PICES SCIENTIFIC REPORT No. 51, 2017 Report of Working Group 26

Total Page:16

File Type:pdf, Size:1020Kb

PICES SCIENTIFIC REPORT No. 51, 2017 Report of Working Group 26 ISBN 978-1-927797-28-0 ISSN 1198-273X PICES PUBLICATIONS PICES SCIENTIFIC REPORT No. 51, 2017 The North Pacific Marine Science Organization (PICES) was established by an international convention in 1992 to promote international cooperative research efforts to solve key scientific problems in the North Pacific Ocean. PICES regularly publishes various types of general, scientific, and technical information in the following publications: PICES ANNUAL REPORTS – are major JOURNAL SPECIAL ISSUES – are peer- products of PICES Annual Meetings which reviewed publications resulting from symposia document the administrative and scientific activities and Annual Meeting scientific sessions and of the Organization, and its formal decisions, by workshops that are published in conjunction with PICES SCIENTIFIC 2017 51, REPORT No. calendar year. commercial scientific journals. PICES SCIENTIFIC REPORTS – include BOOKS – are peer-reviewed, journal-quality proceedings of PICES workshops, final reports of publications of broad interest. PICES expert groups, data reports and planning reports. PICES PRESS – is a semi-annual newsletter providing timely updates on the state of the PICES TECHNICAL REPORTS – are on-line ocean/climate in the North Pacific, with highlights of reports published on data/monitoring activities that current research and associated activities of PICES. require frequent updates. ABSTRACT BOOKS – are prepared for PICES SPECIAL PUBLICATIONS – are products that Annual Meetings and symposia (co-)organized by are destined for general or specific audiences. PICES. For further information on our publications, visit PICES at www.pices.int. Front cover figure An aggregation of the giant jellyfish Nemopilema nomurai (maximum bell diameter: 2 m) in a set-net in Fukui Prefecture, Japan. The recurrent population explosions of this species over the last two decades throughout much of the East Asian Marginal Seas have caused severe damage to local fisheries in both Japan and Korea. However, this species is commercially harvested for food in China. Photo provided by Report of Working Group 26 on Jellyfish Yomiuri Shimbun. ORGANIZATION MARINE SCIENCE NORTH PACIFIC Blooms around the North Pacific Rim: Causes and Consequences PICES Scientific Reports PICES SCIENTIFIC REPORTS Hargreaves, N.B., Hunter, J.R., Sugimoto, T. and Wada, T. Megrey, B.A., Taft, B.A. and Peterson, W.T. (Eds.) 2000. (Eds.) 1993. Coastal Pelagic Fishes (Report of Working PICES-GLOBEC International Program on Climate Change Group 3); Subarctic Gyre (Report of Working Group 6). and Carrying Capacity: Report of the 1999 MONITOR and PICES Sci. Rep. No. 1, 130 pp. REX Workshops, and the 2000 MODEL Workshop on Published since 1993, the PICES Scientific Report series includes proceedings of PICES workshops, final Talley, L.D. and Nagata, Y. (Eds.) 1995. The Okhotsk Sea Lower Trophic Level Modelling. PICES Sci. Rep. No. 15, reports of PICES expert groups, data reports and reports of planning activities. Formal peer reviews of the and Oyashio Region (Report of Working Group 1). 148 pp. PICES Sci. Rep. No. 2, 227 pp. Stehr, C.M. and Horiguchi, T. (Eds.) 2001. Environmental scientific content of these publications are not generally conducted. Anonymous. 