extensive Hardcover, 416 pp. $49.95. #8126 glossary. Hardcover, 430 pp. $55. #8128 FOLK MEDICINE MUSHROOMS: TAXOL 4t SCIENCE Ed. by Richard Steiner. 1986. POISONS AND PANACEAS AND APPLICATIONS Examines medicinal practices of by Denis Benjamin. 1995. Discusses Ed. by Matthew Suffness. 1995. TAXQL® Aztecs and Zunis. Folk medicine Folk Medicine signs, symptoms, and treatment of Covers the discovery and from Indio, Fup, Papua New Guinea, poisoning. Full color photographic development of Toxol, supp~. Science and Australia, and Africa. Active identification. Health and nutritional biology (including biosynthesis and ingredients of garlic and ginseng. aspects of different species. biopharmoceutics), chemistry From American Chemical Society Softcover, 422 pp. $34.95 . #8130 (including structure, detection and Symposium. Softcover, isolation), and clinical studies. 223 pp. $16.95. #8129 Hardcover, 426 pp. $129.95 #8142 MEDICINAL PLANTS OPIUM POPPY: BOTANY, TEA: CULTIVATION TO OF NORTH AFRICA OpiDJD CHEMISTRY AND CONSUMPTION by Loutfy Boulos. 1983. Authoritative, Poppy PHARMACOLOGY TEA Ed. -
Dry Grassland of Europe: Biodiversity, Classification, Conservation and Management
8th European Dry Grassland Meeting Dry Grassland of Europe: biodiversity, classification, conservation and management 13-17 June 2011, Ym`n’, Ykq`ine Abstracts & Excursion Guides Edited by Anna Kuzemko National Academy of Sciences of Ukraine, Uman' Ukraine O`tion`l Dendqologic`l R`qk “Uofiyivk`” 8th European Dry Grassland Meeting Dry Grassland of Europe: biodiversity, classification, conservation and management 13-17 June 2011, Ym`n’, Ykq`ine Abstracts & Excursion Guides Edited by Anna Kuzemko Ym`n’ 2011 8th European Dry Grassland Meeting. Dry Grassland of Europe: biodiversity, classification, conservation and management. Abstracts & Excursion Guides – XŃ_ń)# 2011& Programme Committee: Local Organising Committee Anna KuzeŃko (XŃ_ń)# Xkr_ińe) Jv_ń LoŚeńko (XŃ_ń)# Xkr_ińe) Kürgeń Deńgler (I_Ńburg# HerŃ_ńy) Yakiv Didukh (Kyiv, Ukraine) Nońik_ K_ńišov` (B_ńŚk` ByŚtric_# Sergei Mosyakin (Kyiv, Ukraine) Slovak Republic) Alexandr Khodosovtsev (Kherson, Ukraine) Uolvit_ TūŚiņ_ (Tig_# M_tvi_) Jńń_ Dideńko (XŃ_ń) Xkr_ińe) Stephen Venn (Helsinki, Finland) Michael Vrahnakis (Karditsa, Greece) Ivan Moysienko (Kherson, Ukraine) Mykyta Peregrym (Kyiv, Ukraine) Organized and sponsored by European dry Grassland Group (EDGG), a Working group of the Inernational Association for Vegetation Science (IAVS) National Dendrologic_l R_rk *Uofiyvk_+ of the O_tioń_l Ac_deŃy of UcieńceŚ of Xkr_ińe# M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kherson state University Floristisch-soziologische Arbeitsgemeinschaft e V. Abstracts -
Perilla Mint
Extension W135 Perilla Mint Larry Steckel, Assistant Professor, Plant Sciences Neil Rhodes, Professor and Department Head, Plant Sciences Perilla Mint Peri indicutescens (L.) Britt. Also known as: beefsteak plant, common perilla, purple perilla, purple mint, shiso, Chinese basil, wild basil, blueweed, Joseph’s coat, wild coleus, rattlesnake weed Classification and Description Perilla mint is a member of the Lamiaceae or mint family. About 200 genera and 3200 species make up the mint plant family. Perilla mint is an erect, herbaceous annual that can grow to heights of 2 feet. It is native to East Asia. The cotyledons are longer than they are broad, with the broadest portion near the tip. The leaves are simple, opposite and can be purple or green tinged with purple, making it an attractive plant. Leaves have coarsely serrated (toothed) leaf margins pointed toward the tip and can be up to 5 inches wide and 7 inches long. Leaves are egg-shaped, with the largest part nearest the Perilla mint base. The stems of perilla mint are square in cross section, erect, hairy, somewhat branched and green or purple. Many small, white to purplish-white flowers with a ring of hairs in the throat are clustered in the terminals of these plants. Reproduction is by seed. Perilla mint has a shallow taproot and fibrous roots. Weed Status and Injury Perilla mint causes more cattle deaths in Tennessee than any other toxic plant. Perilla is very poisonous to cattle and other ruminants, as well as horses. All plant parts are toxic, especially the flowering structures. Dried plants in hay can be toxic, but the greatest risk is associated with consumption of fresh plant material, especially if flowers and fruit are present. -
Towards Resolving Lamiales Relationships
Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. -
(Lamiaceae and Verbenaceae) Using Two DNA Barcode Markers
