(Liver) Flukes Intestinal Flukes Lung Flukes F

Total Page:16

File Type:pdf, Size:1020Kb

(Liver) Flukes Intestinal Flukes Lung Flukes F HEPATIC (LIVER) FLUKES INTESTINAL FLUKES LUNG FLUKES F. Gigantica & F.Hepatica Fasciolopsis Buski (LI) Heterophyes Heterophyes Paragonimus Westermani Distribution common parasite of common in Far East especially in Common around brackish watr lakes (North Far East especially in Japan, Korea herbivorous animals. China. Egypt, Far East) and Taiwan. Human infection reported from many regions including Egypt , Africa & Far East . Adult morphology Size & shape - Large fleshy leaf like worm largest trematode parasite to Like trematodes (flattened) Ovoidal, thick, reddish brown. - 3-7 cm infect man Elongated, pyriform/ pear shape. Cuticles is covered w spines - Lateral borders are parallel. 7× 2cm. Rounded posterior end Rounded anteriorly oval in shape covered with small Pointed anterior end Tapering posteriorly spines. some scales like spines cover the 1cm x 5mm thickness cuticle especially anteriorly , help to “pin” the parasite between the villi of small intestine where it lives 1.5 – 3mm x 0.5mm Suckers Oral s. smaller than vs No cephalic cone, the oral sucker Small oral sucker Oral & ventral suckers are equal is ¼ the ventral sucker Larger ventral sucker Digestive intestinal caeca have compound two simple undulating intestinal Simple intestinal caeca Simple tortous blind intestinal system lateral branches and medial caeca. caeca extending posteriorly branches T and Y shaped. Genital system Testes 2 branched middle of the body in Two branched testes in the Two ovoid in the posterior part of the body. (Hermaphrodite) front of each other. posterior half Deeply lobed situated nearly side by side Ovary Branched & anterolateral to testes. A branched ovary in the middle single globular in front of the testes. Large, lobed situated behind the of the body. ventral sucker. Uterus lies opposite to it Vitelline Branching lateral fields. few, large follicles on both sides in the Highly branched follicles & extend glands posterior third of the body. along the lateral fields of body worm genital pore in front of ventral sucker. open in the genital sucker nutrition: feed on biliary secretion (Posterolateral to ventral sucker) Thug’s LIFE CYCLE HEPATIC (LIVER) FLUKES INTESTINAL FLUKES LUNG FLUKES F. Gigantica & F.Hepatica Fasciolopsis Buski (LI) Heterophyes Heterophyes Paragonimus Westermani Habitat liver, in bile ducts of man & cattle. The adult fluke lives in the small Small Intestine (dep btwn villi) Worms generally live in pairs intestine encapsulated in pockets of lungs Definitive H man and animals (sexual Man. Man Man multiplication). Intermediate Snail, Lymnea cailliaudi snail segmentina hemispharula Paratenic Host 1st: snail Melania & semisulcospira H in China 2nd: crustaceans (crabs & crayfish) Reservoir H Herbivourous animals as cattle & Pigs, dogs Fish eating animals Dog, fox, wolf, tiger & pigs camels (zoonosis) Diagnostic Immature eggs in feces stage Infective stage Encysted metacercaria (EM) in water Encysted metacercaria on edible EM in fish muscle & on aquatic plants. water plants. Mode of ingestion of EM on aquatic plants Ingestion of contaminated Ingestion EM in undercooked/unsalted fish infection (lettuce, water cress) or in water. aquatic vegetations (caltrop & (Tilapia/Mungil) chestnut) Cercaria Cercaria: Leptocercous cercaria Cercariae come out of snail and get lodged between muscles, secrets a cyst microcercous with a knob like tail. Body : swim in water searching for their wall for protection and called encysted The released cercariae penetrate 2 suckers, primitive gut, excretory transport host (Mugil and Tilapia metacercariae. They need 2-3 weeks to the crustaceans second I.H (crabs system, & cystogenous glands that = Boury and Bolty) fish (the 2nd become infective. and crayfish) then develop into secrete the cyst wall. (0.3 mm) I.H.) penetrate its skin lose the metacercariae (infective stage) Tail : simple tail (0.7 mm). tail Body: 2 suckers, primitive gut, 2 dark eye spots, 7 pairs of penetration glands. Thug’s 1. HEPATIC (LIVER) FLUKES DISEASE: FASCIOLIASIS Pathology: mechanical + toxic