1995. Report of the PICES-STA Workshop on Assessment of Vancouver Harbour Data Report for the Monitoring Subarctic North Pacific Variability. PICES PICES MEQ Practical Workshop. PICES Sci. Rep. No. Printed copies of Scientific Reports are available upon request from Sci. Rep. No. 3, 94 pp. 16, 213 pp. Hargreaves, N.B. (Ed.) 1996. Science Plan, Implementation Megrey, B.A., Taft, B.A. and Peterson, W.T. (Eds.) 2001. Plan (Report of the PICES-GLOBEC International PICES-GLOBEC International Program on Climate Change PICES Secretariat Program on Climate Change and Carrying Capacity). and Carrying Capacity: Report of the 2000 BASS, MODEL, P.O. Box 6000 PICES Sci. Rep. No. 4, 64 pp. MONITOR and REX Workshops, and the 2001 BASS/ Sidney, British Columbia LeBlond, P.H. and Endoh, M. (Eds.) 1996. Modelling of the MODEL Workshop. PICES Sci. Rep. No. 17, 125 pp. Canada. V8L 4B2 Subarctic North Pacific Circulation (Report of Working Alexander, V., Bychkov, A.S., Livingston, P. and McKinnell, E-mail: [email protected] Group 7). PICES Sci. Rep. No. 5, 91 pp. S.M. (Eds.) 2001. Proceedings of the PICES/CoML/IPRC Anonymous. 1996. Proceedings of the Workshop on the Workshop on “Impact of Climate Variability on Observation Okhotsk Sea and Adjacent Areas. PICES Sci. Rep. No. and Prediction of Ecosystem and Biodiversity Changes in 6, 426 pp. the North Pacific”. PICES Sci. Rep. No. 18, 210 pp. On-line versions of PICES Scientific Reports can be found at: meetings.pices.int/publications/scientific-reports Beamish, R.J., Hollowed, A.B., Perry, R.I., Radchenko, V.I., Otto, R.S. and Jamieson, G.S. (Eds.) 2001. Commercially Yoo, S. and Terazaki, M. (Eds.) 1997. Summary of the Important Crabs, Shrimps and Lobsters of the North Workshop on Conceptual/Theoretical Studies and Model Pacific Ocean. PICES Sci. Rep. No. 19, 79 pp. Development and the 1996 MODEL, BASS and REX Batchelder, H.P., McFarlane, G.A., Megrey, B.A., Mackas, Task Team Reports. PICES Sci. Rep. No. 7, 93 pp. D.L. and Peterson, W.T. (Eds.) 2002. PICES-GLOBEC Nagata, Y. and Lobanov, V.B. (Eds.) 1998. Multilingual International Program on Climate Change and Carrying Nomenclature of Place and Oceanographic Names in the Capacity: Report of the 2001 BASS/MODEL, MONITOR Region of the Okhotsk Sea. PICES Sci. Rep. No. 8, 57 and REX Workshops, and the 2002 MODEL/REX pp. (Reprint from MIRC Science Report, No. 1, 1998) Workshop. PICES Sci. Rep. No. 20, 176 pp. Hollowed, A.B., Ikeda, T., Radchenko, V.I. and Wada, T. Miller, C.B. (Ed.) 2002. PICES-GLOBEC International (Organizers) 1998. PICES Climate Change and Carrying Program on Climate Change and Carrying Capacity: Capacity Workshop on the Development of Cooperative Report of the PICES 2002 Volunteer Observing Ship Research in Coastal Regions of the North Pacific. Workshop. PICES Sci. Rep. No. 21, 38 pp. PICES Sci. Rep. No. 9, 59 pp. Perry, R.I., Livingston, P. and Bychkov, A.S. (Eds.) 2002. Freeland, H.J., Peterson, W.T. and Tyler, A. (Eds.) 1999. PICES Science: The First Ten Years and a Look to the Proceedings of the 1998 Science Board Symposium on Future. PICES Sci. Rep. No. 22, 102 pp. The Impacts of the 1997/98 El Niño Event on the North Taylor, F.J.R. and Trainer, V.L. (Eds.) 2002. Harmful Algal Pacific Ocean and Its Marginal Seas. PICES Sci. Rep. Blooms in the PICES Region of the North Pacific. No. 10, 110 pp. PICES Sci. Rep. No. 23, 152 pp. Dugdale, R.C., Hay, D.E., McFarlane, G.A., Taft, B.A. and Feely, R.A. (Ed.) 2003. CO2 in the North Pacific Ocean (Working Yoo, S. (Eds.) 1999. PICES-GLOBEC International Group 13 Final Report). PICES Sci. Rep. No. 24, 49 pp. Program on Climate Change and Carrying Capacity: Aydin, K.Y., McFarlane, G.A., King, J.R. and Megrey, B.A. Summary of the 1998 MODEL, MONITOR and REX (Eds.) 2003. PICES-GLOBEC International Program on Workshops, and Task Team Reports. PICES Sci. Rep. Climate Change and Carrying Capacity: The BASS/ No. 11, 88 pp. MODEL Report on Trophic Models of the Subarctic Lobanov, V.B., Nagata, Y. and Riser, S.C. (Eds.) 1999. Pacific Basin Ecosystems. PICES Sci. Rep. No. 25, 93 pp. Proceedings of the Second PICES Workshop on the McKinnell, S.M. (Ed.) 2004. Proceedings of the Third Okhotsk Sea and Adjacent Areas. PICES Sci. Rep. No. Workshop on the Okhotsk Sea and Adjacent Areas. 