A Package Adding Automatic Differentiation to Snopt

Total Page:16

File Type:pdf, Size:1020Kb

A Package Adding Automatic Differentiation to Snopt Argonne National Lab oratory South Cass Avenue Argonne IL ANLMCSTM Users Guide for SnadiOpt A Package Adding Automatic Dierentiation to Snopt by E Michael Gertz Mathematics and Computer Science Division Argonne National Lab oratory Argonne Illinois Philip E Gil l and Julia Muetherig Department of Mathematics University of California San Diego La Jolla California Mathematics and Computer Science Division Technical Memorandum No January gertzmcsanlgov pgillucsdedu jmuethucsdedu httpwwwmcsanlgovgertz httpwwwscicompucsdedupeg httpwwwscicompucsdedujulia This work was supp orted by the Mathematical Information and Computational Sciences Division subprogram of the Oce of Advanced Scientic Computing Research US Department of Energy under Contract WEng and by National Science Foundation Grant CCR Argonne National Lab oratory with facilities in the states of Illinois and Idaho is owned by the United States Government and op erated by The University of Chicago under the provisions of a contract with the Department of Energy DISCLAIMER This rep ort was prepared as an accountofwork sp onsored by an agency of the United States Government Neither the United States Government nor any agency thereof nor The University of Chicago nor anyoftheiremployees or ocers makes anywarranty express or implied or assumes any legal liability or resp onsibility for the accuracy completeness or usefulness of any information apparatus pro duct or pro cess disclosed or represents that its use would not infringe privatelyowned rights Reference herein to any sp ecic commercial pro duct pro cess or service by trade name trademark manufacturer or otherwise do es not necessarily constitute or imply its endorsement recommendation or favoring by the United States Governmentorany agency thereof The views and opinions of do cument authors expressed herein do not necessarily state or reect those of the United States Government or any agency thereof Argonne National Lab oratory or The University of Chicago ii Contents Abstract Intro duction Problem Types Why Automatic Dierentiation ADIFOR Who Should Use This Package How to Read This Manual Basic Usage Additional Resources Automatic Dierentiation UserSupplied Subroutines The Function Denition Routine The Initialization Routine An Example Problem Invoking SnadiOpt Lo cating Executables and Libraries Basic Usage Files Generated by snadioptpl Merging Changes AdvancedUsage Summary of All Options Building the Executable Typical Usage Sub ordinate Makeles Useful makefile Targets Useful makefile Variables Dense ADIFOR References Index iii Users Guide for SnadiOpt A Package Adding Automatic Dierentiation to Snopt by E Michael Gertz Philip E Gil l and Julia Muetherig Abstract SnadiOpt is a package that supp orts the use of the automatic dierentiatio n package ADIFOR with the optimization package Snopt Snopt is a generalpurp ose system for solving optimization problems with many variables and constraints It minimizes a linear or nonlinear function sub ject to b ounds on the variables and sparse linear or nonlinear constraints It is suitable for largescale linear and quadratic programming and for linearly constrained optimization as well as for general nonlinear programs The metho d used by Snopt requires the rst derivatives of the ob jective and con straint functions to b e available The SnadiOpt package allows users to avoid the time consuming and errorprone pro cess of evaluating and co ding these derivatives Given Fortran co de for evaluating only the values of the ob jective and constraints SnadiOpt automatically generates the co de for evaluating the derivatives and builds the relevant Snopt input les and sparse data structures Keywords Largescale nonlinear programming constrained optimization SQP metho ds automatic dierentiati on Fortran software Users Guide for SnadiOpt Intro