Multicriteria-Based Ranking for Risk Management of Food-Borne

Total Page:16

File Type:pdf, Size:1020Kb

Multicriteria-Based Ranking for Risk Management of Food-Borne MICROBIOLOGICAL RISK ASSESSMENT SERIES ISSN 1726-5274 23 Multicriteria-based ranking for risk management of food-borne parasites For further information on the joint FAO/WHO Activities on microbiological risk assessment, please contact: Food Safety and Codex Unit Food and Agriculture Organization of the United Nations Infectious diseases caused by food-borne parasites have not received Viale delle Terme di Caracalla the same level of attention as other food-borne biological and chemical 00153 Rome, Italy hazards. Nevertheless, they cause a high burden of disease in humans, may have prolonged, severe, and sometimes fatal outcomes, Publications of the World Health Organization and result in considerable hardship Fax: +39 06 57054593 can be obtained from: negative E-mail: [email protected] WHO Press Web site: http://www.fao.org/food/food-bysa fanimalsety-qua liorty World Health Organization, 20 Avenue Appia 1211 Geneva 27, Switzerland do not capture the true or Tel: +41 22 7913264 Fax: +41 22 7914857 a E-mail: [email protected] or Department of Food Safety and Zoonoses on the Internet from http://www.who.int/bookorders World Health Organization 20 Avenue Appia te-commodity 1211 Geneva 27 Publications of the Food and Agriculture Organization of the United Nations Switzerland can be purchased from: Fax: +41 22 7914807 this Sales and Marketing Group, E-mail: [email protected] Alimentarius Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla, 00153 Rome, Italy Web site: http://www.who.int/foodsaindividualsfety Fax: +39 06 57053360 E-mail: [email protected] or on the Internet from http://www.fao.org/icatalog/inter-e.htm Cover design: Food and Agriculture Organization of the United Nations and the World Health Organization Cover picture: © Dennis Kunkel Microscopy, Inc. MRAbookCover23.indd 1 07/04/14 15:49 For further information on the joint FAO/WHO Activities on microbiological risk assessment, please contact: Food Safety and Codex Unit Food and Agriculture Organization of the United Nations Infectious diseases caused by food-borne parasites have not received Viale delle Terme di Caracalla the same level of attention as other food-borne biological and chemical 00153 Rome, Italy hazards. Nevertheless, they cause a high burden of disease in humans, may have prolonged, severe, and sometimes fatal outcomes, Publications of the World Health Organization and result in considerable hardship Fax: +39 06 57054593 can be obtained from: negative E-mail: [email protected] WHO Press Web site: http://www.fao.org/food/food-bysa fanimalsety-qua liorty World Health Organization, 20 Avenue Appia 1211 Geneva 27, Switzerland do not capture the true or Tel: +41 22 7913264 Fax: +41 22 7914857 a E-mail: [email protected] or Department of Food Safety and Zoonoses on the Internet from http://www.who.int/bookorders World Health Organization 20 Avenue Appia te-commodity 1211 Geneva 27 Publications of the Food and Agriculture Organization of the United Nations Switzerland can be purchased from: Fax: +41 22 7914807 this Sales and Marketing Group, E-mail: [email protected] Alimentarius Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla, 00153 Rome, Italy Web site: http://www.who.int/foodsaindividualsfety Fax: +39 06 57053360 E-mail: [email protected] or on the Internet from http://www.fao.org/icatalog/inter-e.htm Cover design: Food and Agriculture Organization of the United Nations and the World Health Organization Cover picture: © Dennis Kunkel Microscopy, Inc. MRAbookCover23.indd 1 07/04/14 15:49 MICROBIOLOGICAL RISK ASSESSMENT SERIES 23 Multicriteria-based ranking for risk management of food-borne parasites Report of a Joint FAO/WHO Expert Meeting, 3–7 September 2012, FAO Headquarters, Rome, Italy Food and Agriculture Organization of the United Nations World Health Organization 2014 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) or of the World Health Organization (WHO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these are or have been endorsed or recommended by FAO or WHO in preference to others of a similar nature that are not mentioned. All reasonable precautions have been taken by FAO and WHO to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall FAO and WHO be liable for damages arising from its use. WHO Library Cataloguing-in-Publication Data: Multicriteria-based ranking for risk management of food-borne parasites: report of a Joint FAO/ WHO Expert Meeting, 3-7 September 2012, FAO Headquarters, Rome, Italy. 