12, 203 pp. PICES Sci. Rep. No. 26, 275 pp. This report was developed under the guidance of the PICES Science Board and its Biological Oceanographic Danchenkov, M.A., Aubrey, D.G. and Hong, G.H. 2000. Kishi, M.J. (Ed.) 2004. Report of the MODEL Task Team Committee. The views expressed in this report are those of participating scientists under their responsibilities. Bibliography of the Oceanography of the Japan/East Sea. Second Workshop to Develop a Marine Ecosystem Model PICES Sci. Rep. No. 13, 99 pp. of the North Pacific Ocean including Pelagic Fishes. Hunt, G.L. Jr., Kato, H. and McKinnell, S.M. (Eds.) 2000. PICES Sci. Rep. No. 27, 49 pp. Predation by Marine Birds and Mammals in the King, J.R. (Ed.) 2005. Report of the Study Group on the This document should be cited as follows: Subarctic North Pacific Ocean. PICES Sci. Rep. No. Fisheries and Ecosystem Responses to Recent Regime 14, 168 pp. Shifts. PICES Sci. Rep. No. 28, 162 pp. Uye, S.I. and Brodeur, R.D. (Eds.) 2017. Report of Working Group 26 on Jellyfish Blooms around the North Pacific Rim: Causes and Consequences. PICES Sci. Rep. No. 51, 221 pp. Continued on inside back page PICES Scientific Report No. 51 2017 Report of Working Group 26 on Jellyfish Blooms around the North Pacific Rim: Causes and Consequences Edited by Shin-ichi Uye and Richard D. Brodeur September 2017 North Pacific Marine Science Organization (PICES) P.O. Box 6000, Sidney, BC, V8L 4B2, Canada E-mail: [email protected] www.pices.int Table of Contents In Memoriam ............................................................................................................................................. vi Jennifer Purcell and David W. Welch Executive Summary ................................................................................................................................... ix 1 Introduction .......................................................................................................................................... 1 Richard Brodeur and Shin-ichi Uye 1.1 Background and
Recommended publications
  • Diversity and Community Structure of Pelagic Cnidarians in the Celebes and Sulu Seas, Southeast Asian Tropical Marginal Seas
    Deep-Sea Research I 100 (2015) 54–63 Contents lists available at ScienceDirect Deep-Sea Research I journal homepage: www.elsevier.com/locate/dsri Diversity and community structure of pelagic cnidarians in the Celebes and Sulu Seas, southeast Asian tropical marginal seas Mary M. Grossmann a,n, Jun Nishikawa b, Dhugal J. Lindsay c a Okinawa Institute of Science and Technology Graduate University (OIST), Tancha 1919-1, Onna-son, Okinawa 904-0495, Japan b Tokai University, 3-20-1, Orido, Shimizu, Shizuoka 424-8610, Japan c Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan article info abstract Article history: The Sulu Sea is a semi-isolated, marginal basin surrounded by high sills that greatly reduce water inflow Received 13 September 2014 at mesopelagic depths. For this reason, the entire water column below 400 m is stable and homogeneous Received in revised form with respect to salinity (ca. 34.00) and temperature (ca. 10 1C). The neighbouring Celebes Sea is more 19 January 2015 open, and highly influenced by Pacific waters at comparable depths. The abundance, diversity, and Accepted 1 February 2015 community structure of pelagic cnidarians was investigated in both seas in February 2000. Cnidarian Available online 19 February 2015 abundance was similar in both sampling locations, but species diversity was lower in the Sulu Sea, Keywords: especially at mesopelagic depths. At the surface, the cnidarian community was similar in both Tropical marginal seas, but, at depth, community structure was dependent first on sampling location Marginal sea and then on depth within each Sea. Cnidarians showed different patterns of dominance at the two Sill sampling locations, with Sulu Sea communities often dominated by species that are rare elsewhere in Pelagic cnidarians fi Community structure the Indo-Paci c.