duction This is the users guide for SnadiOpt a package that adds the automatic dierentiation capability to the nonlinear optimization package Snopt SnadiOpt uses the sourceto source automatic dierentiation package ADIFOR to p erform the dierentiation Problem Typ es Snopt is a collection of Fortran subroutines for solving a nonlinear programming problem assumed to b e stated in the following form NP min or max F x obj x sub ject to l x u L F x U where u U l andL are constantvectors of upp er and lower b ounds F xisavector of smo oth linear and nonlinear problem functions and F x denotes the comp onentof F to obj b e minimized or maximized Note that upp er and lower b ounds are sp ecied for all variables and constraints This form allows full generality in sp ecifying various typ es of constraint Sp ecial values are used to indicate absent b ounds l or u for appropriate j Free variables and free j j constraints free rows are ones that have b oth b ounds innite Similarlyxedvariables have l u and equality constraints have L U j j j j The metho d used by Snopt requires that the elements J xF x x of the Jaco ij i j bian matrix of rst derivatives b e known at any p oint x In practice it is often inconvenient or imp ossible to co de the derivatives and so Snopt allows the user to co de as manyderiva tives as is convenient Snopt then estimates unknown derivatives by nite dierences by making a call to F for eachvariable x whose partial derivatives need to b e estimated j However nite dierences reduce the reliability of the optimization algorithm and can b e exp ensive if there are many suchvariables x TheSnadiOpt package allows the user to avoid j the timeconsuming and errorprone pro cess of evaluating and co ding derivatives without the need for Snopt to compute nite dierences Often an element J is constant which implies that variable x o ccurs only linearly ij j in the problem function F x If a signicantnumb er of these constant elements are zero j then J is known as a sparse matrix and Snopt uses a sparse matrix format to store only the nonzero elements of J SnadiOpt automatically identies constant and zero Jacobian elements by using a scheme that evaluates the Jacobian at a number of points close to the starting p oint see Section Given Fortran co de for evaluating only F x SnadiOpt automatically generates co de for evaluating J and builds the relevant Snopt input les and sparse data structures Why Automatic Dierentiation Writing co de for the derivatives of F x is dicult time consuming and error prone es p ecially when problems involvemanyvariables and constraints Automatic dierentiation AD to ols in this case ADIFOR quickly provide correct and numerically accurate derivative functions from the co de used to evaluate the ob jective and constraint functions Prior to the wide availability of AD software and ADbased mo deling languages nu merical dierentiation was the only alternativetoproviding derivative co de Unfortunately numerical dierentiation is an inherently unstable pro cess that causes b oth theoretical and practical diculties for nonlinear solvers Numerical dierentiation places a severe theo retical limit on the accuracy of the solution that may b e computed by an algorithm see eg Chapter In practice co de that uses numerical dierentiation tends to need Introduction more iterations to nd a solution than do es co de that uses exact derivatives Furthermore co de that uses numerical dierentiation is typically less robust and will fail to nd solutions for problems that mighthave b een solved if analytic derivatives were supplied Notwith standing these diculties numerical dierentiation was often used to avoid the high cost of handco ding the exact derivatives With mo dern AD to ols derivativecodemay b e quickly obtained leading to a signicant increase in user pro ductivityeven on simple problems Moreover functions can nowbe dierentiated that were once considered to o complex to b e co ded by hand An example is a function