irritation (necrosis & fibrosis) Abdominal pain, Peritonitis & tender hepatomegaly (pain in Rt. Hypochondrium) Liver rot : this condition occurs by mechanical and toxic destruction of Fever, oesinophilia (early, 60%), jaundice. liver tissue by passage of large number of immature worms through the liver tissue leads to necrosis, fibrosis , hepatitis. Halzoun: Pharyngeal fascioliasis False fascioliasis (Spurious infection) Ectopic fascioliasis in Syria, Lebanon. passage of Fasciola eggs in stool without Cause: ingestion of living adult Fasciola in raw liver. presence of adult in bile duct. this occurs when metacercaria enter into the Mechanism: sucker irritation of mucosa oedema ± Cause: ingestion of infected raw liver, some eggs circulation and are distributed in abnormal sites suffocation. pass undigested in stool false diagnosis. all over the body e.g. peritoneum, lungs, brain, Treatment: alcoholic gargle ± tracheostomy. Diagnosis eyes and cause fibrosis. Control: proper cooking of animal liver (X: plant washing). re-examination of stool, after liver-free diet for 1 week eggs disappear. 2. INTESTINAL FLUKES 3. LUNG FLUKES Fasciolopsis Buski (large intestine) Heterophyes Heterophyes (heterophyiasis) Paragonimus Westermani ulceration, foci of inflammation and haemorrhage. This is attachment by 3 suckers focal inflammation or fibrous cyst opens to bronchi. manifested clinically by abdominal pain (colic), diarrhea and superficial necrosis of nearby villi. blood-tinged material containing eggs. vomiting Chronic intermittent diarrhoea (mucoid ± 1- paroxysmal coughs rusty sputum (eggs). Heavy infection results in chronic diarrhea, anaemia, blood), 2- Haemoptysis, chest pain,fever. intestinal obstruction, Abdominal colic. Toxic metabolites may cause generalized oedema. COMPLICATIONS HEPATIC INTESTINAL LUNG FLUKES Fascioliasis Heterophyes heterophyes Paragonimus Westermani 1. Liver abscesses (small, multiple), egg embolism to heart or brain. 1- lung abscess. 2. cholangitis, cholecystitis, b. calculi. Heart failure, brain haemorrhage, epilepsy 2- Pleural effusion. 3. obstructive jaundice: biliary obstruction is due to: mechanism: uterus opens into genital sucker, injects 3- Ectopic worms (brain: epilepsy, mechanical, epithelial hyperplasia, cellular infiltration eggs into damaged venule enter circulation haemorrhage). & fibrosis around b. duct). Pirenella Conica Heterophyes Brackish water Operculum Engulf egg Lymnea Snail Fasciola Fresh Water Miracidium enter snail Thug’s DIAGNOSIS HEPATIC INTESTINAL LUNG FLUKES EGG IN STOOL DS Immature egg Mature egg Immature egg (= fasciola) Size 140×70 u small 30×15 u. 100×50 u (medium). Shape oval. oval. oval Shell thin, operculate thick, shouldered operculum + post. knob. thick +flat operculum Content immature embryo. mature miracidium. Ovum yolk cells Colour yellowish-brown. yellowish-brown. Yellowish brown Direct: 1) stool examination. 1) Stool analysis for the characteristic eggs. finding the characteristic egg in sputum or stool 2) Duodenal aspiration. 2) Clinical features and marked (90%)./ in aspirated pleural effusion. 3) Enterotest capsule (in all oesinophilia. duodenal parasites). Indirect (early): serological tests to detect specific 1) specific serological tests to detect Ab.s (eg: antibodies (Ab) ELIZA, IHAT) (esp. in ectopic paragonimiasis). e.g. ELIZA, IHAT detect early & chronic infection (2) X-ray chest: nodular opacities. TREATMENT HEPATIC INTESTINAL LUNG FLUKES F. Gigantica & F.Hepatica Fasciolopsis Buski Heterophyes Heterophyes Paragonimus Westermani Triclabendazole Praziquantel Praziquantel (Biltricide) Praziquantil (Biltricide) (10 mg/kg), once, oral. 40 mg / kg in a single oral dose. oral, 25 mg/kg × 3x daily (1day) oral tablets: 600 mg: 25 mg/kg × 3 (times daily) 3 days. CONTROL proper washing of green salad (K- Avoid contamination of water Proper cooking of fish. Proper cooking of crabs and crayfish permanganate) ½ hr. streams with human faeces. (Fried/ grilled) (boiling). water filtration Boiling these edible water plants Proper salting of fish snail destruction before eating it. (Feseekh) >10 days animal mass treatment Snail control . Fisherman mass treatment &health education Thug’s .
