The Role of Small RNA in Parasite-Host Communication During Trichinella Spiralis Infection Peter Taylor

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Small RNA in Parasite-Host Communication During Trichinella Spiralis Infection Peter Taylor The role of small RNA in parasite-host communication during Trichinella spiralis infection Peter Taylor Imperial College London Department of Life Sciences Under the Supervision of Murray Selkirk and Peter Sarkies Submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy in the Department of Life Sciences in the Life Science Research programme 1 Abstract The parasitic nematode Trichinella spiralis offers a bizarre and compelling example of host manipulation. Occupying both an enteric and intracellular muscle cell niche, the worm appears to hijack the host’s innate cellular biological processes to bring about morphological shifts in the muscle cell which it inhabits, creating a more hospitable environment for the its own development. The molecular mechanisms underpinning this phenomenon are largely unknown. Recently there has been much interest in extracellular small RNAs secreted within extracellular vesicles, including in parasitic nematode infection. Here I investigate whether T. spiralis secretes small RNAs as part of its pathogenesis. I profiled small RNAs secreted by T. spiralis from both its adult (enteric) and muscle larval stages of the life cycle. My data demonstrated that T. spiralis secretes miRNA (Chapters 3 and 4). Intriguingly the majority of small RNAs secreted by muscle stage larvae are not encapsulated within extracellular vesicles, consistent with its intracellular niche and implicating a novel secretory mechanism. Small RNAs enriched within the secreted fraction include those with homology to host miRNAs known to play a crucial role in muscle development and disease, such as miR-31 (Chapter 4). To test the role of secreted miRNAs in infection I generated an inducible expression system in the muscle cell line C2C12 (Chapter 5). Induction of exogenous miRNA expression and subsequent sequencing suggests that T. spiralis miR-31 is able to target host mRNA, with genes targeted including genes linked to muscular dystrophic disease (Chapter 6). I then describe further work which should be performed to solidify and expand upon the findings of this thesis (Chapter 7). 2 Statement of Originality This statement is to declare that, to the best of my knowledge, this thesis is my own work, written entirely by me, Peter Taylor, unless otherwise referenced. All intellectual content was a product of my work, with assistance in its production duly acknowledged. Licensing The copyright of this thesis rests with the author. Unless otherwise indicated, its contents are licensed under a Creative Commons Attribution-Non-Commercial 4.0 International Licence (CC BY-NC). Under this licence, you may copy and redistribute the material in any medium or format. You may also create and distribute modified versions of the work. This is on the condition that: you credit the author and do not use it, or any derivative works, for a commercial purpose. When reusing or sharing this work, ensure you make the licence terms clear to others by naming the licence and linking to the licence text. Where a work has been adapted, you should indicate that the work has been changed and describe those changes. Please seek permission from the copyright holder for uses of this work that are not included in this licence or permitted under UK Copyright Law. 3 Acknowledgements The first people to thank are my wonderful supervisors, Murray Selkirk and Peter Sarkies. I am eternally grateful for the opportunity to learn from both of them and have been incredibly fortunate to study with two people with such extensive and complementary knowledge and skills. Both have been incredibly generous with their time and have been incredibly understanding and helpful throughout. I couldn’t have wished for better supervisors. I have had the good fortune to work with many brilliant scientists at all stages of their careers. Jana Hagen has been one of the most important people to my progress and has been equally generous with her help and sharing her knowledge. I genuinely couldn’t have even come close to finishing this project without her help and friendship throughout. I have also had extensive aid from Rita Berkachy, who also helped me find my way through this project and through my time at Imperial. Corinna Schnoeller was crucial to helping me bed in when I arrived at Imperial and was always incredibly helpful and charming. Tony Belicard was an enormous help with understanding how things worked in the Sarkies lab and showed me the ropes when it comes to RNA sequencing work. Similarly, Silvana Rosic helped my find my footing when arriving at the Sarkies lab and was always extremely kind. More recently, Subhanita Ghosh and Sheeba Singh have taken over the reins in the Sarkies lab and have been wonderful, both highly skilled scientists and genuinely lovely people. I have also had the opportunity to study alongside some wonderful PhD students who have been incredibly generous