    [Show full text]
  • Treatment of Lion´S Mane Jellyfish Stings- Hot Water Immersion Versus Topical Corticosteroids
    THE SAHLGRENSKA ACADEMY Treatment of Lion´s Mane jellyfish stings- hot water immersion versus topical corticosteroids Degree Project in Medicine Anna Nordesjö Programme in Medicine Gothenburg, Sweden 2016 Supervisor: Kai Knudsen Department of Anesthesia and Intensive Care Medicine 1 CONTENTS Abstract ................................................................................................................................................... 3 Introduction ............................................................................................................................................. 3 Background ............................................................................................................................................. 4 Jellyfish ............................................................................................................................................... 4 Anatomy .......................................................................................................................................... 4 Nematocysts .................................................................................................................................... 4 Jellyfish in Scandinavian waters ......................................................................................................... 5 Lion’s Mane jellyfish, Cyanea capillata .......................................................................................... 5 Moon jelly, Aurelia aurita ..............................................................................................................
    [Show full text]
  • Fish Welfare on Scotland's Salmon Farms
    FISH WELFARE ON SCOTLAND’S SALMON FARMS A REPORT BY ONEKIND Lorem ipsum CONTENTS 1 INTRODUCTION 2 6.3.1 Increased aggression 26 6.3.2 Increased spread of disease and parasites 26 2 SALMON SENTIENCE 6.3.2 Reduced water quality 26 AND INDIVIDUALITY 4 6.3.4 Issues with low stocking densities 27 2.1 Fish sentience 5 6.4 Husbandry 27 2.2 Atlantic salmon as individuals 5 6.4.1 Handling 27 6.4.2 Crowding 28 3 ATLANTIC SALMON LIFE CYCLE 6 6.4.3 Vaccination 28 3.1 Life cycle of wild salmon 6 6.5 Transportation 28 3.2 Life cycle of farmed Alantic Salmon 6 6.6 Failed smolts 29 6.7 Housing 20 4 SALMON FARMING IN SCOTLAND 8 6.8 Slaughter 31 5 KEY WELFARE ISSUES 10 7 MARINE WILDLIFE WELFARE IMPACTS 32 5.1 High mortality rates 10 7.1 Wild salmon and trout 32 5.2 Sea lice 11 7.2 Fish caught for salmon food 33 5.2.1 How do sea lice compromise 7.3 Seals 33 the welfare of farmed salmon? 11 7.4 Cetaceans 34 5.2.2 How are sea lice levels monitored? 12 7.5 Crustaceans 34 5.2.3 How severe is sea lice infestation in Scotland? 13 8 FUTURE CHALLENGES 35 5.3 Disease 14 8.1 Closed containment 35 5.3.1 Amoebic Gill Disease 15 8.2 Moving sites offshore 35 5.3.2 Cardiomyopathy Syndrome 15 5.3.3 Infectious salmon anaemia 15 9 ACCREDITATION SCHEMES 5.3.4 Pancreas disease 15 AND STANDARDS 36 5.4 Treatment for sea lice and disease 16 9.1 Certification in Scotland 36 5.4.1 Thermolicer 17 9.2 What protection do standards provide salmon? 36 5.4.2 Hydrolicer 17 9.2.1 Soil Association Organic standards 36 5.4.3 Hydrogen peroxide 17 9.2.2 RSPCA Assured 36 5.5 Cleaner fish 18
    [Show full text]
  • Predatory Impact of Aurelia Aurita on the Zooplankton Community in The
    Barz and Hirche: Predatory impact of Aurelia aurita on the zooplankton community in the Bornholm Basin (central Baltic) CM 2004/J: 12 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ Not to be cited without prior reference to the authors CM 2004/J:12 Predatory impact of Aurelia aurita on the zooplankton community in the Bornholm Basin (central Baltic) Kristina Barz and Hans-Jürgen Hirche Alfred-Wegener-Institute for Polar and Marine Research Columbusstrasse, 27568 Bremerhaven, Germany tel.: +49 471 4831 1324, fax: +49 471 4831 1918 [email protected] Abstract The annual cycle of abundance and vertical distribution of the scyphozoan medusa Aurelia aurita was studied in the Bornholm Basin (central Baltic) in 2002. Seasonal changes in prey composition and predatory impact were investigated by analysing stomach contents. The dominant prey organisms of A. aurita were several cladoceran species (Bosmina coregoni maritima, Evadne nordmanni and Podon spp.). They represented up to 93% of the food organisms. Bivalve larvae and copepods (Centropages hamatus, Temora longicornis, Acartia spp., Pseudocalanus acuspes, Eurytemora hirundoides and Oithona similis) were less frequently found. Nauplii and copepodites I-III were not eaten by the medusae neither were fish eggs and larvae used as prey. Based on average medusae and zooplankton abundance, the predatory impact was very low. In August, when mean abundance of A. aurita was highest, only 0.1% of the copepod and 0.54% of the cladoceran standing stock were eaten per day. However in regions
