Lilium Yapingense (Liliaceae), a New Species from Yunnan, China, and Its Systematic Significance Relative to Nomocharis

Total Page:16

File Type:pdf, Size:1020Kb

Lilium Yapingense (Liliaceae), a New Species from Yunnan, China, and Its Systematic Significance Relative to Nomocharis Ann. Bot. Fennici 50: 187–194 ISSN 0003-3847 (print) ISSN 1797-2442 (online) Helsinki 28 May 2013 © Finnish Zoological and Botanical Publishing Board 2013 Lilium yapingense (Liliaceae), a new species from Yunnan, China, and its systematic significance relative to Nomocharis Yun-Dong Gao1,2, Song-Dong Zhou1 & Xing-Jin He1,* 1) Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, P. R. China (*corresponding author’s email: xjhe@ scu.edu.cn) 2) Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China Received 26 Nov. 2012, final version received 18 Feb. 2013, accepted 21 Mar. 2013 Gao, Y. D., Zhou, S. D. & He, X. J. 2013: Lilium yapingense (Liliaceae), a new species from Yunnan, China, and its systematic significance relative to Nomocharis. — Ann. Bot. Fennici 50: 187–194. We describe and illustrate Lilium yapingense sp. nova (Liliaceae) and show its position within the Lilium–Nomocharis complex (Liliaceae). It is similar in appearance to L. nanum but differs by (1) having no spots on the tepal bases, instead possessing sym- metric stripes; (2) nectaries lacking fimbriate projections on the surfaces, but having two dark grooves; and (3) an orange-colored instead of a white bulb. Phylogenetic analyses using nuclear ITS showed that L. yapingense merits specific rank and that it is more closely related to Nomocharis than to Lilium. However, the morphological synapomorphies thought to distinguish Nomocharis from Lilium are absent from the new species. The morphology and phylogeny of L. yapingense support previous stud- ies, which show that Nomocharis and Lilium have intergrading morphologies and that Lilium is paraphyletic with respect to Nomocharis. Introduction 1984, Liang & Tamura 2000, Gao et al. 2012). The relationship of Nomocharis to Lilium and The genus Lilium is comprised of approxi- Fritillaria has generated ongoing debate since mately 110 species that are widely distributed Nomocharis was established by Franchet in 1889 in the boreal and temperate northern hemisphere based on several specimens collected in south- (Liang 1995, Liang & Tamura 2000, Patterson & western China (Sealy 1950). In particular, the Givnish 2002). It is widely accepted that Lilium intermediate position of Nomocharis between is sister to Fritillaria, a genus roughly equal in Lilium and Fritillaria in several aspects of floral size and with a similar geographic distribution morphology has been the basis of numerous (Rønsted et al. 2005). Lilium is also consid- re-circumscriptions (Balfour 1918, Evans 1925, ered closely related to Nomocharis, a lesser Sealy 1950, 1983, Liang 1984). New delimita- known genus of eight species that are endemic to tions of Nomocharis have been proposed mainly the Hengduan Mountain region of southwestern by either integrating species into or removing China and adjacent areas (Sealy 1983, Liang them from Lilium and Fritillaria. 188 Gao et al. • ANN. BOT. FeNNICI Vol. 50 Molecular studies that focused on the Lilium– species, we performed an extensive literature Nomocharis complex showed that the species of survey and examined herbarium specimens. In Nomocharis are nested within Lilium and sup- the literature survey, we concentrated on Flora port uniting the two genera under the latter name Reipublicae Popularis Sinicae (Liang 1980), (Nishikawa et al. 1999, 2001, Hayashi & Kawano Flora of China (Liang & Tamura 2000), and 2000, Rønsted et al. 2005, Peruzzi et al. 2009, monographs on lilies of the world (Haw 1986, Gao et al. 2012). However, Lilium and Nomo- Jefferson-Brown 1995, McRae 1998). To exam- charis have been regarded as being morphologi- ine herbarium specimens, we visited PE, KUN, cally distinct (Sealy 1983, Liang 1984). Spe- CDBI, SZ in China and accessed images of addi- cifically,Nomocharis has been distinguished from tional specimens through the