with their time and aid. I’d like to thank the incredibly talented Toni Belicard and Lisa Schneider for their help and friendship and imagine we’ll be seeing both their names for years to come in high profile journals. Particular thanks to Empar Baltazar-Perez and Adam Efrat for their excellent work on the miR-sensor system. I have also had the opportunity to work in collaboration with some incredible research groups who have all been essential to the progress of this project. First of all, I must thank the entire Southall group, with whom I have shared the lab for these past 4 years, for their kindness and assistance throughout that time. Thanks to Tony, Colin McClure, Gabriel Aughey, Alicia Estacio-Gomez, Amira Hassan and Emma Walmsley for their patience and friendship. I also must thank our more recent neighbours in Calvin Tiengwe’s group for their help and support, particularly Carla Gilabert-Carbajo for her friendship and support after long days (and sometime nights!) in the lab. Thanks to Katarina Artavanis-Tsakonas and her group for the help with the C2C12 system and for donating the cell lines and vectors for this project. Thanks also to Khuloud Al-Jamal and her group, in particular Mohammad Faruqu, for their help with the quantification of extracellular vesicles. Thanks to Bonnie Chaban for her help with electron microscopy. My thanks also to Cristina Lo Celso and her group for their guidance when designing the miRNA sensor system. Thanks to Jess Rowley for her help with flow cytometry. Thanks to Michalis Barkoulas and his group, particularly Michael Fasseas, Dimitris Katsanos, Sneha Koneru and Guled Osman for their help during my Masters project and for their friendship since. Michalis has also been brilliant as one of my progress supervisors, so thank you for that. Similarly, I must thank Stuart Haslam for his help as my other PRP supervisor. I must also thank the administrative staff at Imperial for their help and support. Particular thanks to the wonderful Kleoniki Gounaris for her time throughout the project and for her sardonic wit which always cuts through the nonsense. James Ferguson has also been of immense importance and his patience and support is greatly appreciated. Thanks also to the staff at CBS for their guidance and support. Thanks to the UKRI Biotechnology and Biological Sciences Research Council (formerly BBSRC) for their funding and support throughout the project and to Imperial College for providing me a place to study and all the support and training that has come with that. Outside of the lab I must thank my friends and family for all their support. Particular thanks to Pourya for putting up with me whilst living together and for all the stimulating conversations and encouragement. Thanks to Arash for his support and for putting me up at times along with the lovely Martina. Likewise, thanks to Eleonore and Frank and Simon and Georgina for giving me a place to stay whilst finishing up and fo all their support. Particular thanks to my parents for everything, the list is too long to include here. Final and most heartfelt thanks to Claire, who has put up with me though everything and without whom I could certainly not have made it this far. My eternal thanks and love to you. Thanks to anyone I have forgotten to include or overlooked, I’m sorry but this is already too long! 4 Table of Contents 5 Table of contents Abstract 2 Licensing 3 Acknowledgements 4 Table of Contents 5 Chapter 1 – Introduction 16 The Genus Trichinella 17 Transmission and Epidemiology 19 Trichinellosis 22 Life Cycle of Trichinella spiralis 23 Nurse Cell Formation 26 Secreted Agents 28 Small RNA 31 Small RNA in C. elegans 32 Small RNA in other nematodes 36 Micro RNA 37 Micro RNA Biogenesis 38 Micro RNA and Development 41 Micro RNA and Myogenesis 42 Extracellular Small RNA 46 Proposed Mechanisms of Secretion 49 Secreted miRNA in mammalian cell-to-cell signalling 52 6 Table of contents Small RNA and cross-species communication 53 Small RNA and Plant Parasites 53 Small RNA and the parasites of Animals 54 Nematodes and other Helminths 55 Outstanding Questions 58 Trichinella spiralis as a model for small RNA mediated 59 parasite-host communication Chapter 1 Figures Figure 1.1: Schematic of T. spiralis life cycle 25 Figure 1.2: Schematic demonstrating key points in nurse cell 27 complex formation Figure 1.3: Small RNA biogenesis and function 35 Figure 1.4: Schematic demonstrating miRNA biogenesis 40 Figure 1.5: Schematic of muscle repair and myogenesis 43 Figure 1.6: Possible mechanisms of secretion of small RNA 50 Chapter 2 – Materials and Methods 61 Recovery of Muscle Stage Larvae 62 Recovery of Adult Worms 62 Parasite culture and collection of secreted products 63 Ultracentrifugation of Secreted Material 63 RNase Digest 64 7 Table of contents RNase Protection Assay 64 Extracellular Vesicle collection and quantification 65 RNA Isolation and sequencing 65 Scatterplots 66 Seed matching and Similarity scoring 66 Heatmaps 67 Cell Culture 68 Production of Tet-inducible C2C12 cell line in Brief 68 Full Protocols for Cell Line Production 69 Production of chemically competent E.
