Gall Polymorphism of Coral-Inhabiting Crabs (Decapoda, Cryptochiridae): a New Perspective
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Classification of Living and Fossil Genera of Decapod Crustaceans
RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. -
Microbiomes of Gall-Inducing Copepod Crustaceans from the Corals Stylophora Pistillata (Scleractinia) and Gorgonia Ventalina
www.nature.com/scientificreports OPEN Microbiomes of gall-inducing copepod crustaceans from the corals Stylophora pistillata Received: 26 February 2018 Accepted: 18 July 2018 (Scleractinia) and Gorgonia Published: xx xx xxxx ventalina (Alcyonacea) Pavel V. Shelyakin1,2, Sofya K. Garushyants1,3, Mikhail A. Nikitin4, Sofya V. Mudrova5, Michael Berumen 5, Arjen G. C. L. Speksnijder6, Bert W. Hoeksema6, Diego Fontaneto7, Mikhail S. Gelfand1,3,4,8 & Viatcheslav N. Ivanenko 6,9 Corals harbor complex and diverse microbial communities that strongly impact host ftness and resistance to diseases, but these microbes themselves can be infuenced by stresses, like those caused by the presence of macroscopic symbionts. In addition to directly infuencing the host, symbionts may transmit pathogenic microbial communities. We analyzed two coral gall-forming copepod systems by using 16S rRNA gene metagenomic sequencing: (1) the sea fan Gorgonia ventalina with copepods of the genus Sphaerippe from the Caribbean and (2) the scleractinian coral Stylophora pistillata with copepods of the genus Spaniomolgus from the Saudi Arabian part of the Red Sea. We show that bacterial communities in these two systems were substantially diferent with Actinobacteria, Alphaproteobacteria, and Betaproteobacteria more prevalent in samples from Gorgonia ventalina, and Gammaproteobacteria in Stylophora pistillata. In Stylophora pistillata, normal coral microbiomes were enriched with the common coral symbiont Endozoicomonas and some unclassifed bacteria, while copepod and gall-tissue microbiomes were highly enriched with the family ME2 (Oceanospirillales) or Rhodobacteraceae. In Gorgonia ventalina, no bacterial group had signifcantly diferent prevalence in the normal coral tissues, copepods, and injured tissues. The total microbiome composition of polyps injured by copepods was diferent. -
Part I. an Annotated Checklist of Extant Brachyuran Crabs of the World
THE RAFFLES BULLETIN OF ZOOLOGY 2008 17: 1–286 Date of Publication: 31 Jan.2008 © National University of Singapore SYSTEMA BRACHYURORUM: PART I. AN ANNOTATED CHECKLIST OF EXTANT BRACHYURAN CRABS OF THE WORLD Peter K. L. Ng Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore Email: [email protected] Danièle Guinot Muséum national d'Histoire naturelle, Département Milieux et peuplements aquatiques, 61 rue Buffon, 75005 Paris, France Email: [email protected] Peter J. F. Davie Queensland Museum, PO Box 3300, South Brisbane, Queensland, Australia Email: [email protected] ABSTRACT. – An annotated checklist of the extant brachyuran crabs of the world is presented for the first time. Over 10,500 names are treated including 6,793 valid species and subspecies (with 1,907 primary synonyms), 1,271 genera and subgenera (with 393 primary synonyms), 93 families and 38 superfamilies. Nomenclatural and taxonomic problems are reviewed in detail, and many resolved. Detailed notes and references are provided where necessary. The constitution of a large number of families and superfamilies is discussed in detail, with the positions of some taxa rearranged in an attempt to form a stable base for future taxonomic studies. This is the first time the nomenclature of any large group of decapod crustaceans has been examined in such detail. KEY WORDS. – Annotated checklist, crabs of the world, Brachyura, systematics, nomenclature. CONTENTS Preamble .................................................................................. 3 Family Cymonomidae .......................................... 32 Caveats and acknowledgements ............................................... 5 Family Phyllotymolinidae .................................... 32 Introduction .............................................................................. 6 Superfamily DROMIOIDEA ..................................... 33 The higher classification of the Brachyura ........................ -