dened in terms of the output from an ordinary dierential equation solver ADIFOR has b een successfully applied to such functions Automatic dierentiation allows users to develop mo dels quickly This increase in pro ductivity makes optimization software a much more useful to ol for scientists who often wish to exp eriment with dierent ob jective functions and dierent sets of constraints ADIFOR ADIFOR is a robust mature automatic dierentiation to ol develop ed through a collab ora tive pro ject b etween the Mathematics and Computer Science Division at Argonne National Lab oratory and the Center for ResearchonParallel Computation at Rice University The package is a sourcetosource translator for functions written in Fortran It is widely available and runs on many p opular platforms Moreover the source co de for the ADI FOR libraries but not the translator is provided making it p ossible to compile and run ADIFORgenerated co de on most platforms ADIFOR implements the forward mo de for automatic dierentiation although it do es make some use of the reverse mo de internally As a practical matter this means that ADIFORgenerated co de will tend to run most quickly if the number of variables is not much larger than the numb er of constraints Who Should Use This Package
Recommended publications
  • University of California, San Diego
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Computational Methods for Parameter Estimation in Nonlinear Models A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics with a Specialization in Computational Physics by Bryan Andrew Toth Committee in charge: Professor Henry D. I. Abarbanel, Chair Professor Philip Gill Professor Julius Kuti Professor Gabriel Silva Professor Frank Wuerthwein 2011 Copyright Bryan Andrew Toth, 2011 All rights reserved. The dissertation of Bryan Andrew Toth is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2011 iii DEDICATION To my grandparents, August and Virginia Toth and Willem and Jane Keur, who helped put me on a lifelong path of learning. iv EPIGRAPH An Expert: One who knows more and more about less and less, until eventually he knows everything about nothing. |Source Unknown v TABLE OF CONTENTS Signature Page . iii Dedication . iv Epigraph . v Table of Contents . vi List of Figures . ix List of Tables . x Acknowledgements . xi Vita and Publications . xii Abstract of the Dissertation . xiii Chapter 1 Introduction . 1 1.1 Dynamical Systems . 1 1.1.1 Linear and Nonlinear Dynamics . 2 1.1.2 Chaos . 4 1.1.3 Synchronization . 6 1.2 Parameter Estimation . 8 1.2.1 Kalman Filters . 8 1.2.2 Variational Methods . 9 1.2.3 Parameter Estimation in Nonlinear Systems . 9 1.3 Dissertation Preview . 10 Chapter 2 Dynamical State and Parameter Estimation . 11 2.1 Introduction . 11 2.2 DSPE Overview . 11 2.3 Formulation . 12 2.3.1 Least Squares Minimization .
    [Show full text]
  • Click to Edit Master Title Style
    Click to edit Master title style MINLP with Combined Interior Point and Active Set Methods Jose L. Mojica Adam D. Lewis John D. Hedengren Brigham Young University INFORM 2013, Minneapolis, MN Presentation Overview NLP Benchmarking Hock-Schittkowski Dynamic optimization Biological models Combining Interior Point and Active Set MINLP Benchmarking MacMINLP MINLP Model Predictive Control Chiller Thermal Energy Storage Unmanned Aerial Systems Future Developments Oct 9, 2013 APMonitor.com APOPT.com Brigham Young University Overview of Benchmark Testing NLP Benchmark Testing 1 1 2 3 3 min J (x, y,u) APOPT , BPOPT , IPOPT , SNOPT , MINOS x Problem characteristics: s.t. 0 f , x, y,u t Hock Schittkowski, Dynamic Opt, SBML 0 g(x, y,u) Nonlinear Programming (NLP) Differential Algebraic Equations (DAEs) 0 h(x, y,u) n m APMonitor Modeling Language x, y u MINLP Benchmark Testing min J (x, y,u, z) 1 1 2 APOPT , BPOPT , BONMIN x s.t. 0 f , x, y,u, z Problem characteristics: t MacMINLP, Industrial Test Set 0 g(x, y,u, z) Mixed Integer Nonlinear Programming (MINLP) 0 h(x, y,u, z) Mixed Integer Differential Algebraic Equations (MIDAEs) x, y n u m z m APMonitor & AMPL Modeling Language 1–APS, LLC 2–EPL, 3–SBS, Inc. Oct 9, 2013 APMonitor.com APOPT.com Brigham Young University NLP Benchmark – Summary (494) 100 90 80 APOPT+BPOPT APOPT 70 1.0 BPOPT 1.0 60 IPOPT 3.10 IPOPT 50 2.3 SNOPT Percentage (%) 6.1 40 Benchmark Results MINOS 494 Problems 5.5 30 20 10 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Not worse than 2 times slower than