1.Food contamination. 2.Food parasitology. 3.Parasites. 4.Risk management – methods. I.World Health Organization. II.Food and Agriculture Organization of the United Nations. ISBN 978 92 4 156470 0 (WHO) (NLM classification: WA 701) ISBN 978-92-5-108199-0 (print) (FAO) E-ISBN 978-92-5-108200-3 (PDF) (FAO) ISSN 1726-5274 Recommended citation: FAO/WHO [Food and Agriculture Organization of the United Nations/World Health Organization]. 2014. Multicriteria-based ranking for risk management of food-borne parasites. Microbiological Risk Assessment Series No. 23. Rome. 302pp FAO and WHO encourage the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO and WHO as the source and copyright holder is given and that their endorsement of users’ views, products or services is not implied in any way. All requests for translation and adaptation rights, and for resale and other commercial use rights should be made via www.fao.org/contact-us/licencerequest or addressed to [email protected]. FAO information products are available on the FAO website (www.fao.org/publications) and can be purchased through [email protected]. © FAO/WHO 2014 Contents Acknowledgments x Contributors xi Abbreviations used in the report xiv Executive Summary xv 1 Background 1 2 Objectives and approach 4 2.1 Identification of parasites 7 2.2 Definition of primary and secondary parasite and food pathways 7 2.3 Definition of criteria for parasite scoring 8 2.4 Scoring parasites according to criteria 11 2.5 Definition of criteria weights 12 2.6 Calculation of parasite scores 13 3 Results 14 3.1 The global ranking of food-borne parasites 3.2 Trade scores for the ranked parasites 14 3.3 Socio-economic impacts for the ranked parasites 18 3.4 Conclusions 20 4 Risk management options for the higher ranked parasites 23 4.1 General risk management considerations 23 4.2 Generic risk management options 24 4.3 Some specific considerations for risk management 26 5 Conclusions and recommendations 32 References 35 ANNEXES Annex 1 Identification of food-borne parasites for consideration 40 Annex 2 Food-borne parasite ranking exercise: summary card 44 Annex 3 Food-borne parasite ranking exercise form: explanation of criteria 45 Criterion No. 1. Number of global food-borne illnesses 45 Criterion No. 2. Geographical distribution (endemic regions) 46 Criterion No. 3. Acute Morbidity Severity 47 Criterion No. 4. Chronic Morbidity Severity 48 Criterion No. 5. Fraction chronic 49 Criterion No. 6. Mortality rate 50 Criterion No. 7. Increasing trend in disease 50 Criterion No. 8. International trade 50 Criterion No. 9. Distributional impacts (socio-economic impact) 51 Criterion No. 10. Quality of evidence 52 Comments 52 References 52 Annex 4. Criteria weights worksheet 53 Annex 5. Sensitivity analysis 54 Annex 6. Risk management actions 62 Annex 7. Specific information for the ranked parasites 63 A7.1 Anisakidae and anisakiasis 63 General information 63 Geographical distribution 63 Disease 64 Trade relevance 65 Impact on economically vulnerable populations 65 References 65 A7.2 Ascaris spp. 66 General information 66 Geographical distribution 67 Disease 67 Trade relevance 68 Impact on economically vulnerable populations 68 Other relevant information 68 References 69 A7.3 Balantidium coli 70 General information 70 Geographical distribution 70 Disease 70 iv Trade relevance 71 Impact on economically vulnerable populations 71 References 71 A7.4 Cryptosporidium spp. 72 General information 72 Geographical distribution 73 Disease 74 Trade relevance 74 Impact on economically vulnerable populations 74 References 75 A7.5 Cyclospora cayetanensis 77 General information 77 Geographical distribution 78 Disease 78 Trade relevance and impact on economically vulnerable populations 79 References 79 A7.6 Diphyllobothrium spp. 82 General information 82 Geographical distribution 82 Disease 83 Trade relevance 84 Impact on economically vulnerable populations 84 Other relevant information 84 References 84 A7.7 Echinococcus granulosus 88 General information 88 Geographical distribution 89 Disease 89 Trade relevance of cystic echinococcosis 90 Impact of CE on economically vulnerable