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • C14orf166 (RTRAF) Mouse Monoclonal Antibody [Clone ID: OTI1G8] Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA804052 C14orf166 (RTRAF) Mouse Monoclonal Antibody [Clone ID: OTI1G8] Product data: Product Type: Primary Antibodies Clone Name: OTI1G8 Applications: IHC, WB Recommended Dilution: WB 1:2000, IHC 1:150 Reactivity: Human Host: Mouse Isotype: IgG2a Clonality: Monoclonal Immunogen: Full length human recombinant protein of human C14orf166 (NP_057123) produced in E.coli. Formulation: PBS (PH 7.3) containing 1% BSA, 50% glycerol and 0.02% sodium azide. Concentration: 1 mg/ml Purification: Purified from mouse ascites fluids or tissue culture supernatant by affinity chromatography (protein A/G) Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 27.9 kDa Gene Name: chromosome 14 open reading frame 166 Database Link: NP_057123 Entrez Gene 51637 Human Q9Y224 Synonyms: CGI-99; CGI99; CLE; CLE7; hCLE1; LCRP369; RLLM1 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 3 C14orf166 (RTRAF) Mouse Monoclonal Antibody [Clone ID: OTI1G8] – TA804052 Product images: HEK293T cells were transfected with the pCMV6- ENTRY control (Left lane) or pCMV6-ENTRY C14orf166 ([RC200016], Right lane) cDNA for 48 hrs and lysed. Equivalent amounts of cell lysates (5 ug per lane) were separated by SDS-PAGE and immunoblotted with anti-C14orf166. Positive lysates [LY414235] (100ug) and [LC414235] (20ug) can be purchased separately from OriGene.
    [Show full text]
  • Variation in Protein Coding Genes Identifies Information
    bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 1 1 2 3 4 5 Variation in protein coding genes identifies information flow as a contributor to 6 animal complexity 7 8 Jack Dean, Daniela Lopes Cardoso and Colin Sharpe* 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Institute of Biological and Biomedical Sciences 25 School of Biological Science 26 University of Portsmouth, 27 Portsmouth, UK 28 PO16 7YH 29 30 * Author for correspondence 31 [email protected] 32 33 Orcid numbers: 34 DLC: 0000-0003-2683-1745 35 CS: 0000-0002-5022-0840 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Abstract bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 2 1 Across the metazoans there is a trend towards greater organismal complexity. How 2 complexity is generated, however, is uncertain. Since C.elegans and humans have 3 approximately the same number of genes, the explanation will depend on how genes are 4 used, rather than their absolute number.