J Biosci (2020)45:96 Ó Indian Academy of Sciences DOI: 10.1007/s12038-020-00061-2 (0123456789().,-volV)(0123456789().,-volV) Re-evaluation of the phylogenetic relationships and species delimitation of two closely related families (Lamiaceae and Verbenaceae) using two DNA barcode markers 1 2 3 OOOYEBANJI *, E C CHUKWUMA ,KABOLARINWA , 4 5 6 OIADEJOBI ,SBADEYEMI and A O AYOOLA 1Department of Botany, University of Lagos, Akoka, Yaba, Lagos, Nigeria 2Forest Herbarium Ibadan (FHI), Forestry Research Institute of Nigeria, Ibadan, Nigeria 3Department of Education Science (Biology Unit), Distance Learning Institute, University of Lagos, Akoka, Lagos, Nigeria 4Landmark University, Omu-Aran, Kwara State, Nigeria 5Ethnobotany Unit, Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria 6Department of Ecotourism and Wildlife Management, Federal University of Technology, Akure, Ondo State, Nigeria *Corresponding author (Email, [email protected]) MS received 21 September 2019; accepted 27 May 2020 The families Lamiaceae and Verbenaceae comprise several closely related species that possess high mor- phological synapomorphic traits. Hence, there is a tendency of species misidentification using only the mor- phological characters. Herein, we evaluated the discriminatory power of the universal DNA barcodes (matK and rbcL) for 53 species spanning the two families. Using these markers, we inferred phylogenetic relation- ships and conducted species delimitation analysis using four delimitation methods: Automated Barcode Gap Discovery (ABGD), TaxonDNA, Bayesian Poisson Tree Processes (bPTP) and General Mixed Yule Coalescent (GMYC). The phylogenetic reconstruction based on the matK gene resolved the relationships between the families and further suggested the expansion of the Lamiaceae to include some core Verbanaceae genus, e.g., Gmelina. -
Hyssop Herb Yield and Quality Depending on Harvest Term and Plant Spacing
Acta Sci. Pol., Hortorum Cultus 10(3) 2011, 331-342 HYSSOP HERB YIELD AND QUALITY DEPENDING ON HARVEST TERM AND PLANT SPACING GraĪyna ZawiĞlak University of Life Sciences in Lublin Abstract. Hyssop (Hyssopus officinalis L.) is an oil plant, acts antiseptically and stimu- lates digestion. It is applied both for curative and culinary purposes. Studies conducted in the years 2006–2008 were aimed at the effect of plant harvest term (mid June – plants in vegetative phase, mid July – beginning of flowering, mid August – full blooming, mid September – after flowering) and plant spacing (30 × 30, 40 × 40, 50 × 50 cm) upon yielding and quantity of hyssop herb. Studies were conducted at one-year plantation es- tablished from seedlings. Yield of fresh, dry herb and yield of herb without stems was significantly dependent upon the examined factors. Significantly greater fresh herb yield was obtained from plants after flowering (on average: 2.32 kg.m-2), just like the dry yield and yield of herb without stems. In the analysis of the effect of plant spacing upon hyssop yielding, it was revealed that the highest fresh herb yield (on average 1.47 kg.m-2) was from plants grown in the spacing of 40 × 40 cm, similarly to yield of the dry herb and yield of herb without stems. No significant effect of plant spacing was found on the con- tents of dry matter, L-ascorbic acid, chlorophyll, carotenoids, oil, tannins and flavonoids. It was demonstrated, however, that the harvest term significantly effects the contents of L-ascorbic acid, chlorophyll, carotenoids and essential oil in hyssop herb. -
Purple Giant Hyssop (Agastache Schrophulariifolia) Fact Sheet
Plant Fact Sheet auricomus), and Bombus pensylvanicus. The flower also PURPLE GIANT attracts goldfinches and hummingbirds. HYSSOP Orname ntal Purple giant hyssop is a popular ornamental plant. The Agastache scrophulariifolia relatively large height of the plant makes it a good choice (Willd.) Kuntze as a background against fencing. Plant Symbol = AGSC Status Contributed by: USDA NRCS Cape May Plant Materials Please consult the PLANTS Web site and your State Department of Natural Resources for this plant’s current Center status (e.g., threatened or endangered species, state noxious status, and wetland indicator values). Description and Adaptation Description: Purple giant hyssop is a late-flowering, native perennial herb of the mint family. It can grow unusually tall for a mint; up to 6 feet, with diamond- shaped stems, aromatic foliage and flowers, and vigorous stolons. The stems are erect and form clumps. The upper braches may be purplish. The densely branched inflorescence is a 1–6 in termina l, continuous, or interrupted flower spike, or raceme. The plant usually has several spikes. The tops of the spikes develop into a flower and two lateral branches develop under the flower from a common node; giving the inflorescence a symmetrical appearance. The flower clusters persist throughout the winter. The individual flowers are ¼ in long, 15-nerved tubes that US DA-NRCS PLANTS Database / William S. Justice @ USDA-NR CS are lavender to pale pink. The upper lip has 2 lobes and PLANTS Database projects forward; and the lower lip curves downwards with 3 lobes. The individual lobes are 3-nerved. Alternati ve Names Common Alternate Names: Not all flowers open at the same time.