Recommended publications
  • Hung:Makieta 1.Qxd
    DOI: 10.2478/s11686-013-0155-5 © W. Stefan´ski Institute of Parasitology, PAS Acta Parasitologica, 2013, 58(3), 231–258; ISSN 1230-2821 INVITED REVIEW Global status of fish-borne zoonotic trematodiasis in humans Nguyen Manh Hung1, Henry Madsen2* and Bernard Fried3 1Department of Parasitology, Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam; 2Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871 Frederiksberg C, Denmark; 3Department of Biology, Lafayette College, Easton, PA 18042, United States Abstract Fishborne zoonotic trematodes (FZT), infecting humans and mammals worldwide, are reviewed and options for control dis- cussed. Fifty nine species belonging to 4 families, i.e. Opisthorchiidae (12 species), Echinostomatidae (10 species), Hetero- phyidae (36 species) and Nanophyetidae (1 species) are listed. Some trematodes, which are highly pathogenic for humans such as Clonorchis sinensis, Opisthorchis viverrini, O. felineus are discussed in detail, i.e. infection status in humans in endemic areas, clinical aspects, symptoms and pathology of disease caused by these flukes. Other liver fluke species of the Opisthorchiidae are briefly mentioned with information about their infection rate and geographical distribution. Intestinal flukes are reviewed at the family level. We also present information on the first and second intermediate hosts as well as on reservoir hosts and on habits of human eating raw or undercooked fish. Keywords Clonorchis, Opisthorchis, intestinal trematodes, liver trematodes, risk factors Fish-borne zoonotic trematodes with feces of their host and the eggs may reach water sources such as ponds, lakes, streams or rivers.
    [Show full text]
  • Molecular Detection of Human Parasitic Pathogens
    MOLECULAR DETECTION OF HUMAN PARASITIC PATHOGENS MOLECULAR DETECTION OF HUMAN PARASITIC PATHOGENS EDITED BY DONGYOU LIU Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2013 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20120608 International Standard Book Number-13: 978-1-4398-1243-3 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc.
    [Show full text]
  • Succinate Dehydrogenase Activity in Unembryonated Eggs, Embryonated Eggs, Miracidia and Metacercariae of Some Flukes
    THE KURUME MEDICAL JOURNAL 1973 Vol.20, No.4, P.241-250 SUCCINATE DEHYDROGENASE ACTIVITY IN UNEMBRYONATED EGGS, EMBRYONATED EGGS, MIRACIDIA AND METACERCARIAE OF SOME FLUKES MINORU AKUSAWA Department of Parasitology, Kurume University School of Medicine, Kurume, Japan KYOKO SAITO Department of Chemistry, Nippon Veterinary and Zootechnical . College, Musashino, Tokyo, Japan (Received for publication December 3, 1973) The authors examined the activity of succinate dehydrogenase (SD) in Fasciola hepatica and Paragonimus westermani with the stages in develop- ment from cell division egg to metacercaria. As a result of this experiment, in the unicellular stages and miracidium stages of F. hepatica and P. wester- mani, a very slight SD activity was detected. However, in the miracidium formation stages of these flukes, the activity was very strong. Thus, it was clear that the reduction of methylene blue decreased suddenly from the highest value when metamorphosis occurred. It was suggested that respira- tory metabolism rises with the progress of development and ability to decolorize methylene blue in creases. In the metacercaria stages of F. hepatica, P. westermani, Metagonimus yokogawai, the ability to decolorize methylene blue was persistent, but it was not so strong. During the time, so called hibernation time, when metacercaria invades into final host, meta- cercaria keeps metabolism of respiration as low as possible, and saves consumption of energy for maintenance of life. Metacercaria has biological function for parasitism. Biological studies have been made on has been already found in some flukes the development of the flukes as speci- (Huang and Chu, 1962; Bryant and Wil- mens. Accordingly, all the life history liams, 1962; Barry et al., 1968; Hamaji- has been clarified in these flukes up to ma, 1972, 1973).