    [Show full text]
  • Specifying “Logical” Conditions in AMPL Optimization Models
    Specifying “Logical” Conditions in AMPL Optimization Models Robert Fourer AMPL Optimization www.ampl.com — 773-336-AMPL INFORMS Annual Meeting Phoenix, Arizona — 14-17 October 2012 Session SA15, Software Demonstrations Robert Fourer, Logical Conditions in AMPL INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 1 New and Forthcoming Developments in the AMPL Modeling Language and System Optimization modelers are often stymied by the complications of converting problem logic into algebraic constraints suitable for solvers. The AMPL modeling language thus allows various logical conditions to be described directly. Additionally a new interface to the ILOG CP solver handles logic in a natural way not requiring conventional transformations. Robert Fourer, Logical Conditions in AMPL INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 2 AMPL News Free AMPL book chapters AMPL for Courses Extended function library Extended support for “logical” conditions AMPL driver for CPLEX Opt Studio “Concert” C++ interface Support for ILOG CP constraint programming solver Support for “logical” constraints in CPLEX INFORMS Impact Prize to . Originators of AIMMS, AMPL, GAMS, LINDO, MPL Awards presented Sunday 8:30-9:45, Conv Ctr West 101 Doors close 8:45! Robert Fourer, Logical Conditions in AMPL INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 3 AMPL Book Chapters now free for download www.ampl.com/BOOK/download.html Bound copies remain available purchase from usual
    [Show full text]
  • Standard Price List
    Regular price list April 2021 (Download PDF ) This price list includes the required base module and a number of optional solvers. The prices shown are for unrestricted, perpetual named single user licenses on a specific platform (Windows, Linux, Mac OS X), please ask for additional platforms. Prices Module Price (USD) GAMS/Base Module (required) 3,200 MIRO Connector 3,200 GAMS/Secure - encrypted Work Files Option 3,200 Solver Price (USD) GAMS/ALPHAECP 1 1,600 GAMS/ANTIGONE 1 (requires the presence of a GAMS/CPLEX and a GAMS/SNOPT or GAMS/CONOPT license, 3,200 includes GAMS/GLOMIQO) GAMS/BARON 1 (for details please follow this link ) 3,200 GAMS/CONOPT (includes CONOPT 4 ) 3,200 GAMS/CPLEX 9,600 GAMS/DECIS 1 (requires presence of a GAMS/CPLEX or a GAMS/MINOS license) 9,600 GAMS/DICOPT 1 1,600 GAMS/GLOMIQO 1 (requires presence of a GAMS/CPLEX and a GAMS/SNOPT or GAMS/CONOPT license) 1,600 GAMS/IPOPTH (includes HSL-routines, for details please follow this link ) 3,200 GAMS/KNITRO 4,800 GAMS/LGO 2 1,600 GAMS/LINDO (includes GAMS/LINDOGLOBAL with no size restrictions) 12,800 GAMS/LINDOGLOBAL 2 (requires the presence of a GAMS/CONOPT license) 1,600 GAMS/MINOS 3,200 GAMS/MOSEK 3,200 GAMS/MPSGE 1 3,200 GAMS/MSNLP 1 (includes LSGRG2) 1,600 GAMS/ODHeuristic (requires the presence of a GAMS/CPLEX or a GAMS/CPLEX-link license) 3,200 GAMS/PATH (includes GAMS/PATHNLP) 3,200 GAMS/SBB 1 1,600 GAMS/SCIP 1 (includes GAMS/SOPLEX) 3,200 GAMS/SNOPT 3,200 GAMS/XPRESS-MINLP (includes GAMS/XPRESS-MIP and GAMS/XPRESS-NLP) 12,800 GAMS/XPRESS-MIP (everything but general nonlinear equations) 9,600 GAMS/XPRESS-NLP (everything but discrete variables) 6,400 Solver-Links Price (USD) GAMS/CPLEX Link 3,200 GAMS/GUROBI Link 3,200 Solver-Links Price (USD) GAMS/MOSEK Link 1,600 GAMS/XPRESS Link 3,200 General information The GAMS Base Module includes the GAMS Language Compiler, GAMS-APIs, and many utilities .
