Fish Welfare on Scotland's Salmon Farms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Predatory Impact of Aurelia Aurita on the Zooplankton Community in The
Barz and Hirche: Predatory impact of Aurelia aurita on the zooplankton community in the Bornholm Basin (central Baltic) CM 2004/J: 12 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ Not to be cited without prior reference to the authors CM 2004/J:12 Predatory impact of Aurelia aurita on the zooplankton community in the Bornholm Basin (central Baltic) Kristina Barz and Hans-Jürgen Hirche Alfred-Wegener-Institute for Polar and Marine Research Columbusstrasse, 27568 Bremerhaven, Germany tel.: +49 471 4831 1324, fax: +49 471 4831 1918 [email protected] Abstract The annual cycle of abundance and vertical distribution of the scyphozoan medusa Aurelia aurita was studied in the Bornholm Basin (central Baltic) in 2002. Seasonal changes in prey composition and predatory impact were investigated by analysing stomach contents. The dominant prey organisms of A. aurita were several cladoceran species (Bosmina coregoni maritima, Evadne nordmanni and Podon spp.). They represented up to 93% of the food organisms. Bivalve larvae and copepods (Centropages hamatus, Temora longicornis, Acartia spp., Pseudocalanus acuspes, Eurytemora hirundoides and Oithona similis) were less frequently found. Nauplii and copepodites I-III were not eaten by the medusae neither were fish eggs and larvae used as prey. Based on average medusae and zooplankton abundance, the predatory impact was very low. In August, when mean abundance of A. aurita was highest, only 0.1% of the copepod and 0.54% of the cladoceran standing stock were eaten per day. However in regions -
Salmon Aquaculture Dialogue Working Group Report on Salmon Disease
Salmon Aquaculture Dialogue Working Group Report on Salmon Disease Larry Hammell - Atlantic Veterinary College, University of Prince Edward Island, Canada Craig Stephen- Centre for Coastal Health, University of Calgary, Canada Ian Bricknell- School of Marine Sciences, University of Maine, USA Øystein Evensen- Norwegian School of Veterinary Medicine, Oslo, Norway Patricio Bustos- ADL Diagnostic Chile Ltda., Chile With Contributions by: Ricardo Enriquez- University of Austral, Chile 1 Citation: Hammell, L., Stephen, C., Bricknell, I., Evensen Ø., and P. Bustos. 2009 “Salmon Aquaculture Dialogue Working Group Report on Salmon Disease” commissioned by the Salmon Aquaculture Dialogue, available at http://wwf.worldwildlife.org/site/PageNavigator/SalmonSOIForm Corresponding author: Larry Hammell, email: [email protected] This report was commissioned by the Salmon Aquaculture Dialogue. The Salmon Dialogue is a multi-stakeholder, multi-national group which was initiated by the World Wildlife Fund in 2004. Participants include salmon producers and other members of the market chain, NGOs, researchers, retailers, and government officials from major salmon producing and consuming countries. The goal of the Dialogue is to credibly develop and support the implementation of measurable, performance-based standards that minimize or eliminate the key negative environmental and social impacts of salmon farming, while permitting the industry to remain economically viable The Salmon Aquaculture Dialogue focuses their research and standard development on seven key areas of impact of salmon production including: social; feed; disease; salmon escapes; chemical inputs; benthic impacts and siting; and, nutrient loading and carrying capacity. Funding for this report and other Salmon Aquaculture Dialogue supported work is provided by the members of the Dialogue‘s steering committee and their donors. -
Guidelines for the Use of Fishes in Research