Recommended publications
  • Toxocariasis: a Rare Cause of Multiple Cerebral Infarction Hyun Hee Kwon Department of Internal Medicine, Daegu Catholic University Medical Center, Daegu, Korea
    Case Report Infection & http://dx.doi.org/10.3947/ic.2015.47.2.137 Infect Chemother 2015;47(2):137-141 Chemotherapy ISSN 2093-2340 (Print) · ISSN 2092-6448 (Online) Toxocariasis: A Rare Cause of Multiple Cerebral Infarction Hyun Hee Kwon Department of Internal Medicine, Daegu Catholic University Medical Center, Daegu, Korea Toxocariasis is a parasitic infection caused by the roundworms Toxocara canis or Toxocara cati, mostly due to accidental in- gestion of embryonated eggs. Clinical manifestations vary and are classified as visceral larva migrans or ocular larva migrans according to the organs affected. Central nervous system involvement is an unusual complication. Here, we report a case of multiple cerebral infarction and concurrent multi-organ involvement due to T. canis infestation of a previous healthy 39-year- old male who was admitted for right leg weakness. After treatment with albendazole, the patient’s clinical and laboratory results improved markedly. Key Words: Toxocara canis; Cerebral infarction; Larva migrans, visceral Introduction commonly involved organs [4]. Central nervous system (CNS) involvement is relatively rare in toxocariasis, especially CNS Toxocariasis is a parasitic infection caused by infection with presenting as multiple cerebral infarction. We report a case of the roundworm species Toxocara canis or less frequently multiple cerebral infarction with lung and liver involvement Toxocara cati whose hosts are dogs and cats, respectively [1]. due to T. canis infection in a previously healthy patient who Humans become infected accidentally by ingestion of embry- was admitted for right leg weakness. onated eggs from contaminated soil or dirty hands, or by in- gestion of raw organs containing encapsulated larvae [2].
    [Show full text]
  • Introgression and Hybridization in Animal Parasites
    Genes 2010, 1, 102-123; doi:10.3390/genes1010102 OPEN ACCESS genes ISSN 2073-4425 www.mdpi.com/journal/genes Review An Infectious Topic in Reticulate Evolution: Introgression and Hybridization in Animal Parasites Jillian T. Detwiler * and Charles D. Criscione Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-979-845-0925; Fax: +1-979-845-2891. Received: 29 April 2010; in revised form: 7 June 2010 / Accepted: 7 June 2010 / Published: 9 June 2010 Abstract: Little attention has been given to the role that introgression and hybridization have played in the evolution of parasites. Most studies are host-centric and ask if the hybrid of a free-living species is more or less susceptible to parasite infection. Here we focus on what is known about how introgression and hybridization have influenced the evolution of protozoan and helminth parasites of animals. There are reports of genome or gene introgression from distantly related taxa into apicomplexans and filarial nematodes. Most common are genetic based reports of potential hybridization among congeneric taxa, but in several cases, more work is needed to definitively conclude current hybridization. In the medically important Trypanosoma it is clear that some clonal lineages are the product of past hybridization events. Similarly, strong evidence exists for current hybridization in human helminths such as Schistosoma and Ascaris. There remain topics that warrant further examination such as the potential hybrid origin of polyploid platyhelminths.
