Croton Hydrilla Control Project FIVE-YEAR MANAGEMENT PLAN NOVEMBER 30, 2018

Total Page:16

File Type:pdf, Size:1020Kb

Croton Hydrilla Control Project FIVE-YEAR MANAGEMENT PLAN NOVEMBER 30, 2018 Croton Hydrilla Control Project FIVE-YEAR MANAGEMENT PLAN NOVEMBER 30, 2018 Andrew M. Cuomo, Governor | Basil Seggos, Commissioner Executive Summary The federally listed noxious weed Hydrilla DEC is the lead agency and the Bureau of verticillata (monoecious biotype) was first Invasive Species and Ecosystem Health discovered in New York State in 2008. Now (Division of Lands and Forests [DLF]) is the lead found in more than 10 counties, this invasive program on the Croton River Hydrilla Control plant is regulated by 6 New York Codes, Rules Project. In an effort to address the complexities and Regulations Part 575 Prohibited and of the project, DLF’s Invasive Species Regulated Invasive Species. Hydrilla is a high- Coordination Section (ISCS) staff have outlined priority species for New York and many other a five-year plan that relies heavily upon adaptive states because once it becomes established it is management. This plan describes the extremely difficult and expensive to remove. It foundation for the project resulting from several alters native habitats, impacts fisheries, prohibits years of studies, field surveys, and the water recreation, and affects local economies. experience of the New York Hydrilla Task Force With the exception of three infestations, the at other locations. The plan examines all majority of the hydrilla growth in New York is management options available and recommends confined to small, isolated ponds and lakes. The the best management practice for this site, three large-scale infestations in the state are which was implemented in 2017 (Year 1). Also located in the Cayuga Inlet/Fall Creek in Ithaca, outlined is the additional work (expanding Tompkins County/Aurora, Cayuga County; the communication, education and outreach, and Tonawanda Creek/Buffalo County, Erie Canal, assessing impacts) that needs to occur in order Niagara County; and the New Croton to support the project in the future. Flexibility is Reservoir/Croton River, Westchester County. essential for this project and assessments will Each infestation presents different challenges be conducted at the end of each season. Annual that influence management decisions. Control updates will provide an evaluation of the and management of the hydrilla infestation in previous season’s results. It is DEC’s intention Croton involves the New Croton Reservoir, to deliver a thorough and effective control and which provides drinking water for New York City; management plan that can serve as a template the upper Croton River which flows over the for other projects. wellfields and aquifers that provide drinking water for the Village of Croton-on-Hudson; public swimming and fishing areas; a trout fishery managed by New York State Department of Environmental Conservation (DEC) Region 3; rare plants; and tidal influence throughout at least onethird of the Croton River, which flows directly into the Hudson River. To date, control and management of the Croton infestation is the most complex invasive management project in New York. CROTON HYDRILLA CONTROL PROJECT | FIVE-YEAR MANAGEMENT PLAN i Contents Introduction ................................................................................................................................................. 1 Hydrilla in New York .................................................................................................................................. 1 Background ............................................................................................................................................... 1 Urgency for Response .............................................................................................................................. 3 Generic Hydrilla Management Options ..................................................................................................... 4 Croton Infestation Overview ...................................................................................................................... 6 Management Scenarios in the Croton River ............................................................................................. 7 New Croton Reservoir Management ......................................................................................................... 9 Results of 2016 Pilot Study ..................................................................................................................... 11 Outreach and Communication ................................................................................................................. 12 Educational Materials .............................................................................................................................. 12 Public Stakeholder Meetings ................................................................................................................... 12 Web Page ................................................................................................................................................ 12 Shoreline signs ........................................................................................................................................ 12 Monitoring .................................................................................................................................................. 14 Plants ...................................................................................................................................................... 