Mountain Protected Areas UPDATE
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Universita' Degli Studi Di Milano Bicocca
Dipartimento di Scienze Ambiente e Territorio e Scienze della Terra Università degli studi di Milano-Bicocca Dottorato di Ricerca in Scienze della Terra XXVI ciclo Earthquake-induced static stress change in promoting eruptions Tutore: Prof. Alessandro TIBALDI Co-tutore: Dott.ssa Claudia CORAZZATO Fabio Luca BONALI Matr. Nr. 040546 This work is dedicated to my uncle Eugenio Marcora who led my interest in Earth Sciences and Astronomy during my childhood Abstract The aim of this PhD work is to study how earthquakes could favour new eruptions, focusing the attention on earthquake-induced static effects in three different case sites. As a first case site, I studied how earthquake-induced crustal dilatation could trigger new eruptions at mud volcanoes in Azerbaijan. Particular attention was then devoted to contribute to the understanding of how earthquake-induced magma pathway unclamping could favour new volcanic activity along the Alaska-Aleutian and Chilean volcanic arcs, where 9 seismic events with Mw ≥ 8 occurred in the last century. Regarding mud volcanoes, I studied the effects of two earthquakes of Mw 6.18 and 6.08 occurred in the Caspian Sea on November 25, 2000 close to Baku city, Azerbaijan. A total of 33 eruptions occurred at 24 mud volcanoes within a maximum distance of 108 km from the epicentres in the five years following the earthquakes. Results show that crustal dilatation might have triggered only 7 eruptions at a maximum distance of about 60 km from the epicentres and within 3 years. Dynamic rather than static strain is thus likely to have been the dominating “promoting” factor because it affected all the studied unrested volcanoes and its magnitude was much larger. -
The Volcanic Ash Soils of Chile
' I EXPANDED PROGRAM OF TECHNICAL ASSISTANCE No. 2017 Report to the Government of CHILE THE VOLCANIC ASH SOILS OF CHILE FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS ROMEM965 -"'^ .Y--~ - -V^^-.. -r~ ' y Report No. 2017 Report CHT/TE/LA Scanned from original by ISRIC - World Soil Information, as ICSU World Data Centre for Soils. The purpose is to make a safe depository for endangered documents and to make the accrued information available for consultation, following Fair Use Guidelines. Every effort is taken to respect Copyright of the materials within the archives where the identification of the Copyright holder is clear and, where feasible, to contact the originators. For questions please contact [email protected] indicating the item reference number concerned. REPORT TO THE GOVERNMENT OP CHILE on THE VOLCANIC ASH SOILS OP CHILE Charles A. Wright POOL ANL AGRICULTURE ORGANIZATION OP THE UNITEL NATIONS ROME, 1965 266I7/C 51 iß - iii - TABLE OP CONTENTS Page INTRODUCTION 1 ACKNOWLEDGEMENTS 1 RECOMMENDATIONS 1 BACKGROUND INFORMATION 3 The nature and composition of volcanic landscapes 3 Vbloanio ash as a soil forming parent material 5 The distribution of voloanic ash soils in Chile 7 Nomenclature used in this report 11 A. ANDOSOLS OF CHILE» GENERAL CHARACTERISTICS, FORMATIVE ENVIRONMENT, AND MAIN KINDS OF SOIL 11 1. TRUMAO SOILS 11 General characteristics 11 The formative environment 13 ÈS (i) Climate 13 (ii) Topography 13 (iii) Parent materials 13 (iv) Natural plant cover 14 (o) The main kinds of trumao soils ' 14 2. NADI SOILS 16 General characteristics 16 The formative environment 16 tö (i) Climat* 16 (ii) Topograph? and parent materials 17 (iii) Natural plant cover 18 B. -
Effects of Volcanism, Crustal Thickness, and Large Scale Faulting on the He Isotope Signatures of Geothermal Systems in Chile
PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 2013 SGP-TR-198 EFFECTS OF VOLCANISM, CRUSTAL THICKNESS, AND LARGE SCALE FAULTING ON THE HE ISOTOPE SIGNATURES OF GEOTHERMAL SYSTEMS IN CHILE Patrick F. DOBSON1, B. Mack KENNEDY1, Martin REICH2, Pablo SANCHEZ2, and Diego MORATA2 1Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA 2Departamento de Geología y Centro de Excelencia en Geotermia de los Andes, Universidad de Chile, Santiago, CHILE [email protected] agree with previously published results for the ABSTRACT Chilean Andes. The Chilean cordillera provides a unique geologic INTRODUCTION setting to evaluate the influence of volcanism, crustal thickness, and large scale faulting on fluid Measurement of 3He/4He in geothermal water and gas geochemistry in geothermal systems. In the Central samples has been used to guide geothermal Volcanic Zone (CVZ) of the Andes in the northern exploration efforts (e.g., Torgersen and Jenkins, part of Chile, the continental crust is quite thick (50- 1982; Welhan et al., 1988) Elevated 3He/4He ratios 70 km) and old (Mesozoic to Paleozoic), whereas the (R/Ra values greater than ~0.1) have been interpreted Southern Volcanic Zone (SVZ) in central Chile has to indicate a mantle influence on the He isotopic thinner (60-40 km) and younger (Cenozoic to composition, and may indicate that igneous intrusions Mesozoic) crust. In the SVZ, the Liquiñe-Ofqui Fault provide the primary heat source for the associated System, a major intra-arc transpressional dextral geothermal fluids. Studies of helium isotope strike-slip fault system which controls the magmatic compositions of geothermal fluids collected from activity from 38°S to 47°S, provides the opportunity wells, hot springs and fumaroles within the Basin and to evaluate the effects of regional faulting on Range province of the western US (Kennedy and van geothermal fluid chemistry. -
Crustal Paleo-Stress and Permeability in a Strike-Slip Setting: Insights from The
PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE SCHOOL OF ENGINEERING CRUSTAL PALEO-STRESS AND PERMEABILITY IN A STRIKE-SLIP SETTING: INSIGHTS FROM THE SOUTHERN VOLCANIC ZONE (38-39°), CHILE. PAMELA VIVIANA PÉREZ FLORES Thesis submitted to the Office of Graduate Studies in partial fulfillment of the requirements for the Degree of Doctor in Engineering Sciences Advisor: JOSÉ CEMBRANO. Santiago de Chile, May, 2017 © MMXVII, PAMELA VIVIANA PÉREZ FLORES PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE SCHOOL OF ENGINEERING CRUSTAL PALEO-STRESS AND PERMEABILITY IN A STRIKE-SLIP SETTING: INSIGHTS FROM THE SOUTHERN VOLCANIC ZONE (38-39°S), CHILE. PAMELA VIVIANA PÉREZ FLORES Members of the Committee: JOSÉ CEMBRANO DANIEL HURTADO GLORIA ARANCIBIA ANDRÉS VELOSO ANDREA BROGI CRISTIÁN VIAL Thesis submitted to the Office of Graduate Studies in partial fulfillment of the requirements for the Degree of Doctor in Engineering Sciences Santiago de Chile, 2017 © MMXVI, PAMELA VIVIANA PÉREZ FLORES Gratefully to Raul Pérez and Helia Flores i ACKNOWLEDGEMENTS This thesis is the result of the enthusiasm, generosity and effort of many people and institutions. The Pontificia Universidad Católica de Chile funded my first semester scholarship. The Comisión Nacional de Ciencia y Tecnología (CONICYT) granted me a scholarship (Beca doctorado nacional-21120519) and funded my tuition fees, operational expenses and a 10-month internship at the University College London. The Centro de Excelencia en Geotermia de Los Andes (CEGA) FONDAP/CONICYT Project 15090013 funded my field trips, chemical analyses, and attendance to international meetings. I deeply thank my advisor José Cembrano; his concepts, enthusiasm, and patience were the basis of this thesis from the beginning to the end. -
Lawrence Berkeley National Laboratory Recent Work
Lawrence Berkeley National Laboratory Recent Work Title Assessment of high enthalpy geothermal resources and promising areas of Chile Permalink https://escholarship.org/uc/item/9s55q609 Authors Aravena, D Muñoz, M Morata, D et al. Publication Date 2016 DOI 10.1016/j.geothermics.2015.09.001 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Assessment of high enthalpy geothermal resources and promising areas of Chile Author links open overlay panel DiegoAravena ab MauricioMuñoz ab DiegoMorata ab AlfredoLahsen ab Miguel ÁngelParada ab PatrickDobson c Show more https://doi.org/10.1016/j.geothermics.2015.09.001 Get rights and content Highlights • We ranked geothermal prospects into measured, Indicated and Inferred resources. • We assess a comparative power