    [Show full text]
  • The Evolution of Siphonophore Tentilla for Specialized Prey Capture in the Open Ocean
    The evolution of siphonophore tentilla for specialized prey capture in the open ocean Alejandro Damian-Serranoa,1, Steven H. D. Haddockb,c, and Casey W. Dunna aDepartment of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520; bResearch Division, Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039; and cEcology and Evolutionary Biology, University of California, Santa Cruz, CA 95064 Edited by Jeremy B. C. Jackson, American Museum of Natural History, New York, NY, and approved December 11, 2020 (received for review April 7, 2020) Predator specialization has often been considered an evolutionary makes them an ideal system to study the relationships between “dead end” due to the constraints associated with the evolution of functional traits and prey specialization. Like a head of coral, a si- morphological and functional optimizations throughout the organ- phonophore is a colony bearing many feeding polyps (Fig. 1). Each ism. However, in some predators, these changes are localized in sep- feeding polyp has a single tentacle, which branches into a series of arate structures dedicated to prey capture. One of the most extreme tentilla. Like other cnidarians, siphonophores capture prey with cases of this modularity can be observed in siphonophores, a clade of nematocysts, harpoon-like stinging capsules borne within special- pelagic colonial cnidarians that use tentilla (tentacle side branches ized cells known as cnidocytes. Unlike the prey-capture apparatus of armed with nematocysts) exclusively for prey capture. Here we study most other cnidarians, siphonophore tentacles carry their cnidocytes how siphonophore specialists and generalists evolve, and what mor- in extremely complex and organized batteries (3), which are located phological changes are associated with these transitions.
    [Show full text]
  • Pdf) and Their Values Are Plotted Against Temperature in Fig
    Vol. 510: 255–263, 2014 MARINE ECOLOGY PROGRESS SERIES Published September 9 doi: 10.3354/meps10799 Mar Ecol Prog Ser Contribution to the Theme Section ‘Jellyfish blooms and ecological interactions’ FREEREE ACCESSCCESS Body size reduction under starvation, and the point of no return, in ephyrae of the moon jellyfish Aurelia aurita Zhilu Fu1, Masashi Shibata1, Ryosuke Makabe2, Hideki Ikeda1, Shin-ichi Uye1,* 1Graduate School of Biosphere Science, Hiroshima University, 4-4 Kagamiyama 1 Chome, Higashi-Hiroshima 739−8528, Japan 2Faculty of Science and Engineering, Ishinomaki Senshu University, 1 Shinmito Minamisakai, Ishinomaki 986-8580, Japan ABSTRACT: Scyphozoan ephyrae need to start feeding before their endogenous nutritional reserves run out, and the success of feeding and growth is crucial to their recruitment into the medusa population. To evaluate starvation resistance in first-feeding ephyrae of the moon jellyfish Aurelia aurita s.l., we determined their point of no return (PNR50), i.e. days of starvation after which 50% of ephyrae die even if they then feed. PNR50 values were 33.8, 38.4 and 58.6 d at 15, 12 and 9°C, respectively. Before reaching PNR50, the ephyrae showed significant body size reduc- tion: ca. 30 and 50% decrease in disc diameter and carbon content, respectively. These PNR50 val- ues are nearly 1 order of magnitude longer than those of larval marine molluscs, crustaceans and fishes, which is attributable to the ephyra’s extremely low metabolic (i.e. respiration) rate relative to its copious carbon reserves. Such a strong endurance under prolonged starvation is likely an adaptive strategy for A. aurita ephyrae, the release of which is programmed to occur during the annual period of lowest temperatures, allowing them to cope with the concomitant seasonal food scarcity.