    [Show full text]
  • A Catalogue of Stress Granules' Components
    Catarina Rodrigues Nunes A Catalogue of Stress Granules’ Components: Implications for Neurodegeneration UNIVERSIDADE DO ALGARVE Departamento de Ciências Biomédicas e Medicina 2019 Catarina Rodrigues Nunes A Catalogue of Stress Granules’ Components: Implications for Neurodegeneration Master in Oncobiology – Molecular Mechanisms of Cancer This work was done under the supervision of: Clévio Nóbrega, Ph.D UNIVERSIDADE DO ALGARVE Departamento de Ciências Biomédicas e Medicina 2019 i ii A catalogue of Stress Granules’ Components: Implications for neurodegeneration Declaração de autoria de trabalho Declaro ser a autora deste trabalho, que é original e inédito. Autores e trabalhos consultados estão devidamente citados no texto e constam na listagem de referências incluída. I declare that I am the author of this work, that is original and unpublished. Authors and works consulted are properly cited in the text and included in the list of references. _______________________________ (Catarina Nunes) iii Copyright © 2019 Catarina Nunes A Universidade do Algarve reserva para si o direito, em conformidade com o disposto no Código do Direito de Autor e dos Direitos Conexos, de arquivar, reproduzir e publicar a obra, independentemente do meio utilizado, bem como de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição para fins meramente educacionais ou de investigação e não comerciais, conquanto seja dado o devido crédito ao autor e editor respetivos. iv Part of the results of this thesis were published in Nunes,C.; Mestre,I.; Marcelo,A. et al. MSGP: the first database of the protein components of the mammalian stress granules. Database (2019) Vol. 2019. (In annex A). v vi ACKNOWLEDGEMENTS A realização desta tese marca o final de uma etapa académica muito especial e que jamais irei esquecer.
    [Show full text]
  • Chapter 4 Prevention of Trichinella Infection in the Domestic
    FAO/WHO/OIE Guidelines for the surveillance, management, prevention and control of trichinellosis Editors J. Dupouy-Camet & K.D. Murrell Published by: Food and Agriculture Organization of the United Nations (FAO) World Health Organization (WHO) World Organisation for Animal Health (OIE) The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations, of the World Health Organization and of the World Organisation for Animal Health concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The designations 'developed' and 'developing' economies are intended for statistical convenience and do not necessarily express a judgement about the stage reached by a particular country, territory or area in the development process. The views expressed herein are those of the authors and do not necessarily represent those of the Food and Agriculture Organization of the United Nations, of the World Health Organization and of the World Organisation for Animal Health. All the publications of the World Organisation for Animal Health (OIE) are protected by international copyright law. Extracts may be copied, reproduced, translated, adapted or published in journals, documents, books, electronic media and any other medium destined for the public, for information, educational or commercial purposes, provided prior written permission has been granted by the OIE. The views expressed in signed articles are solely the responsibility of the authors. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO, WHO or OIE in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • C14orf166 (RTRAF) Mouse Monoclonal Antibody [Clone ID: OTI1E5] Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA804051 C14orf166 (RTRAF) Mouse Monoclonal Antibody [Clone ID: OTI1E5] Product data: Product Type: Primary Antibodies Clone Name: OTI1E5 Applications: IHC, WB Recommended Dilution: WB 1:2000, IHC 1:150 Reactivity: Human Host: Mouse Isotype: IgG2b Clonality: Monoclonal Immunogen: Full length human recombinant protein of human C14orf166 (NP_057123) produced in E.coli. Formulation: PBS (PH 7.3) containing 1% BSA, 50% glycerol and 0.02% sodium azide. Concentration: 1 mg/ml Purification: Purified from mouse ascites fluids or tissue culture supernatant by affinity chromatography (protein A/G) Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 27.9 kDa Gene Name: chromosome 14 open reading frame 166 Database Link: NP_057123 Entrez Gene 51637 Human Q9Y224 Synonyms: CGI-99; CGI99; CLE; CLE7; hCLE1; LCRP369; RLLM1 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 7 C14orf166 (RTRAF) Mouse Monoclonal Antibody [Clone ID: OTI1E5] – TA804051 Product images: HEK293T cells were transfected with the pCMV6- ENTRY control (Left lane) or pCMV6-ENTRY C14orf166 ([RC200016], Right lane) cDNA for 48 hrs and lysed. Equivalent amounts of cell lysates (5 ug per lane) were separated by SDS-PAGE and immunoblotted with anti-C14orf166. Positive lysates [LY414235] (100ug) and [LC414235] (20ug) can be purchased separately from OriGene.