Description of a New Genus of Cryptochiridae (Decapoda: Brachyura) Associated with Siderastrea (Anthozoa: Scleractinia), with Notes on Feeding Habits
Scientia Marina 76(3) September 2012, 517-526, Barcelona (Spain) ISSN: 0214-8358 10.3989/scimar.03538.02E Description of a new genus of Cryptochiridae (Decapoda: Brachyura) associated with Siderastrea (Anthozoa: Scleractinia), with notes on feeding habits MARCELLE F.S. BADARO 1, ELIZABETH G. NEVES 1, PETER CASTRO 2 and RODRIGO JOHNSSON 1 1 Universidade Federal da Bahia, Instituto de Biologia, Departamento de Zoologia, LABIMAR (Crustacea, Cnidaria and Fauna Associada), Adhemar de Barros, s/n, Campus de Ondina, Bahia, 40170-290 Brasil. E-mail: [email protected] 2 Biological Sciences Department, California State Polytechnic University, Pomona, 91768 CA, U.S.A. SUMMARY: Members of the Cryptochiridae are small gall-crabs that live as obligate symbionts of scleractinian corals. Only two species have so far been recorded in the western Atlantic Ocean. Herein a new Cryptochiridae genus and species is described, and new information is added on the life history of cryptochirids. The new genus is characterized by having the carapace with the lowest deflection angle among the genera, and also shows the following features: thoracic sternite 4 with setules and constriction smaller than half of the width of the basis, anterior margin curved with apical row of granules; third maxilliped with subcircular exopod reaching medially the lateral margin of the ischium; pereiopod 2 with prominent distomesial and anterolateral expansion on the merus, propodus almost twice larger than dactylus; thoracic sternite 7 with complete medial suture, female pleopod 3 uniramous with longitudinal opening. Male first pleopod straight with subdistal curvature of approximately 90°. Individuals belonging to the new genus are found in galls in massive corals although this structure is cited as being characteristic of ramified corals. -
Molecular Diversity, Phylogeny, and Biogeographic Patterns of Crustacean Copepods Associated with Scleractinian Corals of the Indo-Pacific
Molecular Diversity, Phylogeny, and Biogeographic Patterns of Crustacean Copepods Associated with Scleractinian Corals of the Indo-Pacific Dissertation by Sofya Mudrova In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy of Science King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia November, 2018 2 EXAMINATION COMMITTEE PAGE The dissertation of Sofya Mudrova is approved by the examination committee. Committee Chairperson: Dr. Michael Lee Berumen Committee Co-Chair: Dr. Viatcheslav Ivanenko Committee Members: Dr. James Davis Reimer, Dr. Takashi Gojobori, Dr. Manuel Aranda Lastra 3 COPYRIGHT PAGE © November, 2018 Sofya Mudrova All rights reserved 4 ABSTRACT Molecular diversity, phylogeny and biogeographic patterns of crustacean copepods associated with scleractinian corals of the Indo-Pacific Sofya Mudrova Biodiversity of coral reefs is higher than in any other marine ecosystem, and significant research has focused on studying coral taxonomy, physiology, ecology, and coral-associated fauna. Yet little is known about symbiotic copepods, abundant and numerous microscopic crustaceans inhabiting almost every living coral colony. In this thesis, I investigate the genetic diversity of different groups of copepods associated with reef-building corals in distinct parts of the Indo-Pacific; determine species boundaries; and reveal patterns of biogeography, endemism, and host-specificity in these symbiotic systems. A non-destructive method of DNA extraction allowed me to use an integrated approach to conduct a diversity assessment of different groups of copepods and to determine species boundaries using molecular and taxonomical methods. Overall, for this thesis, I processed and analyzed 1850 copepod specimens, representing 269 MOTUs collected from 125 colonies of 43 species of scleractinian corals from 11 locations in the Indo-Pacific. -