    [Show full text]
  • A Review of Behavioural Observations on Aurelia Sp. Jellyfish
    Neuroscience and Biobehavioral Reviews 35 (2011) 474–482 Contents lists available at ScienceDirect Neuroscience and Biobehavioral Reviews journal homepage: www.elsevier.com/locate/neubiorev Review What’s on the mind of a jellyfish? A review of behavioural observations on Aurelia sp. jellyfish David J. Albert Roscoe Bay Marine Biology Laboratory, 4534 W 3rd Avenue, Vancouver, British Columbia, Canada V6R 1N2 article info abstract Article history: Aurelia sp. (scyphozoa; Moon Jellies) are one of the most common and widely distributed species of jelly- Received 14 March 2010 fish. Their behaviours include swimming up in response to somatosensory stimulation, swimming down Received in revised form 30 May 2010 in response to low salinity, diving in response to turbulence, avoiding rock walls, forming aggregations, Accepted 3 June 2010 and horizontal directional swimming. These are not simple reflexes. They are species typical behaviours involving sequences of movements that are adjusted in response to the requirements of the situation and Keywords: that require sensory feedback during their execution. They require the existence of specialized sensory Aurelia sp receptors. The central nervous system of Aurelia sp. coordinates motor responses with sensory feedback, Behaviour Nervous system maintains a response long after the eliciting stimulus has disappeared, changes behaviour in response Sensory receptors to sensory input from specialized receptors or from patterns of sensory input, organizes somatosensory Scyphozoa input in a way that allows stimulus input from many parts of the body to elicit a similar response, and coordinates responding when stimuli are tending to elicit more than one response. While entirely differ- ent from that of most animals, the nervous system of Aurelia sp.
    [Show full text]
  • Poster Final Copy
    Introduction to Jellyfish Jellyfish have been around for over 700 million years making them one of the oldest living creatures on earth. There are almost 3,000 species of jellyfish found throughout the world's oceans. From Cnidarian jellyfish, which are often referred as “true” jellyfish, to Ctenophores (comb jellyfish), Cubic Aquarium Systems have compiled this poster showing some of the most interesting species found around the globe. Moon Jellyfish Amakusa Jellyfish Mauve Stinger Purple Striped Jellyfish Japanese Sea Nettle Aurelia aurita Sanderia malayensis Pelagia noctilca Chrysaora colorata Chrysaora pacifica Pacific Sea Nettle Black Sea Nettle Lion’s Mane Jellyfish Blue Fire Jellyfish Egg Yolk Jellyfish Chrysaora fuscescens Chrysaora achlyos Cyanea capillata Cyanea lamarckii Phacellophora camtschatica Flame Jellyfish Blue Blubber Spotted Lagoon Jellyfish Australian Spotted Lagoon Jellyfish Upside Down Jellyfish Rhopilema esculentum Catostylus mosaicus Mastigias papu Phyllorhiza punctata Cassioppea sp. Mediterranean Jellyfish Crown Jellyfish Purple Jellyfish Chrystal Jellyfish Flower Hat Jellyfish Cotylorhiza tuberculata Cephea cephea Thysanostoma thysanura Aequorea victoria Olindias formosa Immortal Jellyfish Portuguese Man O’ War Box Jellyfish Comb Jellyfish Sea Gooseberry Turritopsis dohrni Physalia physali Chironex sp. Bolinopsis sp. Pleurobrachia bachei Cubic Aquarium Systems Exotic Aquaculture Jellyfish aquariums and specialised fish tanks | Cubic Aquarium Syste International Jellyfish Wholesale Cubic Aquarium Systems build a range of unique, specialised aquariums Exotic Aquaculture are a Hong Kong based aquarium livestock supplier for jellyfish and other unusual sea creatures specializing in jellyfish wholesale to the public and home aquarium trade. www.cubicaquarium.com Copyright Sanderia Group Limited www.exoticaquaculture.com All rights reserved.