    [Show full text]
  • Conservation and Diversification of the Transcriptomes of Adult Paragonimus Westermani and P
    Li et al. Parasites & Vectors (2016) 9:497 DOI 10.1186/s13071-016-1785-x RESEARCH Open Access Conservation and diversification of the transcriptomes of adult Paragonimus westermani and P. skrjabini Ben-wen Li1†, Samantha N. McNulty2†, Bruce A. Rosa2, Rahul Tyagi2, Qing Ren Zeng3, Kong-zhen Gu3, Gary J. Weil1 and Makedonka Mitreva1,2* Abstract Background: Paragonimiasis is an important and widespread neglected tropical disease. Fifteen Paragonimus species are human pathogens, but two of these, Paragonimus westermani and P. skrjabini, are responsible for the bulk of human disease. Despite their medical and economic significance, there is limited information on the gene content and expression of Paragonimus lung flukes. Results: The transcriptomes of adult P. westermani and P. skrjabini were studied with deep sequencing technology. Approximately 30 million reads per species were assembled into 21,586 and 25,825 unigenes for P. westermani and P. skrjabini, respectively. Many unigenes showed homology with sequences from other food-borne trematodes, but 1,217 high-confidence Paragonimus-specific unigenes were identified. Analyses indicated that both species have the potential for aerobic and anaerobic metabolism but not de novo fatty acid biosynthesis and that they may interact with host signaling pathways. Some 12,432 P. westermani and P. skrjabini unigenes showed a clear correspondence in bi-directional sequence similarity matches. The expression of shared unigenes was mostly well correlated, but differentially expressed unigenes were identified and shown to be enriched for functions related to proteolysis for P. westermani and microtubule based motility for P. skrjabini. Conclusions: The assembled transcriptomes of P. westermani and P.
    [Show full text]
  • Vet February 2017.Indd 85 30/01/2017 09:32 SMALL ANIMAL I CONTINUING EDUCATION
    CONTINUING EDUCATION I SMALL ANIMAL Trematodes in farm and companion animals The comparative aspects of parasitic trematodes of companion animals, ruminants and humans is presented by Maggie Fisher BVetMed CBiol MRCVS FRSB, managing director and Peter Holdsworth AO Bsc (Hon) PhD FRSB FAICD, senior manager, Ridgeway Research Ltd, Park Farm Building, Gloucestershire, UK Trematodes are almost all hermaphrodite (schistosomes KEY SPECIES being the exception) flat worms (flukes) which have a two or A number of trematode species are potential parasites of more host life cycle, with snails featuring consistently as an dogs and cats. The whole list of potential infections is long intermediate host. and so some representative examples are shown in Table Dogs and cats residing in Europe, including the UK and 1. A more extensive list of species found globally in dogs Ireland, are far less likely to acquire trematode or fluke and cats has been compiled by Muller (2000). Dogs and cats infections, which means that veterinary surgeons are likely are relatively resistant to F hepatica, so despite increased to be unconfident when they are presented with clinical abundance of infection in ruminants, there has not been a cases of fluke in dogs or cats. Such infections are likely to be noticeable increase of infection in cats or dogs. associated with a history of overseas travel. In ruminants, the most important species in Europe are the In contrast, the importance of the liver fluke, Fasciola liver fluke, F hepatica and the rumen fluke, Calicophoron hepatica to grazing ruminants is evident from the range daubneyi (see Figure 1).