    [Show full text]
  • GEKKO Documentation Release 1.0.1
    GEKKO Documentation Release 1.0.1 Logan Beal, John Hedengren Aug 31, 2021 Contents 1 Overview 1 2 Installation 3 3 Project Support 5 4 Citing GEKKO 7 5 Contents 9 6 Overview of GEKKO 89 Index 91 i ii CHAPTER 1 Overview GEKKO is a Python package for machine learning and optimization of mixed-integer and differential algebraic equa- tions. It is coupled with large-scale solvers for linear, quadratic, nonlinear, and mixed integer programming (LP, QP, NLP, MILP, MINLP). Modes of operation include parameter regression, data reconciliation, real-time optimization, dynamic simulation, and nonlinear predictive control. GEKKO is an object-oriented Python library to facilitate local execution of APMonitor. More of the backend details are available at What does GEKKO do? and in the GEKKO Journal Article. Example applications are available to get started with GEKKO. 1 GEKKO Documentation, Release 1.0.1 2 Chapter 1. Overview CHAPTER 2 Installation A pip package is available: pip install gekko Use the —-user option to install if there is a permission error because Python is installed for all users and the account lacks administrative priviledge. The most recent version is 0.2. You can upgrade from the command line with the upgrade flag: pip install--upgrade gekko Another method is to install in a Jupyter notebook with !pip install gekko or with Python code, although this is not the preferred method: try: from pip import main as pipmain except: from pip._internal import main as pipmain pipmain(['install','gekko']) 3 GEKKO Documentation, Release 1.0.1 4 Chapter 2. Installation CHAPTER 3 Project Support There are GEKKO tutorials and documentation in: • GitHub Repository (examples folder) • Dynamic Optimization Course • APMonitor Documentation • GEKKO Documentation • 18 Example Applications with Videos For project specific help, search in the GEKKO topic tags on StackOverflow.
    [Show full text]
  • Largest Small N-Polygons: Numerical Results and Conjectured Optima
    Largest Small n-Polygons: Numerical Results and Conjectured Optima János D. Pintér Department of Industrial and Systems Engineering Lehigh University, Bethlehem, PA, USA [email protected] Abstract LSP(n), the largest small polygon with n vertices, is defined as the polygon of unit diameter that has maximal area A(n). Finding the configuration LSP(n) and the corresponding A(n) for even values n 6 is a long-standing challenge that leads to an interesting class of nonlinear optimization problems. We present numerical solution estimates for all even values 6 n 80, using the AMPL model development environment with the LGO nonlinear solver engine option. Our results compare favorably to the results obtained by other researchers who solved the problem using exact approaches (for 6 n 16), or general purpose numerical optimization software (for selected values from the range 6 n 100) using various local nonlinear solvers. Based on the results obtained, we also provide a regression model based estimate of the optimal area sequence {A(n)} for n 6. Key words Largest Small Polygons Mathematical Model Analytical and Numerical Solution Approaches AMPL Modeling Environment LGO Solver Suite For Nonlinear Optimization AMPL-LGO Numerical Results Comparison to Earlier Results Regression Model Based Optimum Estimates 1 Introduction The diameter of a (convex planar) polygon is defined as the maximal distance among the distances measured between all vertex pairs. In other words, the diameter of the polygon is the length of its longest diagonal. The largest small polygon with n vertices is the polygon of unit diameter that has maximal area. For any given integer n 3, we will refer to this polygon as LSP(n) with area A(n).
    [Show full text]
  • Users Guide for Snadiopt: a Package Adding Automatic Differentiation to Snopt∗
    USERS GUIDE FOR SNADIOPT: A PACKAGE ADDING AUTOMATIC DIFFERENTIATION TO SNOPT∗ E. Michael GERTZ Mathematics and Computer Science Division Argonne National Laboratory Argonne, Illinois 60439 Philip E. GILL and Julia MUETHERIG Department of Mathematics University of California, San Diego La Jolla, California 92093-0112 January 2001 Abstract SnadiOpt is a package that supports the use of the automatic differentiation package ADIFOR with the optimization package Snopt. Snopt is a general-purpose system for solving optimization problems with many variables and constraints. It minimizes a linear or nonlinear function subject to bounds on the variables and sparse linear or nonlinear constraints. It is suitable for large-scale linear and quadratic programming and for linearly constrained optimization, as well as for general nonlinear programs. The method used by Snopt requires the first derivatives of the objective and con- straint functions to be available. The SnadiOpt package allows users to avoid the time- consuming and error-prone process of evaluating and coding these derivatives. Given Fortran code for evaluating only the values of the objective and constraints, SnadiOpt automatically generates the code for evaluating the derivatives and builds the relevant Snopt input files and sparse data structures. Keywords: Large-scale nonlinear programming, constrained optimization, SQP methods, automatic differentiation, Fortran software. [email protected] [email protected] [email protected] http://www.mcs.anl.gov/ gertz/ http://www.scicomp.ucsd.edu/ peg/ http://www.scicomp.ucsd.edu/ julia/ ∼ ∼ ∼ ∗Partially supported by National Science Foundation grant CCR-95-27151. Contents 1. Introduction 3 1.1 Problem Types . 3 1.2 Why Automatic Differentiation? . 3 1.3 ADIFOR ......................................