    [Show full text]
  • REVEALING BIOTIC DIVERSITY: HOW DO COMPLEX ENVIRONMENTS INFLUENCE HUMAN SCHISTOSOMIASIS in a HYPERENDEMIC AREA Martina R
    University of New Mexico UNM Digital Repository Biology ETDs Electronic Theses and Dissertations Spring 5-9-2018 REVEALING BIOTIC DIVERSITY: HOW DO COMPLEX ENVIRONMENTS INFLUENCE HUMAN SCHISTOSOMIASIS IN A HYPERENDEMIC AREA Martina R. Laidemitt Follow this and additional works at: https://digitalrepository.unm.edu/biol_etds Recommended Citation Laidemitt, Martina R.. "REVEALING BIOTIC DIVERSITY: HOW DO COMPLEX ENVIRONMENTS INFLUENCE HUMAN SCHISTOSOMIASIS IN A HYPERENDEMIC AREA." (2018). https://digitalrepository.unm.edu/biol_etds/279 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Martina Rose Laidemitt Candidate Department of Biology Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Dr. Eric S. Loker, Chairperson Dr. Jennifer A. Rudgers Dr. Stephen A. Stricker Dr. Michelle L. Steinauer Dr. William E. Secor i REVEALING BIOTIC DIVERSITY: HOW DO COMPLEX ENVIRONMENTS INFLUENCE HUMAN SCHISTOSOMIASIS IN A HYPERENDEMIC AREA By Martina R. Laidemitt B.S. Biology, University of Wisconsin- La Crosse, 2011 DISSERT ATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biology The University of New Mexico Albuquerque, New Mexico July 2018 ii ACKNOWLEDGEMENTS I thank my major advisor, Dr. Eric Samuel Loker who has provided me unlimited support over the past six years. His knowledge and pursuit of parasitology is something I will always admire. I would like to thank my coauthors for all their support and hard work, particularly Dr.
    [Show full text]
  • Vet February 2017.Indd 85 30/01/2017 09:32 SMALL ANIMAL I CONTINUING EDUCATION
    CONTINUING EDUCATION I SMALL ANIMAL Trematodes in farm and companion animals The comparative aspects of parasitic trematodes of companion animals, ruminants and humans is presented by Maggie Fisher BVetMed CBiol MRCVS FRSB, managing director and Peter Holdsworth AO Bsc (Hon) PhD FRSB FAICD, senior manager, Ridgeway Research Ltd, Park Farm Building, Gloucestershire, UK Trematodes are almost all hermaphrodite (schistosomes KEY SPECIES being the exception) flat worms (flukes) which have a two or A number of trematode species are potential parasites of more host life cycle, with snails featuring consistently as an dogs and cats. The whole list of potential infections is long intermediate host. and so some representative examples are shown in Table Dogs and cats residing in Europe, including the UK and 1. A more extensive list of species found globally in dogs Ireland, are far less likely to acquire trematode or fluke and cats has been compiled by Muller (2000). Dogs and cats infections, which means that veterinary surgeons are likely are relatively resistant to F hepatica, so despite increased to be unconfident when they are presented with clinical abundance of infection in ruminants, there has not been a cases of fluke in dogs or cats. Such infections are likely to be noticeable increase of infection in cats or dogs. associated with a history of overseas travel. In ruminants, the most important species in Europe are the In contrast, the importance of the liver fluke, Fasciola liver fluke, F hepatica and the rumen fluke, Calicophoron hepatica to grazing ruminants is evident from the range daubneyi (see Figure 1).