Chinese Virtual Lilium on the basis of (1) having a widely opened Herbarium (CVH, http://www.cvh.org.cn/), and perigone, (2) tepals having dark blotches at the digitization projects at P, K and E. Preliminary bases forming a showy “eye” in the center of the results showed strong resemblance between the flower, (3) outer tepals not channeled or nectarial, putative species and Lilium nanum on the basis (4) the dark “eye” being occupied by low ridges of alpine slope habitat and solitary nodding of flabellately arranged nectarial tissue on both flower with pink-purple tepals. Thus, to verify sides of a short median channel, and (5) having the independence of the new species, we com- fleshy, cylindrical filaments with an awn at the top pared its tepal morphology, bulb structure and (Sealy 1950). However, morphological intermedi- nectaries with those of L. nanum, because those acy between the two genera was recently demon- features have long been considered important strated by Gao et al. (2012) in N. gongshanensis. within Lilium (Comber 1949, Sealy 1950, Liang The affinity of N. gongshanensis to other species 1984, Liang & Tamura 2000). of Nomocharis is evidenced by its saucer-shaped flower and filaments with acute apices. However, its dark tepal bases, the absence of nectary proc- Taxon sampling for phylogenetic esses, and its yellow flowers resemble Lilium. analysis Gao et al. (2012) concluded that Lilium and Nomocharis may be morphologically intergrad- In order to infer the phylogenetic position of the ing, but thought that evidence from additional putative new species, we collected accessions species was needed to support that notion. for molecular analyses. Our taxonomic sampling In a recent expedition to Mt. Gaoligongshan was conducted broadly and thoroughly within in the central part of the Hengduan Mountains in the Lilium–Nomocharis complex and included China, we discovered a population of a liliaceous especially the morphologically similar species, plant, which appeared to represent an undescribed L. nanum and all species placed in Nomocharis. species. The primary goals of the present study Some accessions of Lilium–Nomocharis species were to (1) determine the status of the putative were obtained from GenBank. Those that were new species based on morphology and provide a newly sampled in this study were collected by description if necessary, (2) determine the phy- the authors in the field except three species: logenetic position of the putative new species Lilium longiflorum var. scabrum was collected within the Lilium–Nomocharis complex, and (3) from cultivated material in Hainan Province, and provide further evidence supporting a morpholog- samples of L. rosthonii and L. papiferum were ical continuity between Lilium and Nomocharis. obtained from herbarium specimens (SZ). Their leaves were placed in silica gel while in the field, allowed to dry, and stored at –80 ℃ until ana- Material and methods lysed. The voucher specimens were deposited in the Herbarium of Sichuan University (SZ). Taxonomic methods and morphological In total, we sampled 38 of the 55 species of analysis Lilium from China based on the classification presented in Flora of China (Liang & Tamura To infer the taxonomic status of the putative new 2000). They represent all four sections recog- ANN. BOT. FeNNICI Vol. 50 • Lilium yapingense (Liliaceae), a new species from China 189 nized in Flora Reipublicae Popularis Sinicae Data analysis (Liang 1980) as well as five of Comber’s (1949) seven sections native to China. We also sam- The ITS sequences for all samples were aligned pled six of the seven species of Nomocharis using ClustalX (Thompson et al. 1997) and accepted by Sealy (1950) and in Flora of China adjusted by eye in MEGA 4.0 (Tamura et al. (Liang & Tamura 2000), as well as the recently 2007) following the guidelines of Morrison described species N. gongshanensis (Gao et al. (2009). Gaps were positioned to minimize nucle- 2012). Thus, our sampling included all Nomo- otide mismatches, and were treated as missing charis native to China, and excluded only N. data