    [Show full text]
  • Praziquantel Treatment in Trematode and Cestode Infections: an Update
    Review Article Infection & http://dx.doi.org/10.3947/ic.2013.45.1.32 Infect Chemother 2013;45(1):32-43 Chemotherapy pISSN 2093-2340 · eISSN 2092-6448 Praziquantel Treatment in Trematode and Cestode Infections: An Update Jong-Yil Chai Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul, Korea Status and emerging issues in the use of praziquantel for treatment of human trematode and cestode infections are briefly reviewed. Since praziquantel was first introduced as a broadspectrum anthelmintic in 1975, innumerable articles describ- ing its successful use in the treatment of the majority of human-infecting trematodes and cestodes have been published. The target trematode and cestode diseases include schistosomiasis, clonorchiasis and opisthorchiasis, paragonimiasis, het- erophyidiasis, echinostomiasis, fasciolopsiasis, neodiplostomiasis, gymnophalloidiasis, taeniases, diphyllobothriasis, hyme- nolepiasis, and cysticercosis. However, Fasciola hepatica and Fasciola gigantica infections are refractory to praziquantel, for which triclabendazole, an alternative drug, is necessary. In addition, larval cestode infections, particularly hydatid disease and sparganosis, are not successfully treated by praziquantel. The precise mechanism of action of praziquantel is still poorly understood. There are also emerging problems with praziquantel treatment, which include the appearance of drug resis- tance in the treatment of Schistosoma mansoni and possibly Schistosoma japonicum, along with allergic or hypersensitivity
    [Show full text]
  • Impact of Fish Infected with Encysted Metacercariae on the Public Health, at Cairo District, Egypt
    International Research Journal of Public and Environmental Health Vol.5 (6),pp. 72-82, September 2018 Available online at https://www.journalissues.org/IRJPEH/ https://doi.org/10.15739/irjpeh.18.011 Copyright © 2018 Author(s) retain the copyright of this article ISSN 2360-8803 Original Research Article Impact of fish infected with encysted metacercariae on the public health, at Cairo District, Egypt Received 27 July, 2018 Revised 22 August, 2018 Accepted 4 September, 2018 Published 15 September, 2018 1*El Assal FM Examination of 452 fresh and brackish water fish, from Cairo district, Egypt, and representing Clarias gariepinus, Lebeo noliticus and Mugil cephalus, revealed 1 the occurrence of nine species of encysted metacercariae in Cl. gariepinus, Mohamed NM belonging to family Heterophyidae, two unidentified digenean metacercariae in L. niloticus and two unidentified digenean metacercariae in M. cephalus. 1 Zoology Department, Faculty of The relationship between parasite prevalence and fish species, seasonal Science, Cairo University, Giza, prevalence and fish weight was investigated. The highest rate of infection Egypt (73.68%) was recorded in autumn, in Cl. gariepinus, while the lowest (54.05%) was observed in summer. Whereas, in M. cephalus and L. noliticus, *Corresponding Author Email: the highest prevalence of infection (56.67 and 26.09%, respectively), was [email protected] recorded, in spring. But, in M. cephalus the lowest infection rate (25.82%) was detected in winter, while in L. niloticus (12.50%), it was recorded in autumn. The intensity of infection in Cl. gariepinus increased with fish weight till 150g while, it decreased in fish weighing more than 200g.
    [Show full text]
  • Helminths (Parasitic Worms) Helminths
    Helminths (Parasitic worms) Multicellular - tissues & organs Degenerate digestive system Reduced nervous system Complex reproductive system - main physiology Complex life cycles Kingdom Animalia Phylum Platyhelminths Phylum Nematoda Flatworms Roundworms Helminths - Important Features Significant variation in size Millimeters to Meters in length Nearly world-wide distribution Long persistence of helminth parasites in host PUBLIC HEALTH Indistinct clinical syndromes Protective immunity is acquired only after many years (decades) Poly-parasitism Greatest burden is in children Malnutrition, growth/development retardation, decreased work Morbidity proportional to worm load Helminths (Parasitic worms) Kingdom Animalia Phylum Platyhelminths Phylum Nematoda Tubellarians Monogenea Trematodes Cestodes Free-living Monogenetic Digenetic Tapeworms worms Flukes Flukes 1 Phylum Platyhelminths General Properties (some variations) Bilateral symmetry Generally dorsoventrally flattened Body having 3 layers of tissues with organs and organelles Body contains no internal cavity (acoelomate) Possesses a blind gut (i.e. it has a mouth but no anus) Protonephridial excretory organs instead of an anus Nervous system of longitudinal fibers rather than a net Reproduction mostly sexual as hermaphrodites Some species occur in all major habitats, including many as parasites of other animals. Planaria - Newest model system? Planaria - common name Free-living flatworm Simple organ system RNAi - yes! Large scale RNAi screen Amazing power
    [Show full text]