14 Water ....................................................................................................................................................... 15 Control and Management ......................................................................................................................... 17 New Croton Reservoir ............................................................................................................................. 17 Croton River below Black Rock Dam to the mouth of the river ............................................................... 17 Croton Bay .............................................................................................................................................. 18 Adaptive Management ............................................................................................................................ 18 Ongoing Project Considerations ............................................................................................................. 18 Permitting ................................................................................................................................................ 18 Hydrilla Hunters ........................................................................................................................................ 20 Additional Impact Assessment ................................................................................................................ 21 Benthic Macroinvertebrate Survey .......................................................................................................... 21 Vallisneria Biotype Tests ......................................................................................................................... 21 Cyanobacteria Testing ............................................................................................................................ 21 Information About Fluridone.................................................................................................................... 22 Involved Staff and Stakeholders ............................................................................................................. 23 Literature Cited .......................................................................................................................................... 24 Additional Resources ............................................................................................................................... 25 Figure 1 Location Map Figure 2 Environmental Areas Figure 3 Preferred Treatment Figure 4 Limited Treatment ii CROTON HYDRILLA CONTROL PROJECT | FIVE-YEAR MANAGEMENT PLAN List of Acronyms CFS Cubic Feet per Second (1 cfs = 1.858 million gallons per day) DEC New York State Department of Environmental Conservation NYCDEP New York City Department of Environmental Protection DLF DEC Division of Lands and Forests DMM DEC Division of Materials Management DOH New York State Department of Health DOW DEC Division of Water EAF Environmental Assessment Form ELAP Environmental Laboratory Approval Program EPA United States Environmental Protection Agency NYNHP New York Natural Heritage Program OPRHP New York State Office of Parks, Recreation and Historic Preservation PPM Parts per Million (1 ppm = 1 milligram per liter) PPB Parts per Billion (1 ppb = 1 microgram per liter) PRISM Partnership for Regional Invasive Species Management SAV Submerged Aquatic Vegetation SEQR State Environmental Quality Review USACE United States Army Corps of Engineers USMA United States Military Academy CROTON HYDRILLA CONTROL PROJECT | FIVE-YEAR MANAGEMENT PLAN iii Introduction This document provides a five-year Background management plan for the control of Hydrilla verticillata, a highly invasive aquatic plant in the Hydrilla was reported in the Croton River, Croton River Watershed, in the towns of New York City’s New Croton Reservoir, and Cortlandt and Ossining, Westchester County, Croton Bay of the Hudson River in Westchester New York
Recommended publications
  • Red Names=Invasive Species Green Names=Native Species
    CURLY-LEAF PONDWEED EURASIAN WATERMIL- FANWORT CHARA (Potamogeton crispus) FOIL (Cabomba caroliniana) (Chara spp.) This undesirable exotic, also known (Myriophyllum spicatum) This submerged exotic Chara is typically found growing in species is not common as Crisp Pondweed, bears a waxy An aggressive plant, this exotic clear, hard water. Lacking true but management tools are cuticle on its upper leaves making milfoil can grow nearly 10 feet stems and leaves, Chara is actually a limited. Very similar to them stiff and somewhat brittle. in length forming dense mats form of algae. It’s stems are hollow aquarium species. Leaves The leaves have been described as at the waters surface. Grow- with leaf-like structures in a whorled are divided into fine resembling lasagna noodles, but ing in muck, sand, or rock, it pattern. It may be found growing branches in a fan-like ap- upon close inspection a row of has become a nuisance plant with tiny, orange fruiting bodies on pearance, opposite struc- “teeth” can be seen to line the mar- in many lakes and ponds by the branches called akinetes. Thick ture, spanning 2 inches. gins. Growing in dense mats near quickly outcompeting native masses of Chara can form in some Floating leaves are small, the water’s surface, it outcompetes species. Identifying features areas. Often confused with Starry diamond shape with a native plants for sun and space very include a pattern of 4 leaves stonewort, Coontail or Milfoils, it emergent white/pinkish early in spring. By midsummer, whorled around a hollow can be identified by a gritty texture flower.