    [Show full text]
  • The Optimization Module User's Guide
    Optimization Module User’s Guide Optimization Module User’s Guide © 1998–2018 COMSOL Protected by patents listed on www.comsol.com/patents, and U.S. Patents 7,519,518; 7,596,474; 7,623,991; 8,457,932; 8,954,302; 9,098,106; 9,146,652; 9,323,503; 9,372,673; and 9,454,625. Patents pending. This Documentation and the Programs described herein are furnished under the COMSOL Software License Agreement (www.comsol.com/comsol-license-agreement) and may be used or copied only under the terms of the license agreement. COMSOL, the COMSOL logo, COMSOL Multiphysics, COMSOL Desktop, COMSOL Server, and LiveLink are either registered trademarks or trademarks of COMSOL AB. All other trademarks are the property of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with, endorsed by, sponsored by, or supported by those trademark owners. For a list of such trademark owners, see www.comsol.com/trademarks. Version: COMSOL 5.4 Contact Information Visit the Contact COMSOL page at www.comsol.com/contact to submit general inquiries, contact Technical Support, or search for an address and phone number. You can also visit the Worldwide Sales Offices page at www.comsol.com/contact/offices for address and contact information. If you need to contact Support, an online request form is located at the COMSOL Access page at www.comsol.com/support/case. Other useful links include: • Support Center: www.comsol.com/support • Product Download: www.comsol.com/product-download • Product Updates: www.comsol.com/support/updates • COMSOL Blog: www.comsol.com/blogs • Discussion Forum: www.comsol.com/community • Events: www.comsol.com/events • COMSOL Video Gallery: www.comsol.com/video • Support Knowledge Base: www.comsol.com/support/knowledgebase Part number: CM021701 Contents Chapter 1: Introduction Optimization Module Overview 8 What Can the Optimization Module Do?.
    [Show full text]
  • Clean Sky – Awacs Final Report
    Clean Sky Joint Undertaking AWACs – Adaptation of WORHP to Avionics Constraints Clean Sky – AWACs Final Report Table of Contents 1 Executive Summary ......................................................................................................................... 2 2 Summary Description of Project Context and Objectives ............................................................... 3 3 Description of the main S&T results/foregrounds .......................................................................... 5 3.1 Analysis of Optimisation Environment .................................................................................... 5 3.1.1 Problem sparsity .............................................................................................................. 6 3.1.2 Certification aspects ........................................................................................................ 6 3.2 New solver interfaces .............................................................................................................. 6 3.3 Conservative iteration mode ................................................................................................... 6 3.4 Robustness to erroneous inputs ............................................................................................. 7 3.5 Direct multiple shooting .......................................................................................................... 7 3.6 Grid refinement ......................................................................................................................
    [Show full text]
  • Optimal Control for Constrained Hybrid System Computational Libraries and Applications
    FINAL REPORT: FEUP2013.LTPAIVA.01 Optimal Control for Constrained Hybrid System Computational Libraries and Applications L.T. Paiva 1 1 Department of Electrical and Computer Engineering University of Porto, Faculty of Engineering - Rua Dr. Roberto Frias, s/n, 4200–465 Porto, Portugal ) [email protected] % 22 508 1450 February 28, 2013 Abstract This final report briefly describes the work carried out under the project PTDC/EEA- CRO/116014/2009 – “Optimal Control for Constrained Hybrid System”. The aim was to build and maintain a software platform to test an illustrate the use of the conceptual tools developed during the overall project: not only in academic examples but also in case studies in the areas of robotics, medicine and exploitation of renewable resources. The grand holder developed a critical hands–on knowledge of the available optimal control solvers as well as package based on non–linear programming solvers. 1 2 Contents 1 OC & NLP Interfaces 7 1.1 Introduction . .7 1.2 AMPL . .7 1.3 ACADO – Automatic Control And Dynamic Optimization . .8 1.4 BOCOP – The optimal control solver . .9 1.5 DIDO – Automatic Control And Dynamic Optimization . 10 1.6 ICLOCS – Imperial College London Optimal Control Software . 12 1.7 TACO – Toolkit for AMPL Control Optimization . 12 1.8 Pseudospectral Methods in Optimal Control . 13 2 NLP Solvers 17 2.1 Introduction . 17 2.2 IPOPT – Interior Point OPTimizer . 17 2.3 KNITRO . 25 2.4 WORHP – WORHP Optimises Really Huge Problems . 31 2.5 Other Commercial Packages . 33 3 Project webpage 35 4 Optimal Control Toolbox 37 5 Applications 39 5.1 Car–Like .
