Pdf) and Their Values Are Plotted Against Temperature in Fig
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Treatment of Lion´S Mane Jellyfish Stings- Hot Water Immersion Versus Topical Corticosteroids
THE SAHLGRENSKA ACADEMY Treatment of Lion´s Mane jellyfish stings- hot water immersion versus topical corticosteroids Degree Project in Medicine Anna Nordesjö Programme in Medicine Gothenburg, Sweden 2016 Supervisor: Kai Knudsen Department of Anesthesia and Intensive Care Medicine 1 CONTENTS Abstract ................................................................................................................................................... 3 Introduction ............................................................................................................................................. 3 Background ............................................................................................................................................. 4 Jellyfish ............................................................................................................................................... 4 Anatomy .......................................................................................................................................... 4 Nematocysts .................................................................................................................................... 4 Jellyfish in Scandinavian waters ......................................................................................................... 5 Lion’s Mane jellyfish, Cyanea capillata .......................................................................................... 5 Moon jelly, Aurelia aurita .............................................................................................................. -
DOCTORAL THESIS a Physio-Ecological Study of Ephyrae
DOCTORAL THESIS A Physio-ecological Study of Ephyrae of the Common Jellyfish Aurelia aurita s.l. (Cnidaria: Scyphozoa), with Special Reference to their Survival Capability under Starvation Zhilu Fu Graduate School of Biosphere Science Hiroshima University September 2014 DOCTORAL THESIS A Physio-ecological Study of Ephyrae of the Common Jellyfish Aurelia aurita s.l. (Cnidaria: Scyphozoa), with Special Reference to their Survival Capability under Starvation Zhilu Fu Department of environmental Dynamics and Management Graduate School of Biosphere Science Hiroshima University September 2014 Abstract The moon jellyfish Aurelia aurita s.l. is the most common scyphozoan jellyfish in the coastal waters around the world, and the mass occurrences of this species have been reported from various regions. In recent decades, A. aurita blooms have become increasingly prominent in East Asian seas, causing serious problems to human sectors such as fisheries and coastal power plant operations. Therefore, it is important to identify causes for the enhancement of A. aurita populations to forecast likely outbreaks prior to the season of medusa blooms. In the population dynamics of scyphozoan jellyfish, the following two factors are important to determine the size of adult (medusa) population: (1) the abundance of benthic polyps, which reproduce asexually and undergo seasonal strobilation to release planktonic ephyrae, and (2) the mortality of ephyrae before recruitment to the medusa stage. Although much knowledge has been accumulated about physio-ecology of the polyp stage by previous studies, only few studies have been conducted for the ephyra stage. The success for survival through larval stage is basically affected by two factors, viz. food availability and predation. -
A Review of Behavioural Observations on Aurelia Sp. Jellyfish
Neuroscience and Biobehavioral Reviews 35 (2011) 474–482 Contents lists available at ScienceDirect Neuroscience and Biobehavioral Reviews journal homepage: www.elsevier.com/locate/neubiorev Review What’s on the mind of a jellyfish? A review of behavioural observations on Aurelia sp. jellyfish David J. Albert Roscoe Bay Marine Biology Laboratory, 4534 W 3rd Avenue, Vancouver, British Columbia, Canada V6R 1N2 article info abstract Article history: Aurelia sp. (scyphozoa; Moon Jellies) are one of the most common and widely distributed species of jelly- Received 14 March 2010 fish. Their behaviours include swimming up in response to somatosensory stimulation, swimming down Received in revised form 30 May 2010 in response to low salinity, diving in response to turbulence, avoiding rock walls, forming aggregations, Accepted 3 June 2010 and horizontal directional swimming. These are not simple reflexes. They are species typical behaviours involving sequences of movements that are adjusted in response to the requirements of the situation and Keywords: that require sensory feedback during their execution. They require the existence of specialized sensory Aurelia sp receptors. The central nervous system of Aurelia sp. coordinates motor responses with sensory feedback, Behaviour Nervous system maintains a response long after the eliciting stimulus has disappeared, changes behaviour in response Sensory receptors to sensory input from specialized receptors or from patterns of sensory input, organizes somatosensory Scyphozoa input in a way that allows stimulus input from many parts of the body to elicit a similar response, and coordinates responding when stimuli are tending to elicit more than one response. While entirely differ- ent from that of most animals, the nervous system of Aurelia sp. -