    [Show full text]
  • Hydrilla Vs. New York
    1 comicvine.com Hydrilla vs. New York UMISC October 16, 2018 2 Hydrilla in New York High priority species prohibited by Part 575 Now found at 32 locations throughout New York Often found near boat launches DeviantArt Waterfowl also considered a vector 3 Hydrilla in New York First discovered in 2008 2008 - Creamery Pond, Orange County 2008 – Sans Souci Lake, Lotus Lake, Suffolk County 2009 - Lake Ronkonkoma, Blydenburgh/New Mill Pond, Phillips Mill Pond, Suffolk County 2009 – Frost Mill Pond, Suffolk County 2011- Smith Pond, Great Patchoque Lake, Suffolk County; Cayuga Inlet, Tompkins County 2012 – several private ponds, Broome County 2012 – Cayuga Lake, Tompkins County; Tonawanda/Erie Canal, Niagara and Erie Counties 2013 – Croton River, Westchester County 2013 – Millers Pond, Suffolk County; Unnamed pond, Tioga County 2014 – New Croton Reservoir, Westchester County 2014 – Prospect Park, Brooklyn, Kings County 2015 – Tinker Nature Park pond, Monroe County 2016 – Aurora (Cayuga Lake), Tompkins County 2016 – Spencer Pond, Tioga County 2016 – Halsey Neck Road Pond, Suffolk County 2018 - Kuhlman Pond, Tioga County 2018 - Avon Pond, Frank Melville Pond, and East Setauket, Suffolk County 2018 – Allison Pond, Staten Island, Richmond County 4 Management Options in Place 1) No management 2) Benthic mats 3) Triploid Grass Carp 4) Herbicide 5) Combination (IPM) 5 Option: No management Suffolk County: • Lake Ronkonkoma (10 acres of 240 acres) • Sans Souci (southern 5 acres) • Lotus Lake (13 acres) • Blydenburgh/New Mill Pond (110 acres, coverage
    [Show full text]
  • Introduction to Common Native & Invasive Freshwater Plants in Alaska
    Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska Cover photographs by (top to bottom, left to right): Tara Chestnut/Hannah E. Anderson, Jamie Fenneman, Vanessa Morgan, Dana Visalli, Jamie Fenneman, Lynda K. Moore and Denny Lassuy. Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska This document is based on An Aquatic Plant Identification Manual for Washington’s Freshwater Plants, which was modified with permission from the Washington State Department of Ecology, by the Center for Lakes and Reservoirs at Portland State University for Alaska Department of Fish and Game US Fish & Wildlife Service - Coastal Program US Fish & Wildlife Service - Aquatic Invasive Species Program December 2009 TABLE OF CONTENTS TABLE OF CONTENTS Acknowledgments ............................................................................ x Introduction Overview ............................................................................. xvi How to Use This Manual .................................................... xvi Categories of Special Interest Imperiled, Rare and Uncommon Aquatic Species ..................... xx Indigenous Peoples Use of Aquatic Plants .............................. xxi Invasive Aquatic Plants Impacts ................................................................................. xxi Vectors ................................................................................. xxii Prevention Tips .................................................... xxii Early Detection and Reporting
    [Show full text]
  • Coastal Assessment Form Addendum
    X NY Department of State, U.S. Office of Ocean & Coastal Resource Management The LWRP Update includes projects to improve water quality in Croton Bay. X X The LWRP Update proposes improvements to several Village parks and a Village-wide parks maintenance and improvement plan. Note: This section is designed for site-specific actions rather than area-wide or generic proposals. The answers to the questions reflect the fact the LWRP Update would apply to all actions wtihin the Village's coastal area, and that the Update proposes several implementation projects. These projects, if undertaken, would be subject to individual consistency review. X X Croton‐on‐Hudson Local Waterfront Revitalization Program Update VILLAGE OF CROTON‐ON‐HUDSON, NEW YORK COASTAL ASSESSMENT FORM ADDENDUM Lead Agency Village of Croton‐on‐Hudson Board of Trustees Stanley H. Kellerhouse Municipal Building 1 Van Wyck Street Croton‐on‐Hudson, NY 10520 Contact: Leo A. W. Wiegman, Mayor (914)‐271‐4848 Prepared by BFJ Planning 115 Fifth Avenue New York, NY 10003 Contact: Susan Favate, AICP, Principal (212) 353‐7458 Croton-on-Hudson LWRP Update CAF July 31, 2015 Croton-on-Hudson LWRP Update CAF July 31, 2015 1.0 LOCATION AND DESCRIPTION OF PROPOSED ACTION Pursuant to the New York State Environmental Quality Review Act (SEQR), the proposed action discussed in this Full Environmental Assessment Form (EAF) is the adoption of an update to the 1992 Local Waterfront Revitalization Program (LWRP) of the Village of Croton‐on‐Hudson. In considering adoption of the LWRP Update, the Village of Croton‐on‐Hudson Board of Trustees (BOT) are proposing to modify certain existing policies to reflect changed conditions and priorities since the 1992 LWRP, and to propose specific projects to implement those policies.