Reference Resources Caveats from AAALAC’s Council on Accreditation regarding this resource: “Guidelines for the Use of Fishes in Research” Use of Fishes in Research Committee (joint committee of the American Fisheries Society, the American Institute of Fishery Research Biologists, and the American Society of Ichthyologists and Herpetologists), 2014. *This reference was adopted by the Council on Accreditation with the following four clarifications: Clarifications: #1. On page 27, the Guidelines for the Use of Fishes in Research state that “[t]he preferred method for archival storage is direct immersion in a 10% formalin (3.7% formaldehyde) solution, followed by transfer to alcohol (70% ethanol, un-denatured preferred) for long-term preservation and storage, as with voucher specimens.” The document goes on to state later in the same paragraph that “[w]hen study interests demand that specimens be fixed without prior treatment with sedatives, the specimens can be numbed in ice water, or for small fishes, immersed directly in liquid nitrogen (see section 8.1 Euthanasia).” In these instances, death is either by fixation in a formalin solution or by freezing in liquid nitrogen, which are both considered unacceptable as a primary means of euthanasia by the AVMA. AAALAC International utilizes the AVMA Guidelines on Euthanasia and recommends this document, and applicable legal requirements be referred to for further guidance. #2. On page 6, the Guidelines for the Use of Fishes in Research discuss mortality as an experimental endpoint. The Guide emphasizes that studies should include descriptions of appropriate humane endpoints or provide science-based justification for not using a particular, commonly accepted humane endpoint. -
Fishery Circular
'^y'-'^.^y -^..;,^ :-<> ii^-A ^"^m^:: . .. i I ecnnicai Heport NMFS Circular Marine Flora and Fauna of the Northeastern United States. Copepoda: Harpacticoida Bruce C.Coull March 1977 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA TECHNICAL REPORTS National Marine Fisheries Service, Circulars The major respnnsibilities of the National Marine Fisheries Service (NMFS) are to monitor and assess the abundance and geographic distribution of fishery resources, to understand and predict fluctuationsin the quantity and distribution of these resources, and to establish levels for optimum use of the resources. NMFS is also charged with the development and implementation of policies for managing national fishing grounds, development and enforcement of domestic fisheries regulations, surveillance of foreign fishing off United States coastal waters, and the development and enforcement of international fishery agreements and policies. NMFS also assists the fishing industry through marketing service and economic analysis programs, and mortgage insurance and vessel construction subsidies. It collects, analyzes, and publishes statistics on various phases of the industry. The NOAA Technical Report NMFS Circular series continues a series that has been in existence since 1941. The Circulars are technical publications of general interest intended to aid conservation and management. Publications that review in considerable detail and at a high technical level certain broad areas of research appear in this series. Technical papers originating in economics studies and from management in- vestigations appear in the Circular series. NOAA Technical Report NMFS Circulars arc available free in limited numbers to governmental agencies, both Federal and State. They are also available in exchange for other scientific and technical publications in the marine sciences. -
Potential Effect of Jellyfish Aurelia Aurita Collagen Scaffold Induced Alveolar Bone Regeneration in Periodontal Disease
Sys Rev Pharm 2021;12(1):1479-1486 A multifaceted review journal in the field of pharmacy Potential Effect of Jellyfish Aurelia aurita Collagen Scaffold Induced Alveolar Bone Regeneration in Periodontal Disease Ranny Rachmawati1,2*, Mohammad Hidayat3, Nur Permatasari4, Sri Widyarti5 1Doctoral Program of Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia 2Departement of Periodontics, Faculty of Dentistry, Universitas Brawijaya, Malang, Indonesia 3Departement of Orthopaedics, Syaiful Anwar General Hospital, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia 4Departement of Oral Biology, Faculty of Dentistry, Universitas Brawijaya, Malang, Indonesia 5Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang, Indonesia ABSTRACT Periodontal disease is an inflammation disease that can cause alveolar bone