in the phylogenetic analyses. The boundaries synaptica, which is endemic to India. For seven of ITS were determined by comparing the aligned Nomocharis species, we sampled 14 accessions, sequences with previously published Lilium of which three were new. Seven species of sequences (Nishikawa et al. 1999, Nishikawa et Notholirion, Cardiocrinum and Fritillaria were al. 2001) and sequences were trimmed accord- included as outgroups based on previous stud- ingly. Sequence lengths and G + C content were ies indicating a close relationship between these calculated using MEGA 4.0 (Tamura et al. 2007). groups and the Lilium–Nomocharis complex Bayesian phylogenetic analyses of the ITS (Patterson & Givnish 2002, Tamura et al. 2004, dataset were conducted using MrBayes ver. 3.1.2 Fay et al. 2006). (Ronquist & Huelsenbeck 2003). We applied the GTR + I + G model of nucleotide substitution, which was selected under the Akaike informa- DNA extraction, amplification and tion criterion (AIC, Akaike 1974) by MrMod- sequencing eltest ver. 2.2 (Nylander 2004). We performed two simultaneous Bayesian analyses using three For most samples, total DNA was isolated from hot chains and one cold chain starting from a silica-dried leaf tissue using a modification to random tree. Temperature increments between the cetyltrimethyl-ammonium bromide (CTAB) chains were adjusted to 0.2 based on mixing in protocol of Doyle and Doyle (1987). In several preliminary analyses. Analyses were run for 10 cases, the DNAQuick Plant System (TIANGEN million generations with sampling every 100 Biotech, Beijing, China) or Plant Genomic DNA generations. Variation in likelihood scores was Kit (TIANGEN Biotech, Beijing, China) was examined graphically for each independent run used following manufacturer protocols. using the program Tracer 1.4 (http://beast.bio. The ITS marker, including 5.8S, was ampli- ed.ac.uk/Tracer) to determine apparent stationar- fied using the ITS4 and ITS5 primers (5´-TCC- ity, and the program output from MrBayes was TC CGCTTATTGATATGC-3´ and 5´-GGAAG T- used to assess convergence between simultane- A A AAGTCGTAACAAGG-3´, respectively) of ous runs. The first 25% (or 25 000) trees were White et al.
Recommended publications
  • Liliaceae S.L. (Lily Family)
    Liliaceae s.l. (Lily family) Photo: Ben Legler Photo: Hannah Marx Photo: Hannah Marx Lilium columbianum Xerophyllum tenax Trillium ovatum Liliaceae s.l. (Lily family) Photo: Yaowu Yuan Fritillaria lanceolata Ref.1 Textbook DVD KRR&DLN Erythronium americanum Allium vineale Liliaceae s.l. (Lily family) Herbs; Ref.2 Stems often modified as underground rhizomes, corms, or bulbs; Flowers actinomorphic; 3 sepals and 3 petals or 6 tepals, 6 stamens, 3 carpels, ovary superior (or inferior). Tulipa gesneriana Liliaceae s.l. (Lily family) “Liliaceae” s.l. (sensu lato: “in the broad sense”) - Lily family; 288 genera/4950 species, including Lilium, Allium, Trillium, Tulipa; This family is treated in a very broad sense in this class, as in the Flora of the Pacific Northwest. The “Liliaceae” s.l. taught in this class is not monophyletic. It is apparent now that the family should be treated in a narrower sense and some of the members should form their own families. Judd et al. recognize 15+ families: Agavaceae, Alliaceae, Amarylidaceae, Asparagaceae, Asphodelaceae, Colchicaceae, Dracaenaceae (Nolinaceae), Hyacinthaceae, Liliaceae, Melanthiaceae, Ruscaceae, Smilacaceae, Themidaceae, Trilliaceae, Uvulariaceae and more!!! (see web reading “Consider the Lilies”) Iridaceae (Iris family) Photo: Hannah Marx Photo: Hannah Marx Iris pseudacorus Iridaceae (Iris family) Photo: Yaowu Yuan Photo: Yaowu Yuan Sisyrinchium douglasii Sisyrinchium sp. Iridaceae (Iris family) Iridaceae - 78 genera/1750 species, Including Iris, Gladiolus, Sisyrinchium. Herbs, aquatic or terrestrial; Underground stems as rhizomes, bulbs, or corms; Leaves alternate, 2-ranked and equitant Ref.3 (oriented edgewise to the stem; Gladiolus italicus Flowers actinomorphic or zygomorphic; 3 sepals and 3 petals or 6 tepals; Stamens 3; Ovary of 3 fused carpels, inferior.