Symbiotic Brachyura1)
CHAPTER 71-10 SYMBIOTIC BRACHYURA1) BY PETER CASTRO Contents. – Introduction – The meaning of symbiosis – Categories of symbiosis. Cryptochi- roidea: Cryptochiridae – Hosts, biogeography, and ecology – Life history – Nutrition. Pilum- noidea: Pilumnidae – Hosts, biogeography, and ecology – Life history – Nutrition. Pinnotheroidea: Aphanodactylidae and Pinnotheridae – Hosts, biogeography, and ecology – Life history – Nutri- tion. Trapezioidea: Domeciidae – Hosts, biogeography, and ecology. Trapezioidea: Tetraliidae – Hosts, biogeography, and ecology – Life history – Nutrition. Trapezioidea: Trapeziidae –Hosts, biogeography, and ecology – Life history – Nutrition. Other Brachyura – Majoidea – Portunoidea – Xanthoidea – Other Xanthoidea – Miscellaneous groups of Brachyura. Acknowledgements. Ap- pendix. Bibliography. INTRODUCTION Close heterospecific associations are ubiquitous in most if not all biotic communi- ties. These associations vary widely in character, and can include a wide range of mor- phological, ecological, physiological, and/or behavioural adaptations, at times the result of coevolution between the partners. Brachyuran crabs are common participants in such asso- ciations, e.g., as hosts for internal or external parasites (see Chapter 71-12 in this volume), in associations with other organisms for concealment (see Chapter 71-11 in this volume), and as close associates living on or within an invertebrate host (the symbiotic associations discussed in this chapter). The variety and range of complexity among these symbioses is remarkable and difficult to categorize. Brachyuran associates are often referred to as “commensals”, “parasites”, “mutualists”, or, as herein, simply as “symbionts”. The groups of symbiotic brachyurans discussed in this chapter are listed alphabetically by superfamilies, which follow the classification in Chapter 71-18 in this volume. Various 1) Manuscript concluded October 2014; final additions May 2015. © Koninklijke Brill NV, Leiden, 2015 Crustacea 9C (71-10): 543-581 544 P. -
Evolutionary Transformations of the Reproductive System in Eubrachyura (Crustacea: Decapoda)
EVOLUTIONARY TRANSFORMATIONS OF THE REPRODUCTIVE SYSTEM IN EUBRACHYURA (CRUSTACEA: DECAPODA) DISSERTATION zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) eingereicht an der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin von M. Sc. Katja, Kienbaum, geb. Jaszkowiak Präsidentin der Humboldt-Universität zu Berlin Prof. Dr.-Ing. Dr. Sabine Kunst Dekan der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin Prof. Dr. Bernhard Grimm Gutachter 1. Prof. Dr. Gerhard Scholtz 2. PD Dr. Thomas Stach 3. PD Dr. Christian Wirkner Tag der mündlichen Prüfung: 03.05.2019 CONTENT C ONTENT A BSTRACT v i - vii Z USAMMENFASSUNG viii - x 1 | INTRODUCTION 1 - 11 1.1 | THE BRACHYURA 1 1.1.1 | OBJECT OF INVESTIGATION 1 - 5 1.1.2 | WHAT WE (DO NOT) KNOW ABOUT THE PHYLOGENY OF EUBRACHURA 6 - 10 1. 2 |MS AI 10 - 11 2 | THE MORPHOLOGY OF THE MALE AND FEMALE REPRODUCTIVE SYSTEM IN TWO 12 - 34 SPECIES OF SPIDER CRABS (DECAPODA: BRACHYURA: MAJOIDEA) AND THE ISSUE OF THE VELUM IN MAJOID REPRODUCTION. 2.1 | INTRODUCTION 13 - 14 2.2 | MATERIAL AND METHODS 14 - 16 2.3 | RESULTS 16 - 23 2.4 | DISCUSSION 24 - 34 3 | THE MORPHOLOGY OF THE REPRODUCTIVE SYSTEM IN THE CRAB 35 - 51 PERCNON GIBBESI (DECAPODA: BRACHYURA: GRAPSOIDEA) REVEALS A NEW COMBINATION OF CHARACTERS. 3.1 | INTRODUCTION 36 - 37 3.2 | MATERIAL AND METHODS 37 - 38 3.3 | RESULTS 39 - 46 3.4 | DISCUSSION 46 - 51 4 | THE REPRODUCTIVE SYSTEM OF LIMNOPILOS NAIYANETRI INDICATES A 52 - 64 THORACOTREME AFFILIATION OF HYMENOSOMATIDAE (DECAPODA, EUBRACHYURA). -
Diversification and Distribution of Gall Crabs (Brachyura: Cryptochiridae