potential in high-enthalpy geothermal areas. • Total Indicated and Inferred resource reaches 659 ± 439 MWe divided among 9 areas. • Data from eight additional prospects suggest they are highly favorable targets. • 57 geothermal areas are proposed as likely future development targets. Abstract This work aims to assess geothermal power potential in identified high enthalpy geothermal areas in the Chilean Andes, based on reservoir temperature and volume. In addition, we present a set of highly favorable geothermal areas, but without enough data in order to quantify the resource. Information regarding geothermal systems was gathered and ranked to assess Indicated or Inferred resources, depending on the degree of confidence that a resource may exist as indicated by the geoscientific information available to review. Resources were estimated through the USGS Heat in Place method. A Monte Carlo approach is used to quantify variability in boundary conditions. -
Festuca Pallescens Colliguaya Integerrima- Festuca Pallescens
Zona de Pastizales Rolando Demanet Filippi Universidad de la Frontera Superficie de Praderas y Pasturas PRADERAS Y PASTURAS REGIÓN SEMBRADAS, PERMANENTES Y MEJORADAS NATURALES DE ROTACION * I 2,829 84 475,755 II 1,890 142 24,808 III 1,489 279 418,836 IV 43,412 10,999 3,070,887 V 14,587 13,232 782,081 VI 16,680 18,234 503,384 VII 49,116 89,070 811,014 VIII 51,157 75,746 733,471 IX 77,248 138,206 829,919 X 145,524 525,312 680,515 XI 14,969 29,324 662,616 XII 9,865 94,979 2,664,242 RM 23,840 14,193 264,694 Total País 452,606 1,009,801 11,922,222 Fuente: INE * No incluye Anuales Importancia del Almacenamiento del Agua Altitud Capacidad Año Tiempo de uso Nombre Categoría Región Ubicación m.s.n.m. (Mm3) Area km2 Inauguración (Años) Chungará Lago I 196 km NO Arica 4.750 msnm 4.750 21.000 Cotacotani Laguna I 190 km NO Arica. 600 Huasco Laguna I 174 km SE Arica Chaxa Laguna II 56 km San Pedro Atacama 18 km Sur Socaire 5.910 Miscanti y Miñiques Laguna II msnm 5.910 213 km SE Calama 4.260 Legía Laguna II msnm 4.260 8 Del Negro Francisco Laguna III 226 kms E Copiapó 4.126 860 Laguna Verde Laguna III 265 km NE Copiapó 4.325 Santa Rosa Laguna III Sur del salar de Maricunga Santa Juana Emabalse III 20 km E Vallenar. 160 410 1955 53 Lautaro Tranque III 96 km SE Copiapó 27 1930 78 Recoleta Embalse IV 25 km NO Ovalle 100 1934 74 La Paloma Embalse IV 27 km SE Ovalle 780 3.000 1974 34 La Laguna Embalse IV 3.350 msnm Elqui 3.350 40 5 Cogotí Embalse IV 19 km N Combarbalá 150 Peñuelas Lago V 13 km Valparaíso 8.000 1900 108 Rapel Lago VI 102 km O Rancagua 720 -
Volcanes Cercanos Volcanes Cercanos
Localidades al interior de un radio de 30 km respecto de volcanes activos Volcanes cercanos Localidad Comuna Provincia Región Olca, Irruputuncu Collaguasi Pica Iquique Tarapacá Taapaca, Parinacota Putre Putre Parinacota Tarapacá Callaqui, Copahue Ralco Santa Bárbara Bio Bio Bio Bio Nevados de Chillán Recinto Los Lleuques Pinto Ñuble Bio Bio Villarrica, Quetrupillán, Lanín, Sollipulli Curarrehue Curarrehue Cautín La Araucanía Llaima, Sollipulli Mellipeuco Melipeuco Cautín La Araucanía Villarrica, Quetrupillán, Lanín Pucón Pucón Cautín La Araucanía Llaima Cherquenco Vilcún Cautín La Araucanía Villarrica Lican Ray Villarrica Cautín La Araucanía Villarrica Villarrica Villarrica Cautín La Araucanía Llaima, Lonquimay Curacautín Curacautín Malleco La Araucanía Llaima, Lonquimay Lonquimay Lonquimay Malleco La Araucanía Villarrica, Quetrupillán, Lanín, Mocho Coñaripe Panguipulli Valdivia Los Rios Calbuco, Osorno Alerce Puerto Montt Llanquihue Los Lagos Calbuco, Osorno Las Cascadas Puerto Octay Osorno Los Lagos Chaitén, Michinmahuida, Corcovado Chaitén Chaitén Palena Los Lagos Hornopirén, Yate, Apagado, Huequi Rio Negro Hualaihue Palena Los Lagos Localidades al interior de un radio de 50 km respecto de volcanes activos Volcanes cercanos Localidad Comuna Provincia Región Olca, Irruputuncu Collaguasi Pica Iquique Tarapacá Taapaca, Parinacota Putre Putre Parinacota Tarapacá San José San Alfonso San José de Maipo Cordillera Metropolitana San José San José de Maipo San José de Maipo Cordillera Metropolitana Tupungatito La Parva Lo Barnechea Santiago -