    [Show full text]
  • Summary of Offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019
    Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 3841 Number of items in BX 301 thru BX 463 1815 Number of unique text strings used as taxa 990 Taxa offered as bulbs 1056 Taxa offered as seeds 308 Number of genera This does not include the SXs. Top 20 Most Oft Listed: BULBS Times listed SEEDS Times listed Oxalis obtusa 53 Zephyranthes primulina 20 Oxalis flava 36 Rhodophiala bifida 14 Oxalis hirta 25 Habranthus tubispathus 13 Oxalis bowiei 22 Moraea villosa 13 Ferraria crispa 20 Veltheimia bracteata 13 Oxalis sp. 20 Clivia miniata 12 Oxalis purpurea 18 Zephyranthes drummondii 12 Lachenalia mutabilis 17 Zephyranthes reginae 11 Moraea sp. 17 Amaryllis belladonna 10 Amaryllis belladonna 14 Calochortus venustus 10 Oxalis luteola 14 Zephyranthes fosteri 10 Albuca sp. 13 Calochortus luteus 9 Moraea villosa 13 Crinum bulbispermum 9 Oxalis caprina 13 Habranthus robustus 9 Oxalis imbricata 12 Haemanthus albiflos 9 Oxalis namaquana 12 Nerine bowdenii 9 Oxalis engleriana 11 Cyclamen graecum 8 Oxalis melanosticta 'Ken Aslet'11 Fritillaria affinis 8 Moraea ciliata 10 Habranthus brachyandrus 8 Oxalis commutata 10 Zephyranthes 'Pink Beauty' 8 Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 Most taxa specify to species level. 34 taxa were listed as Genus sp. for bulbs 23 taxa were listed as Genus sp. for seeds 141 taxa were listed with quoted 'Variety' Top 20 Most often listed Genera BULBS SEEDS Genus N items BXs Genus N items BXs Oxalis 450 64 Zephyranthes 202 35 Lachenalia 125 47 Calochortus 94 15 Moraea 99 31 Moraea
    [Show full text]
  • American Horticulturist Volume 72, Number 2 February 1993
    American Horticulturist Volume 72, Number 2 February 1993 ARTICLES Proven Performers In our popular annual feature, three national plant societies name some (nearly) fail-safe favorites. Dianthuses by Rand B. Lee ......................................... 12 African Violets by Carol Bruce ......................................... 17 Lilies by Calvin Helsley .. .......................... .......... 21 Men Who've Loved Lilies by Melissa Dodd Eskilson .................. ...... ....... 26 From the exquisite but fussy species, lily-breeding pioneers have produced tough-as-nails hybrids for gardeners and florists. FEBRUARY'S COVER Drip Rationale Photographed by Priscilla Eastman by Robert Kourik ....................................... 34 The three-foot-tall Vollmer's tiger Simple hardware offers a drought-busting, water-conserving path lily, Lilium vollmeri, grows in to lusher growth. hillside bogs in two counties in southwest Oregon and adjacent A Defense of Ailanthus areas of California. It is threatened by Richard S. Peigler .... .. ... ......................... 38 by collecting throughout its range, according to Donald C. Eastman's It may be the stinking ash to some, but in a city lot bereft of other Rare and Endangered Plants of greenery, it earns the name tree-of-heaven. Oregon. Of ninety lily species native to the Northern hemisphere, only twenty-two have been tapped by breeders for garden and DEPARTMENTS cut-flower hybrids. The Nature Conservancy reports that at least Commentary .. ... .... .. ............. ... ... ............ 4 seven
    [Show full text]
  • Using Beautiful Flowering Bulbous (Geophytes) Plants in the Cemetery Gardens in the City of Tokat
    J. Int. Environmental Application & Science, Vol. 11(2): 216-222 (2016) Using Beautiful Flowering Bulbous (Geophytes) Plants in the Cemetery Gardens in the City of Tokat Kübra Yazici∗, Hasan Köse2, Bahriye Gülgün3 1Gaziosmanpaşa University Faculty of Agriculture, Department of Horticulture, 60100, Taşlıçiftlik, Tokat, Turkey; 2 Celal Bayar University Alaşehir Vocational School Alaşehir; Manisa; 3Ege University Faculty of Agriculture, Department of Horticulture, 35100 Bornova, Izmir, TURKEY, Received March 25, 2016; Accepted June 12, 2016 Abstract: The importance of public green areas in urban environment, which is a sign of living standards and civilization, increase steadily. Because of the green areas they exhibit and their spiritual atmosphere, graveyards have importance. With increasing urbanization come the important duties of municipalities to arrange and maintain cemeteries. In recent years, organizations independent from municipalities have become interested in cemetery paysage. This situation has made cemetery paysage an important sector. The bulbous plants have a distinctive role in terms