    [Show full text]
  • Hydrilla Fact Sheet
    HHEADINGEADING OFFOFF HHYDRILLAYDRILLA Another invasive species is heading towards the Great Lakes: Hydrilla verticillata onnative species are a great threat to the Great Because it is so invasive and pervasive, hydrilla Lakes region. So far, much focus has been greatly disrupts the ecological balance of all the areas Nplaced on sea lamprey, zebra mussels, alewife, where it grows. Large, dense hydrilla mats inhibit spiny water fleas, ruffe, goby, purple loosestrife and sunlight from penetrating the water and shade out native Eurasian watermilfoil. Soon, another species - Hydrilla plant species that live in the waters below them. Because verticillata – may join this list. hydrilla mats slow the movement of water, sediments Hydrilla is a robust aquatic plant that may survive build up where hydrilla thrives, decreasing the turbidity and thrive in waters of this area. As of December 2005, and creating good breeding grounds for mosquitoes. biologists have found no evidence of hydrilla in Michigan’s shallow Great Economic Impacts Lakes bays, 11,000 inland lakes or Hydrilla has serious economic thousands of miles of streams. effects resulting from the ecological However, the level of concern for impacts. As mentioned before, hydrilla ecological damage and economic harm can slow the movement of water, to Michigan’s water resources has disrupting the water supply, impeding increased due to the fact that hydrilla drainage and irrigation. This adds costs is now known to exist in two Great to the agricultural economy and also Lakes states, Pennsylvania and New negatively affects real estate values that York. are dependent upon attractive nearby waterways. Ecological Impacts Hydrilla also affects recreational Hydrilla has many adaptive qualities activities and the associated economy.
    [Show full text]
  • 2014 Hydrilla Integrated Management
    Reviewed January 2017 Publishing Information The University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) is an Equal Opportunity Institution. UF/IFAS is committed to diversity of people, thought and opinion, to inclusiveness and to equal opportunity. The use of trade names in this publication is solely for the purpose of providing specific information. UF/IFAS does not guarantee or warranty the products named, and references to them in this publication do not signify our approval to the exclusion of other products of suitable composition. All chemicals should be used in accordance with directions on the manufacturer’s label. Use pesticides and herbicides safely. Read and follow directions on the manufacturer’s label. For questions about using pesticides, please contact your local county Extension office. Visit http://solutionsforyourlife.ufl.edu/map to find an office near you. Copyright 2014, The University of Florida Editors Jennifer L. Gillett-Kaufman (UF/IFAS) Verena-Ulrike Lietze (UF/IFAS) Emma N.I. Weeks (UF/IFAS) Contributing Authors Julie Baniszewski (UF/IFAS) Ted D. Center (USDA/ARS, retired) Byron R. Coon (Argosy University) James P. Cuda (UF/IFAS) Amy L. Giannotti (City of Winter Park) Judy L. Gillmore (UF/IFAS) Michael J. Grodowitz (U.S. Army Engineer Research and Development Center) Dale H. Habeck, deceased (UF/IFAS) Nathan E. Harms (U.S. Army Engineer Research and Development Center) Jeffrey E. Hill (UF/IFAS) Verena-Ulrike Lietze (UF/IFAS) Jennifer Russell (UF/IFAS) Emma N.I. Weeks (UF/IFAS) Marissa L. Williams (City of Maitland) External Reviewers Nancy L. Dunn (Florida LAKEWATCH volunteer) Stephen D.
    [Show full text]
  • Hydrilla Verticillata Threatens South African Waters
    Hydrilla verticillata threatens South African waters J.A. Coetzee1 and P.T. Madeira2 Summary South Africa’s inland water systems are currently under threat from hydrilla, Hydrilla verticillata L. Royle (Hydrocharitaceae), the worst submerged aquatic weed in the USA. The presence of the weed was confirmed for the first time in South Africa in February 2006, on Pongolapoort Dam in KwaZulu-Natal. An aerial survey revealed that the infestation on this dam covers approximately 600 ha, which is far greater than initially thought. Despite reports that it may be present in other water bodies, surveys have shown that it is restricted to Pongolapoort Dam. We conducted a boater survey which showed that there is significant potential for this devastating weed to spread beyond Pongo- lapoort Dam, and containment of hydrilla is of utmost priority. Research into the suitability of the already established biological control agents, Hydrellia pakistanae Deonier and H. balciunasi Bock (Diptera: Ephydridae), from the USA, as potential agents in South Africa, is also being conducted. However, the South African hydrilla biotype is different from the biotypes in the USA, and this needs to be borne in mind when considering which agents to release. Keywords: potential spread, management, genetic analysis. Introduction Current distribution of The confirmation of Hydrilla verticillata L. Royle hydrilla in South Africa (Hydrocharitaceae) (hydrilla) in South Africa from and potential for spread Pongolapoort Dam, KwaZulu-Natal province (KZN), in early 2006 (L. Henderson, personal communication, Hydrilla is one of the most problematic submerged 2006) prompted immediate action to contain and con- plants worldwide, invading both tropical and temperate trol this weed, and prevent further spread to other wa- regions because of its tolerance to a wide range of envi- ter bodies around South Africa.