    [Show full text]
  • Changing Jellyfish Populations: Trends in Large Marine Ecosystems
    CHANGING JELLYFISH POPULATIONS: TRENDS IN LARGE MARINE ECOSYSTEMS by Lucas Brotz B.Sc., The University of British Columbia, 2000 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in The Faculty of Graduate Studies (Oceanography) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) October 2011 © Lucas Brotz, 2011 Abstract Although there are various indications and claims that jellyfish have been increasing at a global scale in recent decades, a rigorous demonstration to this effect has never been presented. As this is mainly due to scarcity of quantitative time series of jellyfish abundance from scientific surveys, an attempt is presented here to complement such data with non- conventional information from other sources. This was accomplished using the analytical framework of fuzzy logic, which allows the combination of information with variable degrees of cardinality, reliability, and temporal and spatial coverage. Data were aggregated and analysed at the scale of Large Marine Ecosystem (LME). Of the 66 LMEs defined thus far, which cover the world’s coastal waters and seas, trends of jellyfish abundance (increasing, decreasing, or stable/variable) were identified (occurring after 1950) for 45, with variable degrees of confidence. Of these 45 LMEs, the overwhelming majority (31 or 69%) showed increasing trends. Recent evidence also suggests that the observed increases in jellyfish populations may be due to the effects of human activities, such as overfishing, global warming, pollution, and coastal development. Changing jellyfish populations were tested for links with anthropogenic impacts at the LME scale, using a variety of indicators and a generalized additive model. Significant correlations were found with several indicators of ecosystem health, as well as marine aquaculture production, suggesting that the observed increases in jellyfish populations are indeed due to human activities and the continued degradation of the marine environment.
    [Show full text]
  • A Case Study with the Monospecific Genus Aegina
    MARINE BIOLOGY RESEARCH, 2017 https://doi.org/10.1080/17451000.2016.1268261 ORIGINAL ARTICLE The perils of online biogeographic databases: a case study with the ‘monospecific’ genus Aegina (Cnidaria, Hydrozoa, Narcomedusae) Dhugal John Lindsaya,b, Mary Matilda Grossmannc, Bastian Bentlaged,e, Allen Gilbert Collinsd, Ryo Minemizuf, Russell Ross Hopcroftg, Hiroshi Miyakeb, Mitsuko Hidaka-Umetsua,b and Jun Nishikawah aEnvironmental Impact Assessment Research Group, Research and Development Center for Submarine Resources, Japan Agency for Marine- Earth Science and Technology (JAMSTEC), Yokosuka, Japan; bLaboratory of Aquatic Ecology, School of Marine Bioscience, Kitasato University, Sagamihara, Japan; cMarine Biophysics Unit, Okinawa Institute of Science and Technology (OIST), Onna, Japan; dDepartment of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA; eMarine Laboratory, University of Guam, Mangilao, USA; fRyo Minemizu Photo Office, Shimizu, Japan; gInstitute of Marine Science, University of Alaska Fairbanks, Alaska, USA; hDepartment of Marine Biology, Tokai University, Shizuoka, Japan ABSTRACT ARTICLE HISTORY Online biogeographic databases are increasingly being used as data sources for scientific papers Received 23 May 2016 and reports, for example, to characterize global patterns and predictors of marine biodiversity and Accepted 28 November 2016 to identify areas of ecological significance in the open oceans and deep seas. However, the utility RESPONSIBLE EDITOR of such databases is entirely dependent on the quality of the data they contain. We present a case Stefania Puce study that evaluated online biogeographic information available for a hydrozoan narcomedusan jellyfish, Aegina citrea. This medusa is considered one of the easiest to identify because it is one of KEYWORDS very few species with only four large tentacles protruding from midway up the exumbrella and it Biogeography databases; is the only recognized species in its genus.