Keywords: Collagen Scaffold, Jellyfish Aurelia aurita, Alveolar Bone resorption and make tooth mobility, eventually tooth loss. One of the important Regeneration, Periodontal Disease things in regeneration therapy of alveolar bone is the design and manufacture of a scaffold as osteoconductor. Collagen is an ideal choice to be used as scaffold Correspondence: because it has low immunity, good pores structure and permeability, Ranny Rachmawati biocompatible, and can be degraded. Aurelia aurita jellyfish is one of the potential Doctoral Program of Medical Science, Faculty of Medicine, Universitas marine animals for the development of collagen scaffold due to its high -
You Don't Need Lungs to Suffer: Fish Suffering in the Age of Climate Change with a Call for Regulatory Reform, 5 Can
Pace University DigitalCommons@Pace Pace Law Faculty Publications School of Law 8-2019 You Don’t Need Lungs to Suffer: Fish Suffering in the Age of Climate Change with a Call for Regulatory Reform David N. Cassuto Elisabeth Haub School of Law at Pace University Amy O'Brien Elisabeth Haub School of Law at Pace University Follow this and additional works at: https://digitalcommons.pace.edu/lawfaculty Part of the Animal Law Commons, Environmental Law Commons, Food and Drug Law Commons, and the International Law Commons Recommended Citation David N. Cassuto & Amy O'Brien, You Don't Need Lungs to Suffer: Fish Suffering in the Age of Climate Change with a Call for Regulatory Reform, 5 Can. J. Comp. & Contemp. L. 1 (2019), https://digitalcommons.pace.edu/lawfaculty/1134/ This Article is brought to you for free and open access by the School of Law at DigitalCommons@Pace. It has been accepted for inclusion in Pace Law Faculty Publications by an authorized administrator of DigitalCommons@Pace. For more information, please contact [email protected]. You Don’t Need Lungs to Suffer: Fish Suffering in the Age of Climate Change with a Call for Regulatory Reform David N Cassuto* & Amy M O’Brien** Fish are sentient — they feel pain and suffer. Yet, while we see increasing interest in protecting birds and mammals in industries such as farming and research (albeit few laws), no such attention has been paid to the suffering of fish in the fishing industry. Consideration of fish welfare including reducing needless suffering should be a component of fisheries management. -
King County Zooplankton Monitoring Annual Report 2017
King County Zooplankton Monitoring Annual Report 2017 31 August 2018 Dr. Julie E. Keister Box 357940 Seattle, WA 98195 (206) 543-7620 [email protected] Prepared by: Dr. Julie E. Keister, Amanda Winans, and BethElLee Herrmann King County Zooplankton Monitoring Annual Report 2017 Project Oversight and Report Preparation The zooplankton analyses reported herein were conducted in Dr. Julie E. Keister’s laboratory at the University of Washington, School of Oceanography. Dr. Keister designed the protocols for the field zooplankton sampling and laboratory analysis. Field sampling was conducted by the King County Department of Natural Resources and Parks, Water and Land Resources Division. Taxonomic analysis was conducted by Amanda Winans, BethElLee Herrmann, and Michelle McCartha at the University of Washington. This report was prepared by Winans and Herrmann, with oversight by Dr. Keister. Acknowledgments We would like to acknowledge the following individuals and organizations for their contributions to the successful 2017 sampling and analysis of the King County zooplankton monitoring in the Puget Sound: From King County, we thank Kimberle Stark, Wendy Eash-Loucks, the King County Environmental Laboratory field scientists, and the captain and crew of the R/V SoundGuardian. We would also like to thank our collaborators Moira Galbraith and Kelly Young from Fisheries and Oceans Canada Institute of Ocean Sciences for their expert guidance in species identification and Cheryl Morgan from Oregon State University for assistance in designing sampling and analysis protocols. King County Water and Land Resources Division provided funding for these analyses, with supplemental funding provided by Long Live the Kings for analysis of oblique tow (bongo net) samples as part of the Salish Sea Marine Survival Project. -