of cemetery paysage because of their nice odours, decorative flowers and the ease of maintenance. The field under study is the city of Tokat which is an old city in Turkey. This study has been carried out in various cemeteries in Tokat, namely, the Cemetery of Şeyhi-Şirvani, the Cemetery of Erenler, the Cemetery of Geyras, the Cemetery of Ali, and the Armenian Cemetery. Field observation have been carried out in terms of the leafing and flowering times of bulbous plants. At the end of the study, in designated regions in the before-mentioned cemeteries bulbous plants that naturally grow in these regions have been evaluated. In the urban cemeteries, these flowers are used the most: tulip, irises, hyacinth, daffodil and day lily (in decreasing order of use).
    [Show full text]
  • Survey for Special-Status Vascular Plant Species
    SURVEY FOR SPECIAL-STATUS VASCULAR PLANT SPECIES For the proposed Eagle Canyon Fish Passage Project Tehama and Shasta Counties, California Prepared for: Tehama Environmental Solutions 910 Main Street, Suite D Red Bluff, California 96080 Prepared by: Dittes & Guardino Consulting P.O. Box 6 Los Molinos, California 96055 (530) 384-1774 [email protected] Eagle Canyon Fish Passage Improvement Project - Botany Report Sept. 12, 2018 Prepared by: Dittes & Guardino Consulting 1 SURVEY FOR SPECIAL-STATUS VASCULAR PLANT SPECIES Eagle Canyon Fish Passage Project Shasta & Tehama Counties, California T30N, R1W, SE 1/4 Sec. 25, SE1/4 Sec. 24, NE ¼ Sec. 36 of the Shingletown 7.5’ USGS Topographic Quadrangle TABLE OF CONTENTS I. Executive Summary ................................................................................................................................................. 4 II. Introduction ............................................................................................................................................................ 4 III. Project Description ............................................................................................................................................... 4 IV. Location .................................................................................................................................................................. 5 V. Methods ..................................................................................................................................................................
    [Show full text]
  • Bulb Dormancy in Vitro—Fritillaria Meleagris: Initiation, Release and Physiological Parameters
    plants Review Bulb Dormancy In Vitro—Fritillaria meleagris: Initiation, Release and Physiological Parameters Marija Markovi´c*, Milana Trifunovi´cMomˇcilov , Branka Uzelac , Sladana¯ Jevremovi´c and Angelina Suboti´c Department of Plant Physiology, Institute for Biological Research “Siniša Stankovi´c“—NationalInstitute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; [email protected] (M.T.M.); [email protected] (B.U.); [email protected] (S.J.); [email protected] (A.S.) * Correspondence: [email protected] Abstract: In ornamental geophytes, conventional vegetative propagation is not economically feasible due to very slow development and ineffective methods. It can take several years until a new plant is formed and commercial profitability is achieved. Therefore, micropropagation techniques have been developed to increase the multiplication rate and thus shorten the multiplication and regeneration period. The majority of these techniques rely on the formation of new bulbs and their sprouting. Dormancy is one of the main limiting factors to speed up multiplication in vitro. Bulbous species have a period of bulb dormancy which enables them to survive unfavorable natural conditions. Bulbs grown in vitro also exhibit dormancy, which has to be overcome in order to allow sprouting of bulbs in the next vegetation period. During the period of dormancy, numerous physiological processes occur, many of which have not been elucidated yet. Understanding the process of dormancy will allow us to speed up and improve breeding of geophytes and thereby achieve economic profitability, which is very important for horticulture. This review focuses on recent findings in the area of Citation: Markovi´c,M.; Momˇcilov, bulb dormancy initiation and release in fritillaries, with particular emphasis on the effect of plant M.T.; Uzelac, B.; Jevremovi´c,S.; growth regulators and low-temperature pretreatment on dormancy release in relation to induction of Suboti´c,A.