Aurelia Aurita) and Evaluation of Their Tissues Using NMR-Based Metabolomics
ABSTRACT DOERR, MARY. The Development of Euthanasia Techniques for Moon Jellyfish (Aurelia aurita) and Evaluation of their Tissues Using NMR-Based Metabolomics. (Under the direction of Dr. Michael K Stoskopf). Wild jellyfish are known to have significant impacts on coastal food web ecology and water quality. Advances in aquarium engineering and captive breeding capabilities have increased the availability of these delicate invertebrates for research purposes, although challenges persist in the management of water quality, nutrition, and disease. Moon jellyfish (Aurelia aurita) are an ideal species for novel investigations into jellyfish physiology due to their cosmopolitan nature, and their shared traits with most species of scyphozoan jellyfish. Metabolomics, the study of the small molecules involved in the pathways of cellular metabolism, is a rapidly growing area of study with applications in medicine, disease management, and marine systems biology. NMR spectroscopy allows for the evaluation of the full spectrum of metabolites from any tissue or biofluid and has the additional advantage of allowing for the determination of molecular structure from these samples, which can lead to the discovery of new biomolecules. Using NMR-based metabolomics to investigate jellyfish has the potential to generate new insight into their physiology and to add to the existing knowledge base in the field of marine metabolomics. This research project first investigates suitable methods of euthanasia for moon jellyfish destined for NMR spectroscopy, and -
Population Structures and Levels of Connectivity for Scyphozoan and Cubozoan Jellyfish
diversity Review Population Structures and Levels of Connectivity for Scyphozoan and Cubozoan Jellyfish Michael J. Kingsford * , Jodie A. Schlaefer and Scott J. Morrissey Marine Biology and Aquaculture, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; [email protected] (J.A.S.); [email protected] (S.J.M.) * Correspondence: [email protected] Abstract: Understanding the hierarchy of populations from the scale of metapopulations to mesopop- ulations and member local populations is fundamental to understanding the population dynamics of any species. Jellyfish by definition are planktonic and it would be assumed that connectivity would be high among local populations, and that populations would minimally vary in both ecological and genetic clade-level differences over broad spatial scales (i.e., hundreds to thousands of km). Although data exists on the connectivity of scyphozoan jellyfish, there are few data on cubozoans. Cubozoans are capable swimmers and have more complex and sophisticated visual abilities than scyphozoans. We predict, therefore, that cubozoans have the potential to have finer spatial scale differences in population structure than their relatives, the scyphozoans. Here we review the data available on the population structures of scyphozoans and what is known about cubozoans. The evidence from realized connectivity and estimates of potential connectivity for scyphozoans indicates the following. Some jellyfish taxa have a large metapopulation and very large stocks (>1000 s of km), while others have clade-level differences on the scale of tens of km. Data on distributions, genetics of medusa and Citation: Kingsford, M.J.; Schlaefer, polyps, statolith shape, elemental chemistry of statoliths and biophysical modelling of connectivity J.A.; Morrissey, S.J. -
Moon Jelly (Aurelia Aurita)
Moon jelly (Aurelia aurita) Size: A moon jelly can range in size from 2 to 15 inches in diameter Range/Distribution: Moon jellies are found in coastal regions worldwide Appearance: An adult moon jelly is commonly identified by the appearance of 4 horseshoe shaped reproductive organs which are visible through their clear bell. The reproductive organs of the animal are located near the bottom of the stomach so when the jelly feeds the area around the gonads will take on the color of the prey. Moon jellies have small tentacles lining the bell and distinctive oral arms, which assist in feeding, draping from the center of the bell. Habitat: Jellies are found in water with temperatures ranging from 48 ْ -66 ْ F (but can with stand water temperatures between 21 ْ - 88 ْ F). These amazing invertebrates can even live in brackish water (a mixture of fresh and salt water); however, the bell will take on a flattened appearance when in areas of low salt concentrations. Prey: The moon jelly is a carnivorous animal which preys on small planktons such as larval crabs, shrimps and fish eggs. Although movement is mostly dictated by the currents, a moon jelly can move into areas abundant with prey by pulsing their bell. Although prey may be stung by the stinging cells (nematocysts) that line the tentacle, most become entangled in the mucous layer which covers the animal. Food is then moved along eight canals which deposit food into the stomach. Predators: Moon jellies are preyed on by sea turtles, shore birds, fish species and other jelly species. -