  • Parasites and Diseases of Mullets (Mugilidae)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 1981 Parasites and Diseases of Mullets (Mugilidae) I. Paperna Robin M. Overstreet Gulf Coast Research Laboratory, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Paperna, I. and Overstreet, Robin M., "Parasites and Diseases of Mullets (Mugilidae)" (1981). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 579. https://digitalcommons.unl.edu/parasitologyfacpubs/579 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Paperna & Overstreet in Aquaculture of Grey Mullets (ed. by O.H. Oren). Chapter 13: Parasites and Diseases of Mullets (Muligidae). International Biological Programme 26. Copyright 1981, Cambridge University Press. Used by permission. 13. Parasites and diseases of mullets (Mugilidae)* 1. PAPERNA & R. M. OVERSTREET Introduction The following treatment ofparasites, diseases and conditions affecting mullet hopefully serves severai functions. It acquaints someone involved in rearing mullets with problems he can face and topics he should investigate. We cannot go into extensive illustrative detail on every species or group, but do provide a listing ofmost parasites reported or known from mullet and sorne pertinent general information on them. Because of these enumerations, the paper should also act as a review for anyone interested in mullet parasites or the use of such parasites as indicators about a mullet's diet and migratory behaviour.
    [Show full text]
  • Proteomic Insights Into the Biology of the Most Important Foodborne Parasites in Europe
    foods Review Proteomic Insights into the Biology of the Most Important Foodborne Parasites in Europe Robert Stryi ´nski 1,* , El˙zbietaŁopie ´nska-Biernat 1 and Mónica Carrera 2,* 1 Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; [email protected] 2 Department of Food Technology, Marine Research Institute (IIM), Spanish National Research Council (CSIC), 36-208 Vigo, Spain * Correspondence: [email protected] (R.S.); [email protected] (M.C.) Received: 18 August 2020; Accepted: 27 September 2020; Published: 3 October 2020 Abstract: Foodborne parasitoses compared with bacterial and viral-caused diseases seem to be neglected, and their unrecognition is a serious issue. Parasitic diseases transmitted by food are currently becoming more common. Constantly changing eating habits, new culinary trends, and easier access to food make foodborne parasites’ transmission effortless, and the increase in the diagnosis of foodborne parasitic diseases in noted worldwide. This work presents the applications of numerous proteomic methods into the studies on foodborne parasites and their possible use in targeted diagnostics. Potential directions for the future are also provided. Keywords: foodborne parasite; food; proteomics; biomarker; liquid chromatography-tandem mass spectrometry (LC-MS/MS) 1. Introduction Foodborne parasites (FBPs) are becoming recognized as serious pathogens that are considered neglect in relation to bacteria and viruses that can be transmitted by food [1]. The mode of infection is usually by eating the host of the parasite as human food. Many of these organisms are spread through food products like uncooked fish and mollusks; raw meat; raw vegetables or fresh water plants contaminated with human or animal excrement.
    [Show full text]
  • Classification and Nomenclature of Human Parasites Lynne S
    C H A P T E R 2 0 8 Classification and Nomenclature of Human Parasites Lynne S. Garcia Although common names frequently are used to describe morphologic forms according to age, host, or nutrition, parasitic organisms, these names may represent different which often results in several names being given to the parasites in different parts of the world. To eliminate same organism. An additional problem involves alterna- these problems, a binomial system of nomenclature in tion of parasitic and free-living phases in the life cycle. which the scientific name consists of the genus and These organisms may be very different and difficult to species is used.1-3,8,12,14,17 These names generally are of recognize as belonging to the same species. Despite these Greek or Latin origin. In certain publications, the scien- difficulties, newer, more sophisticated molecular methods tific name often is followed by the name of the individual of grouping organisms often have confirmed taxonomic who originally named the parasite. The date of naming conclusions reached hundreds of years earlier by experi- also may be provided. If the name of the individual is in enced taxonomists. parentheses, it means that the person used a generic name As investigations continue in parasitic genetics, immu- no longer considered to be correct. nology, and biochemistry, the species designation will be On the basis of life histories and morphologic charac- defined more clearly. Originally, these species designa- teristics, systems of classification have been developed to tions were determined primarily by morphologic dif- indicate the relationship among the various parasite ferences, resulting in a phenotypic approach.