    [Show full text]
  • Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE
    Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE LILIACEAE de Jussieu 1789 (Lily Family) (also see AGAVACEAE, ALLIACEAE, ALSTROEMERIACEAE, AMARYLLIDACEAE, ASPARAGACEAE, COLCHICACEAE, HEMEROCALLIDACEAE, HOSTACEAE, HYACINTHACEAE, HYPOXIDACEAE, MELANTHIACEAE, NARTHECIACEAE, RUSCACEAE, SMILACACEAE, THEMIDACEAE, TOFIELDIACEAE) As here interpreted narrowly, the Liliaceae constitutes about 11 genera and 550 species, of the Northern Hemisphere. There has been much recent investigation and re-interpretation of evidence regarding the upper-level taxonomy of the Liliales, with strong suggestions that the broad Liliaceae recognized by Cronquist (1981) is artificial and polyphyletic. Cronquist (1993) himself concurs, at least to a degree: "we still await a comprehensive reorganization of the lilies into several families more comparable to other recognized families of angiosperms." Dahlgren & Clifford (1982) and Dahlgren, Clifford, & Yeo (1985) synthesized an early phase in the modern revolution of monocot taxonomy. Since then, additional research, especially molecular (Duvall et al. 1993, Chase et al. 1993, Bogler & Simpson 1995, and many others), has strongly validated the general lines (and many details) of Dahlgren's arrangement. The most recent synthesis (Kubitzki 1998a) is followed as the basis for familial and generic taxonomy of the lilies and their relatives (see summary below). References: Angiosperm Phylogeny Group (1998, 2003); Tamura in Kubitzki (1998a). Our “liliaceous” genera (members of orders placed in the Lilianae) are therefore divided as shown below, largely following Kubitzki (1998a) and some more recent molecular analyses. ALISMATALES TOFIELDIACEAE: Pleea, Tofieldia. LILIALES ALSTROEMERIACEAE: Alstroemeria COLCHICACEAE: Colchicum, Uvularia. LILIACEAE: Clintonia, Erythronium, Lilium, Medeola, Prosartes, Streptopus, Tricyrtis, Tulipa. MELANTHIACEAE: Amianthium, Anticlea, Chamaelirium, Helonias, Melanthium, Schoenocaulon, Stenanthium, Veratrum, Toxicoscordion, Trillium, Xerophyllum, Zigadenus.
    [Show full text]
  • Karyological Studies of Fritillaria (Liliaceae) Species from Iran
    © 2016 The Japan Mendel Society Cytologia 81(2): 133–141 Karyological Studies of Fritillaria (Liliaceae) Species from Iran Marzieh Ahmadi-Roshan1, Ghasem Karimzadeh1*, Alireza Babaei2 and Hadi Jafari2 1 Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran P. O. Box 14115–336, Iran 2 Department of Horticultural Sciences, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran Received September 26, 2015; accepted March 14, 2016 Summary Five species (13 ecotypes) belonging to three subgenera of ornamental-medicinal Iranian Fritillaria were karyotypically studied, using a standard squash technique. All species were diploid (2n=2x=24) having mean chromosome lengths of 15.8 µm (15.2–16.7 µm). Their satellites varied in number (1–3 pairs) and in size (1.2–2.6 µm), mostly being located on long arms. Four chromosome types (“m”, “sm”, “st”, “T”) formed 10 dif- ferent karyotype formulas: “T” type chromosome is reported for the first time in most species (with the exception of S4, Fritillaria. reuteri Boissi). ANOVA confirmed significant intra- and inter-specific chromosomal variation across the Iranian Fritillaria species. Twelve different methods were used to assess the degree of karyotype asymmetry. Among those, one qualitative parameter (Stebbins classification) and eight quantitative (CVTL, DI, A1 & A2, AI, A, AsK%, MCA, CVCI) parameters verified that S2 (F. gibbosa Boiss.) and S5 (F. zagrica Stapf.) species represented the most asymmetrical and symmetrical karyotypes, respectively. Key words Fritillaria, Cytogenetics, New chromosome type, Karyotype, Iran. The name Fritillaria is likely based on the word “fri- Fritillaria subgenus is morphologically classified into six tullus” which means a cup in Latin (Ulug et al.
