Medium Access Control Protocols of the PRMA Type in non-Geostationary Satellites Giovanni Giambene
[email protected] Dipartimento di Ingegneria dell’Informazione Università degli Studi di Siena Via Roma, 53 53100 Siena, Italy Abstract The challenge of future mobile multimedia networks is to provide worldwide tetherless communication services. Low Earth Orbit-Mobile Satellite Systems (LEO-MSSs) will play a significant role by filling the coverage gaps of future generation terrestrial cellular networks. This lecture presents research results on demand-assignment Medium Access Control (MAC) schemes able to share efficiently LEO satellite resources among users and to support isochronous traffics and the ubiquitous access to the Internet. 1 Introduction Future generation mobile communication systems will achieve a global coverage by integrating a terrestrial cellular component and a satellite one [1],[2]. The satellite system will play a complementary role with respect to its terrestrial counterpart; typical operational environments for satellite systems are regions where the provision of the terrestrial coverage is either technically or economically unfeasible. The role of mobile satellite systems is: (i) to allow the global roaming of users; (ii) to provide Quality of Service (QoS) levels comparable with those of terrestrial systems; (iii) to permit the rapid deployment of mobile services in underdeveloped regions. The satellite component of future mobile communication systems will be based (partly or totally) on non-geostationary constellations. In particular, this study focuses on Low Earth Orbit – Mobile Satellite Systems (LEO-MSSs), since they are close to the earth and allow the use of low-power lightweight mobile terminals [3]. In what follows, an earth-fixed cell system [4] will be assumed where antenna beams are steered so as to point towards a given cell on the earth during the satellite visibility time.