Scyphozoa, Cnidaria)
Plankton Benthos Res 6(3): 175–177, 2011 Plankton & Benthos Research © The Plankton Society of Japan Note First record of wild polyps of Chrysaora pacifica (Goette, 1886) (Scyphozoa, Cnidaria) MASAYA TOYOKAWA National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Kanagawa 236–8648, Japan Present address: Seikai National Fisheries Research Institute, Fisheries Research Agency, 1551–8 Taira-machi, Nagasaki, Nagasaki 851–2213, Japan Received 7 February 2011; Accepted 26 July 2011 Abstract: Polyps of Chrysaora pacifica were found on sediments sampled from the sea bottom in Sagami Bay near the mouth of the Sagami River on 26 June 2009; they were identified from released ephyrae in the laboratory. This is the first record of wild polyps of C. pacifica. Polyps and/or podocysts were found from five among the six stations. They were found on 25 shells (2.5–9.2 cm in width, 1.6–5.3 cm in height) and on 22 stones (1.5–8.0 cm in width, 1.3–5.0 cm in height). The shells with polyps were mostly from the dead clam Meretrix lamarckii. Polyps and podocysts were mostly found on the concave surface of bivalve shells, or in hollows of the stones. The number of polyps and podocysts per shell ranged between 0–52 (medianϭ9) and 0–328 (medianϭ28); and those per stone were 1–12 (medianϭ2) and 0–26 (medianϭ1.5). The number, especially of podocysts, was much greater on shells than on stones. On a convex substrate they can easily be removed by being hit with other substrates during dredging and washing, and such a process may also occur in natural conditions. -
Growth and Development of Chrysaora Quinquecirrha Reared Under Different Diet Compositions
UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL GROWTH AND DEVELOPMENT OF CHRYSAORA QUINQUECIRRHA REARED UNDER DIFFERENT DIET COMPOSITIONS Mestrado em Ecologia Marinha Guilherme da Costa Cruz Dissertação orientada por: Doutora Susana Garrido e Professor Pedro Ré 2015 GROWTH AND DEVELOPMENT OF CHRYSAORA QUINQUECIRRHA UNDER DIFFERENT DIETS Index I. ACKNOWLEDGEMENTS .................................................................................................................. 4 II. ABSTRACT/RESUMO ...................................................................................................................... 6 III. INTRODUCTION ............................................................................................................................. 9 III. 1. THE MEDICAL POTENTIAL OF VENOM............................................................................................. 11 III. 2. NATURAL ECOLOGY AND LIFE CYCLE .............................................................................................. 12 III. 3. NATURAL DIET AND FEEDING BEHAVIOUR ...................................................................................... 14 III. 4. GROWTH FACTORS AND BLOOMS ................................................................................................ 16 III. 5. JELLYFISH REARING AND AQUARIUM PRECAUTIONS .......................................................................... 18 III. 6. THE SPECIES UNDER STUDY: CHRYSAORA QUINQUECIRRHA ................................................................ -
Impact of Scyphozoan Venoms on Human Health and Current First Aid Options for Stings
toxins Review Impact of Scyphozoan Venoms on Human Health and Current First Aid Options for Stings Alessia Remigante 1,2, Roberta Costa 1, Rossana Morabito 2 ID , Giuseppa La Spada 2, Angela Marino 2 ID and Silvia Dossena 1,* ID 1 Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria; [email protected] (A.R.); [email protected] (R.C.) 2 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, I-98166 Messina, Italy; [email protected] (R.M.); [email protected] (G.L.S.); [email protected] (A.M.) * Correspondence: [email protected]; Tel.: +43-662-2420-80564 Received: 10 February 2018; Accepted: 21 March 2018; Published: 23 March 2018 Abstract: Cnidaria include the most venomous animals of the world. Among Cnidaria, Scyphozoa (true jellyfish) are ubiquitous, abundant, and often come into accidental contact with humans and, therefore, represent a threat for public health and safety. The venom of Scyphozoa is a complex mixture of bioactive substances—including thermolabile enzymes such as phospholipases, metalloproteinases, and, possibly, pore-forming proteins—and is only partially characterized. Scyphozoan stings may lead to local and systemic reactions via toxic and immunological mechanisms; some of these reactions may represent a medical emergency. However, the adoption of safe and efficacious first aid measures for jellyfish stings is hampered by the diffusion of folk remedies, anecdotal reports, and lack of consensus in the scientific literature. Species-specific differences may hinder the identification of treatments that work for all stings. -
Aggregations of the Jellyfish Aurelia Labiata