    [Show full text]
  • Landing Trajectory Optimization for the Robobee
    Landing Trajectory Optimization for the RoboBee Rebecca Steinmeyer Irina Tolkova Harvard University Harvard University [email protected] [email protected] Abstract The Harvard RoboBee is an insect-scale flapping-wing micro-aerial vehicle, subject to extreme challenges in maneuvering due to its small scale and control authority, and inherent instability. Landing the vehicle, in particular, remains an unsolved problem (and is typically bypassed during experiments); determining an optimal landing trajectory would increase system versatility. We sought to apply optimiza- tion techniques to determine control inputs (forces and torques) for trajectories which result in a desired final position and orientation (from a variety of initial states), using IPOPT, SNOPT, and an ADMM-based method. Furthermore, we found optimal wingstroke signal parameters to produce the resulting control inputs, both by expansion of the initial optimization methods and by separate implementa- tion of Projected Gradient Descent. We found that all three solvers were able to achieve physically feasible control parameters for the landing problem with similar degrees of optimality. We compare the advantages and challenges of each solver and problem formulation for trajectory optimization of the RoboBee. 1 Introduction The Harvard RoboBee is an 87 mg flapping-wing micro-aerial vehicle (MAV) which achieves flight via two independently flapping wings [16], each actuated by its own piezoelectric bimorph actuator [17]. The MAV is characterized by a resonant flapping
    [Show full text]
  • Open Source and Free Software
    WP. 24 ENGLISH ONLY UNITED NATIONS STATISTICAL COMMISSION and EUROPEAN COMMISSION ECONOMIC COMMISSION FOR EUROPE STATISTICAL OFFICE OF THE CONFERENCE OF EUROPEAN STATISTICIANS EUROPEAN COMMUNITIES (EUROSTAT) Joint UNECE/Eurostat work session on statistical data confidentiality (Bilbao, Spain, 2-4 December 2009) Topic (iv): Tools and software improvements ON OPEN SOURCE SOFTWARE FOR STATISTICAL DISCLOSURE LIMITATION Invited Paper Prepared by Juan José Salazar González, University of La Laguna, Spain On open source software for Statistical Disclosure Limitation Juan José Salazar González * * Department of Statistics, Operations Research and Computer Science, University of La Laguna, 38271 Tenerife, Spain, e-mail: [email protected] Abstract: Much effort has been done in the last years to design, analyze, implement and compare different methodologies to ensure confidentiality during data publication. The knowledge of these methods is public, but the practical implementations are subject to different license constraints. This paper summarizes some concepts on free and open source software, and gives some light on the convenience of using these schemes when building automatic tools in Statistical Disclosure Limitation. Our results are based on some computational experiments comparing different mathematical programming solvers when applying controlled rounding to tabular data. 1 Introduction Statistical agencies must guarantee confidentiality of data respondent by using the best of modern technology. Today data snoopers may have powerful computers, thus statistical agencies need sophisticated computer programs to ensure that released information is protected against attackers. Recent research has designed different optimization techniques that ensure protection. Unfortunately the number of users of these techniques is quite small (mainly national and regional statistical agencies), thus there is not enough market to stimulate the development of several implementations, all competing for being the best.
    [Show full text]