The Biology of the Predatory Calanoid Copepod Tortanus Discaudatus (Thompson and Scott) in a New Hampshire Estuary David George Phillips
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 1976 THE BIOLOGY OF THE PREDATORY CALANOID COPEPOD TORTANUS DISCAUDATUS (THOMPSON AND SCOTT) IN A NEW HAMPSHIRE ESTUARY DAVID GEORGE PHILLIPS Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation PHILLIPS, DAVID GEORGE, "THE BIOLOGY OF THE PREDATORY CALANOID COPEPOD TORTANUS DISCAUDATUS (THOMPSON AND SCOTT) IN A NEW HAMPSHIRE ESTUARY" (1976). Doctoral Dissertations. 1124. https://scholars.unh.edu/dissertation/1124 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. -
A Synthesis Tree of the Copepoda: Integrating Phylogenetic and Taxonomic Data Reveals Multiple Origins of Parasitism
A synthesis tree of the Copepoda: integrating phylogenetic and taxonomic data reveals multiple origins of parasitism James P. Bernot1,2, Geoffrey A. Boxshall3 and Keith A. Crandall1,2 1 Department of Invertebrate Zoology, Smithsonian National Museum of Natural History, Washington, DC, United States of America 2 Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC, United States of America 3 Department of Life Sciences, Natural History Museum, London, United Kingdom ABSTRACT The Copepoda is a clade of pancrustaceans containing 14,485 species that are extremely varied in their morphology and lifestyle. Not only do copepods dominate marine plank- ton and sediment communities and make up a sizeable component of the freshwater plankton, but over 6,000 species are symbiotically associated with every major phylum of marine metazoans, mostly as parasites. Unfortunately, our understanding of copepod evolutionary relationships is relatively limited in part because of their extremely divergent morphology, sparse taxon sampling in molecular phylogenetic analyses, a reliance on only a handful of molecular markers, and little taxonomic overlap between phylogenetic studies. Here, a synthesis tree method is used to integrate published phylogenies into a more comprehensive tree of copepods by leveraging phylogenetic and taxonomic data. A literature review in this study finds fewer than 500 species of copepods have been sampled in molecular phylogenetic studies. Using the Open Tree of Life platform, those taxa that have been sampled in previous phylogenetic studies are grafted together and combined with the underlying copepod taxonomic hierarchy from the Open Tree of Life Taxonomy to make a synthesis phylogeny of all copepod species. -
Volume 9, Number 3 Third Quarter, 2015 Volume 9, Number 3 the AQUATIC VETERINARIAN Third Quarter 2015
ISSN 2329-5562 Performing a Gill Biopsy See article by Dr Christoph Mans about The Basics of Pet Fish Medicine on pages 36-37. Volume 9, Number 3 Third Quarter, 2015 Volume 9, Number 3 THE AQUATIC VETERINARIAN Third Quarter 2015 WHO ARE WE Editorial Staff The mission of the World Aquatic Veterinary Medi- Nick Saint-Erne (USA) [email protected] Executive Editor cal Association is to serve the discipline of aquatic vet- erinary medicine in enhancing aquatic animal health Laura Urdes (Romania) and welfare, public health, and seafood safety, in sup- Communications Committee Chair port of the veterinary profession, aquatic animal own- ers and industries, and other stakeholders. Contributing Editors: David Scarfe (USA) The purpose of the World Aquatic Veterinary Medi- Devon Dublin (Japan) cal Association is: Richmond Loh (Australia) To serve aquatic veterinary medicine practitioners Chris Walster (UK) of many disciplines and backgrounds by develop- ing programs to support and promote our mem- WAVMA Executive Board bers, and the aquatic species and industries that they serve. Chris Walster (UK) [email protected] President To identify, foster and strengthen professional in- teractions among aquatic medical practitioners and Nick Saint-Erne (USA) [email protected] other organizations around the world. President-Elect To be an advocate for, develop guidance on, and promote the advancement of the science, ethics Richmond Loh (Australia) [email protected] Immediate Past President and professional aspects of aquatic animal medi- cine within the veterinary profession and a wider Devon Dublin (Japan) [email protected] audience. Secretary To optimally position and advance the discipline of Sharon Tiberio (USA) [email protected] aquatic veterinary medicine, and support the prac- Treasurer tice of aquatic veterinary medicine in all countries. -