    [Show full text]
  • Dispersion of Vascular Plant in Mt. Huiyangsan, Korea
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Korean Nature Vol. 3, No. 1 1-10, 2010 Dispersion of Vascular Plant in Mt. Huiyangsan, Korea Hyun-Tak Shin1, Sung-Tae Yoo2, Byung-Do Kim2, and Myung-Hoon YI3* 1Gyeongsangnam-do Forest Environment Research Institute, Jinju 660-871, Korea 2Daegu Arboretum 284 Daegok-Dong Dalse-Gu Daegu 704-310, Korea 3Department of Landscape Architecture, Graduate School, Yeungnam University, Gyeongsan 712-749, Korea Abstract: We surveyed that vascular plants can be classified into 90 families and 240 genus, 336 species, 69 variants, 22 forms, 3 subspecies, total 430 taxa. Dicotyledon plant is 80.9%, monocotyledon plant is 9.8%, Pteridophyta is 8.1%, Gymnosermae is 1.2% among the whole plant family. Rare and endangered plants are Crypsinus hastatus, Lilium distichum, Viola albida, Rhododendron micranthum, totalling four species. Endemic plants are Carex okamotoi, Salix koriyanagi for. koriyanagi, Clematis trichotoma, Thalictrum actaefolium var. brevistylum, Galium trachyspermum, Asperula lasiantha, Weigela subsessilis, Adenophora verticillata var. hirsuta, Aster koraiensis, Cirsium chanroenicum and Saussurea seoulensis total 11 taxa. Specialized plants are 20 classification for I class, 7 classifications for the II class, 7 classifications for the III class, 2 classification for the IV class, and 1 classification for the V class, total 84 taxa. Naturalized plants specified in this study are 10 types but Naturalization rate is not high compared to the area of BaekDu-DaeGan. This survey area is focused on the center of BaekDu- DaeGan, and it has been affected by excessive investigations and this area has been preserved as Buddhist temples' woods.
    [Show full text]
  • 1 the Global Flower Bulb Industry
    1 The Global Flower Bulb Industry: Production, Utilization, Research Maarten Benschop Hobaho Testcentrum Hillegom, The Netherlands Rina Kamenetsky Department of Ornamental Horticulture Agricultural Research Organization The Volcani Center Bet Dagan 50250, Israel Marcel Le Nard Institut National de la Recherche Agronomique 29260 Ploudaniel, France Hiroshi Okubo Laboratory of Horticultural Science Kyushu University 6-10-1 Hakozaki, Higashi-ku Fukuoka 812-8581, Japan August De Hertogh Department of Horticultural Science North Carolina State University Raleigh, NC 29565-7609, USA COPYRIGHTED MATERIAL I. INTRODUCTION II. HISTORICAL PERSPECTIVES III. GLOBALIZATION OF THE WORLD FLOWER BULB INDUSTRY A. Utilization and Development of Expanded Markets Horticultural Reviews, Volume 36 Edited by Jules Janick Copyright Ó 2010 Wiley-Blackwell. 1 2 M. BENSCHOP, R. KAMENETSKY, M. LE NARD, H. OKUBO, AND A. DE HERTOGH B. Introduction of New Crops C. International Conventions IV. MAJOR AREAS OF RESEARCH A. Plant Breeding and Genetics 1. Breeders’ Right and Variety Registration 2. Hortus Bulborum: A Germplasm Repository 3. Gladiolus 4. Hyacinthus 5. Iris (Bulbous) 6. Lilium 7. Narcissus 8. Tulipa 9. Other Genera B. Physiology 1. Bulb Production 2. Bulb Forcing and the Flowering Process 3. Morpho- and Physiological Aspects of Florogenesis 4. Molecular Aspects of Florogenesis C. Pests, Physiological Disorders, and Plant Growth Regulators 1. General Aspects for Best Management Practices 2. Diseases of Ornamental Geophytes 3. Insects of Ornamental Geophytes 4. Physiological Disorders of Ornamental Geophytes 5. Exogenous Plant Growth Regulators (PGR) D. Other Research Areas 1. Specialized Facilities and Equipment for Flower Bulbs52 2. Transportation of Flower Bulbs 3. Forcing and Greenhouse Technology V. MAJOR FLOWER BULB ORGANIZATIONS A.