    [Show full text]
  • WHO CC Web Fac.Farm V.Ingles
    WHO COLLABORATING CENTRE ON FASCIOLIASIS AND ITS SNAIL VECTORS Reference of the World Health Organization (WHO/OMS): WHO CC SPA-37 Date of Nomination: 31 of March of 2011 Last update of the contents of this website: 28 of January of 2014 DESIGNATED CENTRE: Human Parasitic Disease Unit (Unidad de Parasitología Sanitaria) Departamento de Parasitología Facultad de Farmacia Universidad de Valencia Av. Vicent Andres Estelles s/n 46100 Burjassot - Valencia Spain DESIGNATED DIRECTOR OF THE CENTRE: Prof. Dr. Dr. Honoris Causa SANTIAGO MAS-COMA Parasitology Chairman WHO RESPONSIBLE OFFICER: Dr. DIRK ENGELS Coordinator, Preventive Chemotherapy and Transmission Control (HTM/NTD/PCT) (appointed as the new Director of the Department of Control of Neglected Tropical Diseases from 1 May 2014) Department of Control of Neglected Tropical Diseases (NTD) World Health Organization WHO Headquarters Avenue Appia No. 20 1211 Geneva 27 Switzerland RESEARCH GROUPS, LEADERS AND ACTIVITIES The Research Team designated as WHO CC comprises the following three Research Groups, Leaders and respective endorsed tasks: A) Research Group on (a) Epidemiology and (b) Control: Group Leader (research responsible): Prof. Dr. Dr. Honoris Causa SANTIAGO MAS-COMA Parasitology Chairman (Email: S. [email protected]) Activities: - Studies on the disease epidemiology in human fascioliasis endemic areas of Latin America, Europe, Africa and Asia - Implementation and follow up of disease control interventions against fascioliasis in human endemic areas B) Research Group on c) Transmission and d) Vectors: Group Leader (research responsible): Prof. Dra. MARIA DOLORES BARGUES Parasitology Chairwoman (Email: [email protected]) Activities: - Molecular, genetic and malacological characterization of lymnaeid snails - Studies on the transmission characteristics of human fascioliasis and the human infection ways in human fascioliasis endemic areas C) Research Group on e) Diagnostics and f) Immunopathology: Group Leader (research responsible): Prof.
    [Show full text]
  • Diplomarbeit
    DIPLOMARBEIT Titel der Diplomarbeit „Microscopic and molecular analyses on digenean trematodes in red deer (Cervus elaphus)“ Verfasserin Kerstin Liesinger angestrebter akademischer Grad Magistra der Naturwissenschaften (Mag.rer.nat.) Wien, 2011 Studienkennzahl lt. Studienblatt: A 442 Studienrichtung lt. Studienblatt: Diplomstudium Anthropologie Betreuerin / Betreuer: Univ.-Doz. Mag. Dr. Julia Walochnik Contents 1 ABBREVIATIONS ......................................................................................................................... 7 2 INTRODUCTION ........................................................................................................................... 9 2.1 History ..................................................................................................................................... 9 2.1.1 History of helminths ........................................................................................................ 9 2.1.2 History of trematodes .................................................................................................... 11 2.1.2.1 Fasciolidae ................................................................................................................. 12 2.1.2.2 Paramphistomidae ..................................................................................................... 13 2.1.2.3 Dicrocoeliidae ........................................................................................................... 14 2.1.3 Nomenclature ...............................................................................................................