Worse Things Happen at Sea: the Welfare of Wild-Caught Fish
[ “One of the sayings of the Holy Prophet Muhammad(s) tells us: ‘If you must kill, kill without torture’” (Animals in Islam, 2010) Worse things happen at sea: the welfare of wild-caught fish Alison Mood fishcount.org.uk 2010 Acknowledgments Many thanks to Phil Brooke and Heather Pickett for reviewing this document. Phil also helped to devise the strategy presented in this report and wrote the final chapter. Cover photo credit: OAR/National Undersea Research Program (NURP). National Oceanic and Atmospheric Administration/Dept of Commerce. 1 Contents Executive summary 4 Section 1: Introduction to fish welfare in commercial fishing 10 10 1 Introduction 2 Scope of this report 12 3 Fish are sentient beings 14 4 Summary of key welfare issues in commercial fishing 24 Section 2: Major fishing methods and their impact on animal welfare 25 25 5 Introduction to animal welfare aspects of fish capture 6 Trawling 26 7 Purse seining 32 8 Gill nets, tangle nets and trammel nets 40 9 Rod & line and hand line fishing 44 10 Trolling 47 11 Pole & line fishing 49 12 Long line fishing 52 13 Trapping 55 14 Harpooning 57 15 Use of live bait fish in fish capture 58 16 Summary of improving welfare during capture & landing 60 Section 3: Welfare of fish after capture 66 66 17 Processing of fish alive on landing 18 Introducing humane slaughter for wild-catch fish 68 Section 4: Reducing welfare impact by reducing numbers 70 70 19 How many fish are caught each year? 20 Reducing suffering by reducing numbers caught 73 Section 5: Towards more humane fishing 81 81 21 Better welfare improves fish quality 22 Key roles for improving welfare of wild-caught fish 84 23 Strategies for improving welfare of wild-caught fish 105 Glossary 108 Worse things happen at sea: the welfare of wild-caught fish 2 References 114 Appendix A 125 fishcount.org.uk 3 Executive summary Executive Summary 1 Introduction Perhaps the most inhumane practice of all is the use of small bait fish that are impaled alive on There is increasing scientific acceptance that fish hooks, as bait for fish such as tuna. -
Aspects of the Ecology of the Moon Jellyfish, Aurelia Aurita, in the Northern Gulf of Mexico Carol L
Northeast Gulf Science Volume 11 Article 7 Number 1 Number 1 7-1990 Aspects of the Ecology of the Moon Jellyfish, Aurelia aurita, in the Northern Gulf of Mexico Carol L. Roden National Marine Fisheries Service Ren R. Lohoefener National Marine Fisheries Service Carolyn M. Rogers National Marine Fisheries Service Keith D. Mullin National Marine Fisheries Service B. Wayne Hoggard National Marine Fisheries Service DOI: 10.18785/negs.1101.07 Follow this and additional works at: https://aquila.usm.edu/goms Recommended Citation Roden, C. L., R. R. Lohoefener, C. M. Rogers, K. D. Mullin and B. Hoggard. 1990. Aspects of the Ecology of the Moon Jellyfish, Aurelia aurita, in the Northern Gulf of Mexico. Northeast Gulf Science 11 (1). Retrieved from https://aquila.usm.edu/goms/vol11/iss1/7 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Roden et al.: Aspects of the Ecology of the Moon Jellyfish, Aurelia aurita, in Northeast Gulf Science Vol. 11, No. 1 July 1990 63 ASPECTS OF THE ECOLOGY OF THE survey days were accomplished in each MOON JELLYFISH, Aurelia aurita, area per season. IN THE NORTHERN GULF OF MEXICO Transect directions were either north south or east-west, generally perpen In the spring and fall of 1987, aerial dicular to the mainland. Offshore tran surveys were used to study the distribu sects extended from the mainland or tion and abundance of surfaced and barrier islands 15 to 20 minutes of lati near-surface schools of red drum tude or longitude seaward (28 to 37 km).