    [Show full text]
  • Coventry Lake – Hydrilla Management Program
    Coventry Lake – Hydrilla Management Program 2018 Final Report Draft - February 2019 Prepared For: Prepared By: SŌLitude Lake Management 590 Lake Street Shrewsbury, MA 01545 Northeast Aquatic Research George W. Knoecklein, Ph.D. 74 Higgins Highway Northeast Aquatic Research Mansfield Center, CT 06250 Table of Contents Introduction ............................................................................................................................................ 1 2018 Management Approach .................................................................................................................. 1 Coventry Lake Aquatic Plant Survey Results ............................................................................................. 2 Recommendations .................................................................................................................................. 7 Introduction Hydrilla (Hydrilla verticillata) in Coventry Lake was treated with the systemic herbicide Fluridone for the first time in 2018. Hydrilla, first found at the State of CT boat ramp in 2015, was treated locally with two partial lake treatments with the herbicide Aquathol-K (endothall) in 2016 and 2017. Isolated Hydrilla plants and beds smaller than 3’ in diameter were addressed with benthic barriers in 2017. Our surveys in October 2017 showed varying success from the endothall treatments but more importantly located several new areas with Hydrilla, indicating that the plant was no longer confined to the beds found in 2015 but was spreading
    [Show full text]
  • Macroinvertebrate Distribution in Relation to Land Use and Water Chemistry in New York City Drinking-Water-Supply Watersheds
    J. N. Am. Benthol. Soc., 2006, 25(4):954–976 Ó 2006 by The North American Benthological Society Macroinvertebrate distribution in relation to land use and water chemistry in New York City drinking-water-supply watersheds Erika B. Kratzer1, John K. Jackson2, David B. Arscott3, Anthony K. Aufdenkampe4, Charles L. Dow5, L. A. Kaplan6, 7 6 J. D. Newbold , AND Bernard W. Sweeney Stroud Water Research Center, 970 Spencer Road, Avondale, Pennsylvania 19311 USA Abstract. Macroinvertebrate communities were examined in conjunction with landuse and water- chemistry variables at 60 sites in the NYC drinking-water-supply watersheds over a 3-y period. The watersheds are in 2 adjacent regions of New York State (east of Hudson River [EOH] and west of Hudson River [WOH]) that are geographically distinct and have unique macroinvertebrate communities. Nonforested land use at EOH sites was mostly urban (4–57%), whereas land use at sites in the rural WOH region was more agricultural (up to 26%) and forested (60–97%). Land use accounted for 47% of among-site variability in macroinvertebrate communities in the EOH region and was largely independent of geological effects. Land use accounted for 40% of among-site variability in macroinvertebrate communities in the WOH region but was correlated with underlying geology. Comparisons among 3 landuse scales emphasized the importance of watershed- and riparian-scale land use to macroinvertebrate communities in both regions. Multivariate and bivariate taxa–environment relationships in the EOH and WOH regions identified specific landuse and water-chemistry gradients and, in general, showed a continuum in conditions across the watersheds.