    [Show full text]
  • Heterophyid (Trematoda) Parasites of Cats in North Thailand, with Notes on a Human Case Found at Necropsy
    HETEROPHYID (TREMATODA) PARASITES OF CATS IN NORTH THAILAND, WITH NOTES ON A HUMAN CASE FOUND AT NECROPSY MICHAEL KUKS and TAVIPAN TANTACHAMRDN Department of Parasitology and Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. INTRODUCTION man in the Asian Pacific region, the Middle East and Australia (Noda, 1959; Alicata, Due to their tolerence of a broad range of 1964; Pearson, 1964) and were first described hosts, heterophyid flukes not uncommonly from man by Africa and Garcia (1935) in the are able to develop to maturity in man. Little Philippines and later by Alicata and Schat­ is known of the life histories of most hetero­ ten burg (1938) in Hawaii. Ching (1961) phyids in their snail hosts. Most undergo the examined stools of 1,380 persons in Hawaii metacercarial stage in marine and fresh-water and found 7.6% of Filipinos and native Ha­ fish which are ingested by the definitive hosts, waiians to be infected with S. falcatus. As the a variety of birds and mammals (Yamaguti, ova of heterophyid flukes superficially resem­ 1958; Pearson, 1964). Human infection can ble those of Opisthorchis, and ClonorchiS, occur wherever fish are eaten raw or partially many heterophyid infections have been as­ cooked. In Thailand, Manning et al., (1971) signed erroneously to the common liver reported finding Haplorchis yokogawai and flukes. Despite numerous stool surveys, S. H. taichui adults in several human autopsies falcatus has not been previously detected in in Northeast Thailand. The intermediate Thailand in man or animals. The present hosts were not determined. There are no paper reports the finding of S.
    [Show full text]
  • (Liver) Flukes Intestinal Flukes Lung Flukes F
    HEPATIC (LIVER) FLUKES INTESTINAL FLUKES LUNG FLUKES F. Gigantica & F.Hepatica Fasciolopsis Buski (LI) Heterophyes Heterophyes Paragonimus Westermani Distribution common parasite of common in Far East especially in Common around brackish watr lakes (North Far East especially in Japan, Korea herbivorous animals. China. Egypt, Far East) and Taiwan. Human infection reported from many regions including Egypt , Africa & Far East . Adult morphology Size & shape - Large fleshy leaf like worm largest trematode parasite to Like trematodes (flattened) Ovoidal, thick, reddish brown. - 3-7 cm infect man Elongated, pyriform/ pear shape. Cuticles is covered w spines - Lateral borders are parallel. 7× 2cm. Rounded posterior end Rounded anteriorly oval in shape covered with small Pointed anterior end Tapering posteriorly spines. some scales like spines cover the 1cm x 5mm thickness cuticle especially anteriorly , help to “pin” the parasite between the villi of small intestine where it lives 1.5 – 3mm x 0.5mm Suckers Oral s. smaller than vs No cephalic cone, the oral sucker Small oral sucker Oral & ventral suckers are equal is ¼ the ventral sucker Larger ventral sucker Digestive intestinal caeca have compound two simple undulating intestinal Simple intestinal caeca Simple tortous blind intestinal system lateral branches and medial caeca. caeca extending posteriorly branches T and Y shaped. Genital system Testes 2 branched middle of the body in Two branched testes in the Two ovoid in the posterior part of the body. (Hermaphrodite) front of each other. posterior half Deeply lobed situated nearly side by side Ovary Branched & anterolateral to testes. A branched ovary in the middle single globular in front of the testes.