Boron and Other Trace Element Constraints on the Slab-Derived Component in Quaternary Volcanic Rocks from the Southern Volcanic Zone of the Andes
Geochemical Journal, Vol. 47, pp. 185 to 199, 2013 Boron and other trace element constraints on the slab-derived component in Quaternary volcanic rocks from the Southern Volcanic Zone of the Andes HIRONAO SHINJOE,1* YUJI ORIHASHI,2 JOSÉ A. NARANJO,3 DAIJI HIRATA,4 TOSHIAKI HASENAKA,5 TAKAAKI FUKUOKA,6 TAKASHI SANO7 and RYO ANMA8 1Tokyo Keizai University, Japan 2Earthquake Research Institute, The University of Tokyo, Japan 3Servicio Nacional de Geología y Minería, Chile 4Kanagawa Prefectural Museum of Natural History, Japan 5Department of Earth and Environmental Sciences, Graduate School of Science and Technology, Kumamoto University, Japan 6Department of Environment Systems, Faculty of Geo-environmental Science, Rissho University, Japan 7Department of Geology and Paleontology, National Museum of Nature and Science, Japan 8Integrative Environmental Sciences, Graduate School of Life and Environmental Sciences, Tsukuba University, Japan (Received April 18, 2012; Accepted December 25, 2012) We present a dataset for boron and other trace element contents obtained from samples from 13 volcanoes distributed along the Quaternary volcanic front of the Southern Volcanic Zone (SVZ) of the Chilean Andes. The dataset shows con- straints on the nature of slab-derived component to mantle source. Analyzed samples show large negative Nb and Ta anomalies, and enrichment of alkaline earth elements and Pb, which are features of typical island arc volcanic rocks. Boron contents of SVZ volcanic rocks range 2.3–125.5 ppm, exhibiting marked enrichment relative to N-MORB and OIB. Both the boron contents and B/Nb ratios of the volcanic rocks increase from the southern SVZ (SSVZ) to central SVZ (CSVZ). Fluid mobile/immobile element ratios (B/Nb, Ba/Nb, Pb/Nb, and K/Nb) are used to examine slab-derived com- ponent to mantle source. -
PDF Linkchapter
Index Page numbers in italic denote figures. Page numbers in bold denote tables. adakite vii, 3, 15–17, 23, 156, 175, 251 Baja California 390, 393–395, 396 distribution in Japan arc 25–26 basalt viii, 2, 5, 8, 65, 369 adiabatic dT/dP 202 fractionation 84–86 Aegean arc, magmatism 137–158 Gulf of California 395–398, 401 analytical techniques 142 high-TiO2(Nb) basalt 80 differentiation and eruption 155–156 intrusion rate 87 geochemistry 142–146 Mariana arc 242–243, 245 geological setting 137–140 to andesite 32 source and process 146–155 basaltic andesite viii, 82, 140, 141, 310 air-fall deposit 210, 211, 216–218, 219 fractional crystallization 223, 225 amphibole 153, 156, 270, 271 Guatemala 209, 212, 215, 219, 220, 222 Anatahan Felsic Province 237, 251, 252–253 Gulf of California 393, 395–398 Andean arc, magma sources 303–330 Oregon 284–286, 288, 293, 296, 297 geochemistry 311–320 Papua 121, 123, 124–125 magma history 308–309 batholith 401 tectonic setting 304–311 10Be isotope 2 andesite and subduction 1–2, 58–59 Benioff zone, Andean arc 304, 325, 326, 328 andesite from tholeiite 281–300 Bezymianny volcano 104, 106 andesite, Gulf of California 389, 395–401, 403 bimodal volcanism 6, 67, 80, 93, 270 andesite, NE Japan island arc 335–378 Californian Gulf 393–398, 401, 403 andesitic magma, preferential eruption 257–276 Guatemala 210, 215, mixing 258–260 Japan arc 336, 340, 374 mobility 260–261 Mariana arc 251, 252–253 origin 257, 261–270 boninite vii, 130, 131 recharge filtering 270, 272–274 Bouguer gravity anomaly 338, 354 andesitic petrogenesis -
Evaluating a Fluorosis Hazard After a Volcanic Eruption