MARINE ECOLOGY PROGRESS SERIES Vol. 195: 145-158,2000 Published March 31 Mar Ecol Proy Ser .- l Aggregations of the jellyfish Aurelia labiata: abundance, distribution, association with age-0 walleye pollock, and behaviors promoting aggregation in Prince William Sound, Alaska, USA Jennifer E. P~rcell'~*,Evelyn D. Brown2, Kevin D.E. ~tokesbury~~**, Lewis H. ~aldorson~,Thomas C. shirley3 'University of Maryland Center for Environmental Science, Horn Point Laboratory, PO Box 775, Cambridge, Maryland 21613, USA 'Institute of Marine Science, University of Alaska-Fairbanks, Fairbanks, Alaska 99775-7220, USA 3Juneau Center, School of Fisheries and Ocean Sciences. University of Alaska-Fairbanks, Juneau. Alaska 99801, USA ABSTRACT: Aurelia labiata medusae occurred in aggregations with hundreds to millions of jellyfish. The aggregations were widely distributed in inlets of Prince William Sound (PWS),Alaska. Aerial sur- veys of PWS in May to August in 1995, 1996, and 1997 showed marked interannual variation in the numbers of aggregations observed, from a minimum of 38 in 1997 to a maximum of 557 in 1996 Acoustic surveys showed that the aggregations extended from near-surface (0 to 5 m) to 15 m depth. Schools of young-of the-year walleye pollock Theragra chalcogramma were associated with A. labiata, both within and below the aggregations. All seine catches that contained juvenile pollock also con- tained jellyfish. Medusa swimming was analyzed from underwater videotapes in order to elucidate how aggregations might be formed and maintained. Medusae did not swim in circles in the aggrega- tion~.Medusae all swam vertically in the same direction, either up or down, in crowded parts of the aggregations, suggesting that they had become concentrated in flow features, like convergences, in the water column. -
Unusual Aggregations of the Scyphomedusa Aurelia Aurita in Coastal Waters Along Western Shikoku, Japan
Plankton Biol. Ecol. 50 (1): 17-21, 2003 plankton biology & ecology ¥■ The Plankton Society of Japan 2003 Unusual aggregations of the scyphomedusa Aurelia aurita in coastal waters along western Shikoku, Japan Shin-ichi Uye1*, Naoki Fujii1 & Hidetaka Takeoka2 'Graduate School of Biosphere Sciences, Hiroshima University, 4-4 Kagamiyama 1 Chome, Higashi-Himshima 739-8528, Japan ' Center for Marine Environmental Studies (CEMESj, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan Received 13 May 2002; accepted 17 July 2002 Abstract: The scyphomedusa Aurelia aurita formed dense aggregations in the coastal waters of the Uwakai Sea, western Shikoku, Japan, in the summer of 2000. Composite airphotographs from a Cessna combined with a ground-truthed net survey revealed that these aggregations, which looked cloud-like, covered a total area of 2.34 km2, and contained at least 5.83x108 individuals or 9.36X104 metric tons wet weight of medusae along approximately 100 km of coastline. The aggregation was most intense in the inner part of inlets, suggesting that the physical transport of medusae by a swift intrusion current from offshore to inshore (called "kyucho") was primarily responsible. Within the ag gregation, predation on mesozooplankton was nearly 100%. Although the occurrence of A aurita ag gregations is more or less common in this area, such large aggregations have never before been recorded, indicating that the population increase in 2000 was unusual. A combined method employ ing aerial surveys and in situ net sampling can be a useful and time-saving technique to quantify A aurita populations over a relatively extended sea area, such as the Uwakai Sea. -
Aspects of the Ecology of the Moon Jellyfish, Aurelia Aurita, in the Northern Gulf of Mexico Carol L
Northeast Gulf Science Volume 11 Article 7 Number 1 Number 1 7-1990 Aspects of the Ecology of the Moon Jellyfish, Aurelia aurita, in the Northern Gulf of Mexico Carol L. Roden National Marine Fisheries Service Ren R. Lohoefener National Marine Fisheries Service Carolyn M. Rogers National Marine Fisheries Service Keith D. Mullin National Marine Fisheries Service B. Wayne Hoggard National Marine Fisheries Service DOI: 10.18785/negs.1101.07 Follow this and additional works at: https://aquila.usm.edu/goms Recommended Citation Roden, C. L., R. R. Lohoefener, C. M. Rogers, K. D. Mullin and B. Hoggard. 1990. Aspects of the Ecology of the Moon Jellyfish, Aurelia aurita, in the Northern Gulf of Mexico. Northeast Gulf Science 11 (1). Retrieved from https://aquila.usm.edu/goms/vol11/iss1/7 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Roden et al.: Aspects of the Ecology of the Moon Jellyfish, Aurelia aurita, in Northeast Gulf Science Vol. 11, No. 1 July 1990 63 ASPECTS OF THE ECOLOGY OF THE survey days were accomplished in each MOON JELLYFISH, Aurelia aurita, area per season. IN THE NORTHERN GULF OF MEXICO Transect directions were either north south or east-west, generally perpen In the spring and fall of 1987, aerial dicular to the mainland. Offshore tran surveys were used to study the distribu sects extended from the mainland or tion and abundance of surfaced and barrier islands 15 to 20 minutes of lati near-surface schools of red drum tude or longitude seaward (28 to 37 km).