    [Show full text]
  • (Digenea, Platyhelminthes)1 Authors: Sean
    bioRxiv preprint doi: https://doi.org/10.1101/333518; this version posted May 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Title: Nuclear and mitochondrial phylogenomics of the Diplostomoidea and Diplostomida 2 (Digenea, Platyhelminthes)1 3 Authors: Sean A. Lockea,*, Alex Van Dama, Monica Caffarab, Hudson Alves Pintoc, Danimar 4 López-Hernándezc, Christopher Blanard 5 aUniversity of Puerto Rico at Mayagüez, Department of Biology, Box 9000, Mayagüez, Puerto 6 Rico 00681–9000 7 bDepartment of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Via 8 Tolara di Sopra 50, 40064 Ozzano Emilia (BO), Italy 9 cDepartament of Parasitology, Instituto de Ciências Biológicas, Universidade Federal de Minas 10 Gerais, Belo Horizonte, Minas Gerais, Brazil. 11 dNova Southeastern University, 3301 College Avenue, Fort Lauderdale, Florida, USA 33314- 12 7796. 13 *corresponding author: University of Puerto Rico at Mayagüez, Department of Biology, Box 14 9000, Mayagüez, Puerto Rico 00681–9000. Tel:. +1 787 832 4040x2019; fax +1 787 265 3837. 15 Email [email protected] 1 Note: Nucleotide sequence data reported in this paper will be available in the GenBank™ and EMBL databases, and accession numbers will be provided by the time this manuscript goes to press. 1 bioRxiv preprint doi: https://doi.org/10.1101/333518; this version posted May 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Game Meat: Health Assessment of Human-Pathogenic Parasites
    Bundesinstitut für Risikobewertung www.bfr.bund.de DOI 10.17590/20190627-084353 Game meat: health assessment of human-pathogenic parasites BfR Opinion No. 045/2018, 21 December 2018 Meat of game living in the wild, such as deer, roe deer and boar, is rich in nutrients, low in fat and commonly sustainably sourced. It may, however, contain parasites that can make people ill if the meat has not been prepared in a hygienically flawless manner. There are often un- certainties in the hygienic assessment of meat from hunted game – for example in case of parasite infestation, regarding localization of parasite infestation sites within the animal car- cass. These uncertainties are also due to the limited amount of data on these specific patho- gens in game. The German Federal Institute for Risk Assessment (BfR) has therefore con- ducted an evaluation of own and existing data in order to determine the game species and specific organs respectively in which the parasites listed below have been detected and on the frequency of infestation occurrence. The BfR has used this information to assess the risk of contracting a parasitic disease from consumption of game meat and has put together rec- ommendations on how consumers can avoid such illnesses. In its health assessment, the BfR has considered game species only, whose meat and prod- ucts made from their meat are typically consumed, namely boar, deer, roe deer and fallow deer. Acquired data sets on consumption of game meat show that both adults and children in Germany consume game meat only rarely and only in small quantities.
    [Show full text]
  • AFSSA1 on the Risk to Public Health Associated with the Presence of This Parasite in Wild Boar Meat (Opinion 2007-SA-0008) Was Issued on 14 September 2007
    ANSES Opinion Request No 2015-SA-0052 Related Request no. 2007-SA-008 The Director General Maisons-Alfort, 16 December 2015 OPINION of the French Agency for Food, Environmental and Occupational Health & Safety on the presence of mesocercarial parasites of the trematode Alaria alata in wild boar meat ANSES undertakes independent and pluralistic scientific expert assessments. ANSES's public health mission involves ensuring environmental, occupational and food safety as well as assessing the potential health risks they may entail. It also contributes to the protection of the health and welfare of animals, the protection of plant health and the evaluation of the nutritional characteristics of food. It provides the competent authorities with the necessary information concerning these risks as well as the requisite expertise and technical support for drafting legislative and statutory provisions and implementing risk management strategies (Article L.1313-1 of the French Public Health Code). Its opinions are made public. This opinion is a translation of the original French version. In the event of any discrepancy or ambiguity the French language text dated 16 December 2015 shall prevail. On 26 February 2015 the French Agency for Food, Environmental and Occupational Health & Safety received a formal request from the Directorate General for Food for an opinion on the presence of mesocercarial parasites of the trematode Alaria alata in wild boar meat. 1. BACKGROUND AND PURPOSE OF THE REQUEST Screening for Trichinella in wild boar carcasses sometimes reveals larvae of the trematode Alaria alata. A first opinion by AFSSA1 on the risk to public health associated with the presence of this parasite in wild boar meat (Opinion 2007-SA-0008) was issued on 14 September 2007.
    [Show full text]