    [Show full text]
  • The First Record of Bougainvillia Principis (Steenstrup, 1850) (Hydrozoa: Anthoathecata) from the White Sea
    Invertebrate Zoology, 2018, 15(4): 333–339 © INVERTEBRATE ZOOLOGY, 2018 The first record of Bougainvillia principis (Steenstrup, 1850) (Hydrozoa: Anthoathecata) from the White Sea A.A. Prudkovsky1, T.V. Neretina2,3 1 Dept. Invertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1–12, 119991 Moscow, Russia. E-mail: [email protected] 2 Pertsov White Sea Biological Station, Biological Faculty, Moscow State University M.V. Lomonos- ov, Leninskie Gory 1-12, 119991 Moscow, Russia. 3 Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia. ABSTRACT: Hydroids are common components of fouling communities in the sea, but they are often inconspicuous and easily overlooked. In such cases, the appearance of their medusae in plankton is an obvious indicator of the species’ presence in a locality. In this study, we present the first record of medusae Bougainvillia principis from the White Sea. We hypothesize that hydroids of the species B. principis inhabit the White Sea, as well, but they do not usually produce medusae and consequently the species does not exhibit sexual reproduction in the White Sea. How to cite this article: Prudkovsky A.A., Neretina T.V. 2018. The first record of Bougainvillia principis (Steenstrup, 1850) (Hydrozoa: Anthoathecata) from the White Sea // Invert. Zool. Vol.15. No.4. P. 333–339. doi: 10.15298/invertzool.15.4.02 KEY WORDS: Bougainvillia principis, medusa, first report, White Sea. Первая находка медузы Bougainvillia principis (Steenstrup, 1850) (Hydrozoa: Anthoathecata) в Белом море А.A. Прудковский1, Т.В. Неретина2,3 1 Кафедра зоологии беспозвоночных, Биологический факультет МГУ имени М.В.
    [Show full text]
  • Ectosymbiotic Behavior of Cancer Gracilis and Its Trophic Relationships with Its Host Phacellophora Camtschatica and the Parasitoid Hyperia Medusarum
    MARINE ECOLOGY PROGRESS SERIES Vol. 315: 221–236, 2006 Published June 13 Mar Ecol Prog Ser Ectosymbiotic behavior of Cancer gracilis and its trophic relationships with its host Phacellophora camtschatica and the parasitoid Hyperia medusarum Trisha Towanda*, Erik V. Thuesen Laboratory I, Evergreen State College, Olympia, Washington 98505, USA ABSTRACT: In southern Puget Sound, large numbers of megalopae and juveniles of the brachyuran crab Cancer gracilis and the hyperiid amphipod Hyperia medusarum were found riding the scypho- zoan Phacellophora camtschatica. C. gracilis megalopae numbered up to 326 individuals per medusa, instars reached 13 individuals per host and H. medusarum numbered up to 446 amphipods per host. Although C. gracilis megalopae and instars are not seen riding Aurelia labiata in the field, instars readily clung to A. labiata, as well as an artificial medusa, when confined in a planktonkreisel. In the laboratory, C. gracilis was observed to consume H. medusarum, P. camtschatica, Artemia franciscana and A. labiata. Crab fecal pellets contained mixed crustacean exoskeletons (70%), nematocysts (20%), and diatom frustules (8%). Nematocysts predominated in the fecal pellets of all stages and sexes of H. medusarum. In stable isotope studies, the δ13C and δ15N values for the megalopae (–19.9 and 11.4, respectively) fell closely in the range of those for H. medusarum (–19.6 and 12.5, respec- tively) and indicate a similar trophic reliance on the host. The broad range of δ13C (–25.2 to –19.6) and δ15N (10.9 to 17.5) values among crab instars reflects an increased diversity of diet as crabs develop. The association between C.
    [Show full text]