    [Show full text]
  • RAPID RESPONSE PLAN for HYDRILLA (Hydrilla Verticillata) in MASSACHUSETTS
    RAPID RESPONSE PLAN FOR HYDRILLA (Hydrilla verticillata) IN MASSACHUSETTS Prepared for the Massachusetts Department of Conservation and Recreation 251 Causeway Street, Suite 700 Boston, MA 02114-2104 Prepared by ENSR 2 Technology Park Drive Westford, MA 01886 June 2005 RAPID RESPONSE PLAN FOR HYDRILLA (Hydrilla verticillata) IN MASSACHUSETTS Species Identification and Taxonomy ............................................................................................1 Species Origin and Geography .......................................................................................................2 Species Ecology................................................................................................................................3 Detection of Invasion.............................................................................................................3 Species Confirmation ............................................................................................................4 Quantifying the Extent of Invasion .......................................................................................5 Species Threat Evaluation ...............................................................................................................6 Communication and Education.............................................................................................8 Quarantine Options..............................................................................................................10 Early Eradication Options ...................................................................................................12
    [Show full text]
  • Bird Species Abundance and Their Correlationship with Microclimate and Habitat Variables at Natural Wetland Reserve, Peninsular Malaysia
    Hindawi Publishing Corporation International Journal of Zoology Volume 2011, Article ID 758573, 17 pages doi:10.1155/2011/758573 Research Article Bird Species Abundance and Their Correlationship with Microclimate and Habitat Variables at Natural Wetland Reserve, Peninsular Malaysia Muhammad Nawaz Rajpar1 and Mohamed Zakaria2 1 Forest Education Division, Pakistan Forest Institute, Peshawar 25120, Pakistan 2 Faculty of Forestry, Universiti Putra Malaysia (UPM), Selangor, 43400 Serdang, Malaysia Correspondence should be addressed to Mohamed Zakaria, [email protected] Received 6 May 2011; Revised 29 August 2011; Accepted 5 September 2011 Academic Editor: Iain J. McGaw Copyright © 2011 M. N. Rajpar and M. Zakaria. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Birds are the most conspicuous and significant component of freshwater wetland ecosystem. Presence or absence of birds may indicate the ecological conditions of the wetland area. The objectives of this study were to determine bird species abundance and their relationship with microclimate and habitat variables. Distance sampling point count method was applied for determining species abundance and multiple regressions was used for finding relationship between bird species abundance, microclimate and habitat variables. Bird species were monitored during November, 2007 to January, 2009. A total of 8728 individual birds comprising 89 species and 38 families were detected. Marsh Swamp was swarmed by 84 species (69.8%) followed open water body by 55 species (17.7%) and lotus swamp by 57 species (12.6%). Purple swamphen Porphyrio porphyrio (9.1% of all detections) was the most abundant bird species of marsh swamp, lesser whistling duck—Dendrocygna javanica (2.3%) was dominant species of open water body and pink-necked green pigeon—Treron vernans (1.7%) was most common species of lotus swamp.
    [Show full text]
  • Croton-To-Highlands Biodiversity Plan
    $8.00 Croton-to-Highlands Biodiversity Plan Balancing Development and the Environment in the Hudson River Estuary Catchment Metropolitan Conservation Alliance a program of MCA Technical Paper Series: No. 7 Croton-to-Highlands Biodiversity Plan Balancing Development and the Environment in the Hudson River Estuary Catchment by Nicholas A. Miller, M.S. and Michael W. Klemens, Ph.D. Metropolitan Conservation Alliance Wildlife Conservation Society Bronx, NY Cover photograph: Hunter Brook, Yorktown, NY. ©WCS/MCA, Kevin J. Ryan Suggested citation: Miller, N. A. and M. W. Klemens. 2004. Croton-to-Highlands Biodiversity Plan: Balancing development and the environment in the Hudson River Estuary Catchment. MCA Technical Paper No. 7, Metropolitan Conservation Alliance, Wildlife Conservation Society, Bronx, New York. Additional copies of this document can be obtained from: Metropolitan Conservation Alliance Wildlife Conservation Society 68 Purchase Street, 3rd Floor Rye, New York 10580 (914) 925-9175 [email protected] ISBN 0-9724810-2-8 ISSN 1542-8133 Printed on partially recycled paper ACKNOWLEDGEMENTS This project would not have been possible without the enthusiastic collaboration and support of our key partners: the towns of Cortlandt, New Castle, Putnam Valley, and Yorktown. These communities have helped to guide this project and have contributed to its success through active engagement at meetings and planning charettes, on-going outreach to their citizenry, and contribution of seed monies. We extend thanks to all of our partners within these four communities (including many elected and appointed officials, town staff, volunteer board members, and concerned citizens) who have moved this project forward and who continue to make conservation of biodiversity a priority within their towns.
    [Show full text]