    [Show full text]
  • Central Sikhote-Alin
    WHC Nomination Documentation File Name: 766rev.pdf UNESCO Region: EUROPE AND THE NORTH AMERICA __________________________________________________________________________________________________ SITE NAME: Central Sikhote-Alin DATE OF INSCRIPTION: 16th December 2001 STATE PARTY: RUSSIAN FEDERATION CRITERIA: N (iv) DECISION OF THE WORLD HERITAGE COMMITTEE: Excerpt from the Report of the 25th Session of the World Heritage Committee The Committee inscribed Central Sikhote-Alin on the World Heritage List under criterion (iv): Criterion (iv): The nominated area is representative of one of the world's most distinctive natural regions. The combination of glacial history, climate and relief has allowed the development of the richest and most unusual temperate forests in the world. Compared to other temperate ecosystems, the level of endemic plants and invertebrates present in the region is extraordinarily high which has resulted in unusual assemblages of plants and animals. For example, subtropical species such as tiger and Himalayan bear share the same habitat with species typical of northern taiga such as brown bear and reindeer. The site is also important for the survival of endangered species such as the scaly-sided (Chinese) merganser, Blakiston's fish-owl and the Amur tiger. This serial nomination consists of two protected areas in the Sikhote- Alin mountain range in the extreme southeast of the Russian Federation: NAME LOCATION AREA Sikhote-Alin Nature Preserve Terney District 401,428 ha Goralij Zoological Preserve Coastal zone on the Sea of Japan, N of Terney 4,749 ha The Committee encouraged the State Party to improve management of the Bikin River protected areas (Bikin Territory of Traditional Nature Use and Verkhnebikinski zakaznik) before nominating it as an extension.
    [Show full text]
  • LILIUM) PRODUCTION Faculty of Science, Department of Biology, University of Oulu
    BIOTECHNOLOGICAL APPROACHES VELI-PEKKA PELKONEN IN LILY (LILIUM) PRODUCTION Faculty of Science, Department of Biology, University of Oulu OULU 2005 VELI-PEKKA PELKONEN BIOTECHNOLOGICAL APPROACHES IN LILY (LILIUM) PRODUCTION Academic Dissertation to be presented with the assent of the Faculty of Science, University of Oulu, for public discussion in Kuusamonsali (Auditorium YB210), Linnanmaa, on April 15th, 2005, at 12 noon OULUN YLIOPISTO, OULU 2005 Copyright © 2005 University of Oulu, 2005 Supervised by Professor Anja Hohtola Professor Hely Häggman Reviewed by Professor Anna Bach Professor Risto Tahvonen ISBN 951-42-7658-2 (nid.) ISBN 951-42-7659-0 (PDF) http://herkules.oulu.fi/isbn9514276590/ ISSN 0355-3191 http://herkules.oulu.fi/issn03553191/ OULU UNIVERSITY PRESS OULU 2005 Pelkonen, Veli-Pekka, Biotechnological approaches in lily (Lilium) production Faculty of Science, Department of Biology, University of Oulu, P.O.Box 3000, FIN-90014 University of Oulu, Finland 2005 Oulu, Finland Abstract Biotechnology has become a necessity, not only in research, but also in the culture and breeding of lilies. Various methods in tissue culture and molecular breeding have been applied to the production of commercially important lily species and cultivars. However, scientific research data of such species and varieties that have potential in the northern climate is scarce. In this work, different biotechnological methods were developed and used in the production and culture of a diversity of lily species belonging to different taxonomic groups. The aim was to test and develop further the existing methods in plant biotechnology for the developmental work and the production of novel hardy lily cultivars for northern climates.
    [Show full text]