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/15253810 Evaluating a Fluorosis Hazard after a Volcanic Eruption Article in Archives of Environmental Health An International Journal · October 1994 DOI: 10.1080/00039896.1994.9954992 · Source: PubMed CITATIONS READS 37 59 6 authors, including: Professor Eric K. Noji, M.D. King Saud University 295 PUBLICATIONS 3,601 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: ICARUS | Max Planck Institute for Ornithology View project The Effects of Extreme Environmental Conditions on Human Physiology and Survivability View project All content following this page was uploaded by Professor Eric K. Noji, M.D. on 19 April 2015. The user has requested enhancement of the downloaded file. Evaluating a Fluorosis Hazard after a Volcanic Eruption CAROL H. RUBIN JORGE GRANDE Epidemic Inlelligence Service U.S. Agency for International Development Epidemiology Program Office Office of Disaster Assistance Atlanta, Georgia San Jose, Costa Rica ERICK. NOJI F. VITTANI Centers for Disease Control and Prevention Ministry of Health and Social Action National Center for Environmental Health Buenos Aires, Argentina Atlanta, Georgia PAULJ. SELIGMAN JOHN L. HOLTZ Centers for Disease Control and Prevention National Institute for Occupational Safety and Health Cincinnati, Ohio ABSTRACT. The August, 1991 eruption of Mt. Hudson (Chile) deposited ash across southern Argentina and contributed to the deaths of thousands -
Dynamical Regime and Advance Rate of Lava Flows Using Its Deposit Characteristics: 2 Cases from the Lonquimay and Villarrica
IAVCEI 2013 Scientific Assembly - July 20 - 24, Kagoshima, Japan Forecasting Volcanic Activity - Reading and translating the messages of nature for society 0P2_3H-O11 Room A5 Date/Time: July 20 17:15-17:30 Dynamical regime and advance rate of lava flows using its deposit characteristics: 2 cases from the Lonquimay and Villarrica volcanoes, Southern Andes of Chile Maria Angelica Contreras1,2, Angelo Castruccio1,2 1Universidad de Chile, Chile, 2Centro de Excelencia en Geotermia de los Andes (CEGA), Chile E-mail: [email protected] The advance of lava flows is controlled by the effusion rate, rheology, topography and cooling effects. Consequently, the deposits of lava flows would reflect the interplay between these factors. We tested a methodology to estimate the variations of flow rate and velocity of ancient lava flows using its deposit dimensions, textural characteristics and petrography. We studied the deposits of two lava flows with contrasting styles generated during historical times in the Southern Andes of Chile: the 1971 eruption of Villarrica volcano and the 1988-89 eruption of Lonquimay volcano. Both eruptions have a record of its duration and advance rate, so we can test different dynamical models in order to fit better the available data. The Villarrica eruption lasted a couple of days and the resulting lava flow reached a length of 16.5 km, with thicknesses of 3-15 m, depending mainly on the channelling of the flow. The morphology is transitional between Pahoe-hoe and Aa. Clasts morphologies are mainly rubbly and slabby, ranging from a few cm to a couple of meters in diameter. -
The Origin and Emplacement of Domo Tinto, Guallatiri Volcano, Northern Chile Andean Geology, Vol
Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Watts, Robert B.; Clavero Ribes, Jorge; J. Sparks, R. Stephen The origin and emplacement of Domo Tinto, Guallatiri volcano, Northern Chile Andean Geology, vol. 41, núm. 3, septiembre, 2014, pp. 558-588 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173932124004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Andean Geology 41 (3): 558-588. September, 2014 Andean Geology doi: 10.5027/andgeoV41n3-a0410.5027/andgeoV40n2-a?? formerly Revista Geológica de Chile www.andeangeology.cl The origin and emplacement of Domo Tinto, Guallatiri volcano, Northern Chile Robert B. Watts1, Jorge Clavero Ribes2, R. Stephen J. Sparks3 1 Office of Disaster Management, Jimmit, Roseau, Commonwealth of Dominica. [email protected] 2 Escuela de Geología, Universidad Mayor, Manuel Montt 367, Providencia, Santiago, Chile. [email protected] 3 Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol. BS8 1RJ. United Kingdom. [email protected] ABSTRACT. Guallatiri Volcano (18°25’S, 69°05’W) is a large edifice located on the Chilean Altiplano near the Bo- livia/Chile border. This Pleistocene-Holocene construct, situated at the southern end of the Nevados de Quimsachata chain, is an andesitic/dacitic complex formed of early stage lava flows and later stage coulées and lava domes.