    [Show full text]
  • RTRAF Mouse Monoclonal Antibody [Clone ID: OTI1B2] Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA804058 RTRAF Mouse Monoclonal Antibody [Clone ID: OTI1B2] Product data: Product Type: Primary Antibodies Clone Name: OTI1B2 Applications: IHC, WB Recommend Dilution: WB 1:2000, IHC 1:150 Reactivity: Human Host: Mouse Isotype: IgG1 Clonality: Monoclonal Immunogen: Full length human recombinant protein of human C14orf166 (NP_057123) produced in E.coli. Formulation: PBS (PH 7.3) containing 1% BSA, 50% glycerol and 0.02% sodium azide. Concentration: 1 mg/ml Purification: Purified from mouse ascites fluids or tissue culture supernatant by affinity chromatography (protein A/G) Predicted Protein Size: 27.9 kDa Gene Name: chromosome 14 open reading frame 166 Database Link: NP_057123 Entrez Gene 51637 Human Synonyms: CGI-99; CGI99; CLE; CLE7; hCLE1; LCRP369; RLLM1 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2020 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 4 RTRAF Mouse Monoclonal Antibody [Clone ID: OTI1B2] – TA804058 Product images: HEK293T cells were transfected with the pCMV6- ENTRY control (Left lane) or pCMV6-ENTRY C14orf166 ([RC200016], Right lane) cDNA for 48 hrs and lysed. Equivalent amounts of cell lysates (5 ug per lane) were separated by SDS-PAGE and immunoblotted with anti-C14orf166. Positive lysates [LY414235] (100ug) and [LC414235] (20ug) can be purchased separately from OriGene. Immunohistochemical staining of paraffin- embedded Adenocarcinoma of Human breast tissue using anti-C14orf166 mouse monoclonal antibody.
    [Show full text]
  • In-Depth Proteomic Pro Ling Captures Subtype- Speci C Features Of
    In-depth Proteomic Proling Captures Subtype- specic Features of Craniopharyngiomas Jung Hee Kim Seoul National University Hospital Hyeyoon Kim Biomedical Research Institute, Seoul National University Hospital Kisoon Dan Biomedical Research Institute, Seoul National University Hospital Seong-Ik Kim Seoul National University Hospital Sung-Hye Park Seoul National University Hospital Dohyun Han Biomedical Research Institute, Seoul National University Hospital Yong Hwy Kim ( [email protected] ) Seoul National University Hospital Research Article Keywords: craniopharyngioma, proteomics, bioinformatics Posted Date: July 7th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-666783/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/24 Abstract Purpose: Craniopharyngiomas are rare epithelial tumors derived from pituitary gland embryonic tissue. This epithelial tumor can be categorized as an adamantinomatous craniopharyngioma (ACP) or papillary craniopharyngioma (PCP) subtype with histopathological and genetic differences. Genomic and transcriptomic proles of craniopharyngiomas have been investigated; however, the proteomic prole has yet to be elucidated and added to these proles. Recent improvements in high-throughput quantitative proteomic approaches have introduced new opportunities for a better understanding of these diseases and the ecient discovery of biomarkers. We aimed to conrm subtype-associated proteomic changes between ACP and PCP specimens. Methods: We performed a system-level proteomic study using an integrated approach that combines mass spectrometry-based quantitative proteomic, statistical, and bioinformatics analyses. Results: The bioinformatics analysis showed that differentially expressed proteins between ACP and PCP were signicantly involved in mitochondrial organization, fatty acid metabolic processes, exocytosis, the inammatory response, the cell cycle, RNA splicing, cell migration, and neuron development.
    [Show full text]
  • Variation in Protein Coding Genes Identifies Information Flow
    bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 1 1 2 3 4 5 Variation in protein coding genes identifies information flow as a contributor to 6 animal complexity 7 8 Jack Dean, Daniela Lopes Cardoso and Colin Sharpe* 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Institute of Biological and Biomedical Sciences 25 School of Biological Science 26 University of Portsmouth, 27 Portsmouth, UK 28 PO16 7YH 29 30 * Author for correspondence 31 [email protected] 32 33 Orcid numbers: 34 DLC: 0000-0003-2683-1745 35 CS: 0000-0002-5022-0840 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Abstract bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 2 1 Across the metazoans there is a trend towards greater organismal complexity. How 2 complexity is generated, however, is uncertain. Since C.elegans and humans have 3 approximately the same number of genes, the explanation will depend on how genes are 4 used, rather than their absolute number.