University of Groningen Diversification and distribution of gall crabs (Brachyura: Cryptochiridae: Opecarcinus) associated with Agariciidae corals Xu, Tao; Bravo, Henrique; Paulay, Gustav; van der Meij, S E T Published in: Coral Reefs DOI: 10.1007/s00338-021-02163-1 https://doi.org/10.1007/s00338-021-02163-1 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Version created as part of publication process; publisher's layout; not normally made publicly available Publication date: 2021 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Xu, T., Bravo, H., Paulay, G., & van der Meij, S. E. T. (2021). Diversification and distribution of gall crabs (Brachyura: Cryptochiridae: Opecarcinus) associated with Agariciidae corals. Coral Reefs. https://doi.org/10.1007/s00338-021-02163-1, https://doi.org/10.1007/s00338-021-02163-1 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. -
Systema Brachyurorum: Part I
THE RAFFLES BULLETIN OF ZOOLOGY 2008 17: 1–286 Date of Publication: 31 Jan.2008 © National University of Singapore SYSTEMA BRACHYURORUM: PART I. AN ANNOTATED CHECKLIST OF EXTANT BRACHYURAN CRABS OF THE WORLD Peter K. L. Ng Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore Email: [email protected] Danièle Guinot Muséum national d'Histoire naturelle, Département Milieux et peuplements aquatiques, 61 rue Buffon, 75005 Paris, France Email: [email protected] Peter J. F. Davie Queensland Museum, PO Box 3300, South Brisbane, Queensland, Australia Email: [email protected] ABSTRACT. – An annotated checklist of the extant brachyuran crabs of the world is presented for the first time. Over 10,500 names are treated including 6,793 valid species and subspecies (with 1,907 primary synonyms), 1,271 genera and subgenera (with 393 primary synonyms), 93 families and 38 superfamilies. Nomenclatural and taxonomic problems are reviewed in detail, and many resolved. Detailed notes and references are provided where necessary. The constitution of a large number of families and superfamilies is discussed in detail, with the positions of some taxa rearranged in an attempt to form a stable base for future taxonomic studies. This is the first time the nomenclature of any large group of decapod crustaceans has been examined in such detail. KEY WORDS. – Annotated checklist, crabs of the world, Brachyura, systematics, nomenclature. CONTENTS Preamble .................................................................................. 3 Family Cymonomidae .......................................... 32 Caveats and acknowledgements ............................................... 5 Family Phyllotymolinidae .................................... 32 Introduction .............................................................................. 6 Superfamily DROMIOIDEA ..................................... 33 The higher classification of the Brachyura ........................ -
Coral-Inhabiting Swimming Crabs (Crustacea, Decapoda, Portunidae) of the Sudanese Red Sea Vassily A
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ARTICLE IN PRESS Organisms, Diversity & Evolution 8 (2008) 170e1–170e19 www.elsevier.de/ode Coral-inhabiting swimming crabs (Crustacea, Decapoda, Portunidae) of the Sudanese Red Sea Vassily A. Spiridonova,Ã, Volker Neumannb aLaboratory of Coastal Ecosystems, P.P. Shirshov Institute of Oceanology of the Russian Academy of Sciences, Nakhimov Avenue, 36, Moscow 117997, Russia bForschungsinstitut Senckenberg, Senckenberganlage, 25, 60325, Frankfurt/Main, Germany Received 19 April 2005; accepted 22 June 2007 Abstract Brachyuran crabs show high species richness and constitute one of the most diverse biotic groups in coral reef communities. The present study examines the taxonomy and ecology (occurrence in particular coral habitats) of swimming crabs from the Sanganeb Atoll (Sudan) known for its high diversity of hermatypic corals. During two expeditions in the years 1991 and 1992, eleven species were collected directly from coral colonies or in baited traps in coral habitats: Carupa tenuipes Dana, 1852; Caphyra fulva Stephenson & Campbell, 1960; Portunus aff. iranjae Crosnier, 1962; Gonioinfradens paucidentata (A. Milne-Edwards, 1861); Thalamitoides quadridens A. Milne-Edwards, 1869; Thalamitoides spinigera Nobili, 1905; Thalamita cf. iranica Stephensen, 1945; Thalamita murinae Zarenkov, 1971; Thalamita prymna (Herbst, 1803); Thalamita quadrilobata Miers, 1884; and Thalamita savignyi A. Milne-Edwards, 1861. Thalamita murinae, had been recorded only once before and incompletely described; it is redescribed from the holotype. Together with Thalamita longifrons (A. Milne-Edwards, 1869) from the Pacific, it forms a distinct group of species living in complex coral habitats. This Th. longifrons group is revised; Th. -