    [Show full text]
  • Appropriate Technology Psoa for Water Supply and Sanitation
    Appropriate Technology Psoa for Water Supply and Sanitation Health Aspects of Excreta and Sullage Management-A State-of-the-Art Review Public Disclosure Authorized by Richard G. Feachem, David J. Bradley, Hemda Garelick, and D. Duncan Mara FILE COPY , Report No.:11508 Type: (PUB) Title: APPROPRIATE TECHNOLOGY FOR WAT A uthor: FEACHEM, RICHARD 4 Ext.: 0 Room: Dept.: -1-- - tOLD PUBLICATION JUNE 1931 Public Disclosure Authorized M - 5 Public Disclosure Authorized q/ Public Disclosure Authorized VWorld Bank/ A Contribution to the International Drinking Water Supply and Sanitation Decade 3 Copyright © 1980 by the International Bank for Reconstruction and Development/The World Bank The World Bank enjoys copyright under Protocol 2 of the Universal Copyright Convention. Nevertheless, permission is hereby granted for reproduction of this material, in whole or part, for educational, scientific, or development- related purposes except those involving commercial sale provided that (a) full citation of the source is given and (b) notification in writing is given to the Director of Information and Public Affairs, the World Bank, Wqashington, D.C. 20433, U.S.A. Volume 3 APPROPRIATE TECHNOLOGY FOR WATER SUPPLY AND SANITATION HEALTH ASPECTS OF EXCRETA AND SULLAGE MANAGEMENT: A STATE-OF-THE-ART REVIEW The work reported herein represents the views of the authors and not necessarily those of the World Bank, nor does the Bank accept responsibility for accuracy or completeness. Transportation, Water, and Telecommunications Department The World Bank June 1981 A B S T R A C T Public Health is of central importance in the design and implementation of improved excreta disposal projects.
    [Show full text]
  • 24/1/2016 Time: 2 Hours Total Marks: 32 3Rd Year Medical Parasitology ______Answer the Following Questions; Illustrate Your Answers with DIAGRAMS
    South valley University Faculty of Medicine Medical Parasitology Date: 24/1/2016 Time: 2 hours Total marks: 32 3rd year Medical Parasitology ___________________________________________________ Answer the following questions; illustrate your Answers with DIAGRAMS: 1-Mention 4 different parasites causing hepatomegaly with their infective and diagnostic stages, then discuss briefly clinical picture for one of them. (8 marks) 2-write short account on the following: A- Disseminated strongyloidiasis B- Types of hosts (1omarks) 3-Complete: (4marks) a. The main complaint in case of Enterobius vermicularis is ………..., while best way to diagnose it is ……………….. b. Infective stages of Cappillaria philippinensis is………………….., while diagnostic sage is………………………… c. 2 main differences between Taenia saginata and T.solium are…………………………… and……………………………… … d. Intermediate host of Dracunculus medinensis is ……………………………, while infective sage is ………………………………….. e. Fish can transmit …………………… and ……………………..` f. Infective sage of Ascaris lumbricoid is……………………… while diagnostic stages are………………………………… After playing bare footed in cultivated field an Egyptian child suffered from itching and papules in his feet, followed by pallor and symptoms of malnutrition: (5 marks) A-What the causative parasite for this case B-Mention infective stage and mode of infection for this parasite. C- Mention the mechanism of anemia. MCQs: (10 marks) 1. Whip worm is: a. Ascaris lumbricoids b. Heterophyes heterophyes a. Trichuris trichura b. Enterobius vermicularis 2. Bachman's test is used in diagnosis of: a. Trihinella spiralis infection. b. Visceral larva migrans c. Cutaneous larva migrans. d. Chagas’ disease. 3. Lymnoea caillaudi is a snail intermediate host of: a. Fasciola hepatica. b. Hymenolepis nana. c. Fasciola gigantic. d. Capillaria hepatica. 4. All he following are correct about cestodes except: a.
    [Show full text]