    [Show full text]
  • Parasitology JWST138-Fm JWST138-Gunn February 21, 2012 16:59 Printer Name: Yet to Come P1: OTA/XYZ P2: ABC
    JWST138-fm JWST138-Gunn February 21, 2012 16:59 Printer Name: Yet to Come P1: OTA/XYZ P2: ABC Parasitology JWST138-fm JWST138-Gunn February 21, 2012 16:59 Printer Name: Yet to Come P1: OTA/XYZ P2: ABC Parasitology An Integrated Approach Alan Gunn Liverpool John Moores University, Liverpool, UK Sarah J. Pitt University of Brighton, UK Brighton and Sussex University Hospitals NHS Trust, Brighton, UK A John Wiley & Sons, Ltd., Publication JWST138-fm JWST138-Gunn February 21, 2012 16:59 Printer Name: Yet to Come P1: OTA/XYZ P2: ABC This edition first published 2012 © 2012 by by John Wiley & Sons, Ltd Wiley-Blackwell is an imprint of John Wiley & Sons, formed by the merger of Wiley’s global Scientific, Technical and Medical business with Blackwell Publishing. Registered Office John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Offices 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030-5774, USA For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell. The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.
    [Show full text]
  • Systematics and Epidemiology of Trichinella
    Systematics and Epidemiology of Trichinella Edoardo Pozio1 and K. Darwin Murrell2 1Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanita`, viale Regina Elena 299, 00161 Rome, Italy 2Danish Centre for Experimental Parasitology, Department of Veterinary Pathobiology, Royal Veterinary and Agricultural University, Frederiksberg, Denmark Abstract ...................................368 1. Introduction . ...............................368 1.1. Trichinella as a Model for Basic Research ..........370 1.2. History of Trichinella Taxonomy .................370 2. Advances in the Systematics of Trichinella .............373 2.1. Biochemical and Molecular Studies ...............374 2.2. The Polymerase Chain Reaction Era . ...........375 2.3. Current Methods for Trichinella spp. identification . .....376 3. The Taxonomy of the Genus ......................377 3.1. The Encapsulated Clade......................378 3.2. The Non-Encapsulated Clade ..................388 4. Phylogeny . ...............................392 5. Biogeography. ...............................393 6. Epidemiology . ...............................396 6.1. The Sylvatic Cycle .........................397 6.2. The Domestic Cycle ........................403 6.3. Trichinellosis in Humans......................408 7. A New Approach: Trichinella-free Areas or Farms. Is it Possible? . ...............................413 8. Concluding Remarks . .........................416 Acknowledgements . .........................417 References . ...............................417
    [Show full text]
  • Systematic Interrogation of Human Promoters
    Downloaded from genome.cshlp.org on October 7, 2021 - Published by Cold Spring Harbor Laboratory Press Research Systematic interrogation of human promoters Shira Weingarten-Gabbay,1,2,3,4 Ronit Nir,1,2,3,5 Shai Lubliner,1,2 Eilon Sharon,1,2,6,7 Yael Kalma,1,2,8 Adina Weinberger,1,2 and Eran Segal1,2 1Department of Computer Science and Applied Mathematics, 2Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel Despite much research, our understanding of the architecture and cis-regulatory elements of human promoters is still lack- ing. Here, we devised a high-throughput assay to quantify the activity of approximately 15,000 fully designed sequences that we integrated and expressed from a fixed location within the human genome. We used this method to investigate thou- sands of native promoters and preinitiation complex (PIC) binding regions followed by in-depth characterization of the se- quence motifs underlying promoter activity, including core promoter elements and TF binding sites. We find that core promoters drive transcription mostly unidirectionally and that sequences originating from promoters exhibit stronger ac- tivity than those originating from enhancers. By testing multiple synthetic configurations of core promoter elements, we dissect the motifs that positively and negatively regulate transcription as well as the effect of their combinations and distanc- es, including a 10-bp periodicity in the optimal distance between the TATA and the initiator. By comprehensively screening 133 TF binding sites, we find that in contrast to core promoters, TF binding sites maintain similar activity levels in both ori- entations, supporting a model by which divergent transcription is driven by two distinct unidirectional core promoters shar- ing bidirectional TF binding sites.
    [Show full text]