Investigating the Driving Mechanisms Behind Differences in Bleaching
Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 6-15-2015 Investigating the Driving Mechanisms Behind Differences in Bleaching and Disease Susceptibility Between Two Scleractinian Corals, Pseudodiploria Strigosa and Diploria Labyrinthiformis Zoe A. Pratte Florida International University, [email protected] DOI: 10.25148/etd.FIDC000082 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Aquaculture and Fisheries Commons, Bacteriology Commons, Environmental Microbiology and Microbial Ecology Commons, Genomics Commons, Immunity Commons, Marine Biology Commons, and the Other Animal Sciences Commons Recommended Citation Pratte, Zoe A., "Investigating the Driving Mechanisms Behind Differences in Bleaching and Disease Susceptibility Between Two Scleractinian Corals, Pseudodiploria Strigosa and Diploria Labyrinthiformis" (2015). FIU Electronic Theses and Dissertations. 2217. https://digitalcommons.fiu.edu/etd/2217 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida INVESTIGATING THE DRIVING MECHANISMS BEHIND DIFFERENCES IN BLEACHING AND DISEASE SUSCEPTIBILITY BETWEEN TWO SCLERACTINIAN CORALS, PSEUDODIPLORIA STRIGOSA AND DIPLORIA LABYRINTHIFORMIS A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOLOGY by Zoe A. Pratte 2015 To: Dean Michael R. Heithaus College of Arts and Sciences This dissertation, written by Zoe A. Pratte, and entitled Investigating the Driving Mechanisms Behind Differences in Bleaching and Disease Susceptibility Between Two Scleractinian Corals, Pseudodiploria strigosa and Diploria labyrinthiformis, having been approved in respect to style and intellectual content, is referred to you for judgment. -
Characteristics of the Infestation of Seriatopora Corals by the Coral Gall Crab Hapalocarcinus Marsupialis Stimpson, 1859 on the Great Reef of Toliara, Madagascar
Symbiosis DOI 10.1007/s13199-016-0391-1 Characteristics of the infestation of Seriatopora corals by the coral gall crab Hapalocarcinus marsupialis Stimpson, 1859 on the great reef of toliara, Madagascar Lucas Terrana1 & Guillaume Caulier1 & Gildas Todinanahary2 & Gilles Lepoint3 & Igor Eeckhaut1,2 Received: 9 June 2015 /Accepted: 22 February 2016 # Springer Science+Business Media Dordrecht 2016 Abstract This study describes the association between the confirmed that these crabs are filter-feeders and do not feed obligatory symbiont coral gall crab Hapalocarcinus on their host. This association perfectly highlights the difficul- marsupialis and its stony coral hosts Seriatopora sp.within ties to define the symbiotic status of a symbiont if one con- the Great Reef of Toliara in Madagascar and attempts to dis- siders inflexible the three categories of symbiosis commonly cuss their symbiotic status through comparison with previous defined. studies. These corals are inhabited by crabs living in galls that can be categorised in four distinct morphological stages, Keywords Coral gall crab . Stony coral . Cryptochiridae . where the first one corresponds to a small bud and the last Madagascar one represents a completely closed gall surrounding the crab inside. Within the reef, 563 colonies of Seriatopora species were observed by scuba-diving at ten different stations: 1 Introduction 37.8 % of them were infested by H. marsupialis, with a total of 763 galls, and with a majority of stage 4 galls. Galls are Coral reefs are considered to be a crucial ecosystem for the monopolised by females that can have different morphologies. biosphere as they allow the development of thousands of dif- Females store the sperm in two spermathecae and are fertilised ferent marine species.