Defining the Effect of the 16P11.2 Duplication on Cognition, Behavior, and Medical Comorbidities

Total Page:16

File Type:pdf, Size:1020Kb

Defining the Effect of the 16P11.2 Duplication on Cognition, Behavior, and Medical Comorbidities Supplementary Online Content D’Angelo D, Lebon S, Chen Q, et al; Cardiff University Experiences of Children With Copy Number Variants (ECHO) study; 16p11.2 European Consortium; Simons Variation in Individuals Project (VIP) Consortium. Defining the effect of the 16p11.2 duplication on cognition, behavior, and medical comorbidities. JAMA Psychiatry. Published online December 2, 2015. doi:10.1001/jamapsychiatry.2015.2123. eMethods. Data Sources and Additional CNVs eResults. Malformations, Medical Problems, and Sex Differences eTable 1. Ascertainment of 16p11.2 Duplication and Deletion Carriers eTable 2. Effect of the Deletion on Global Intelligence and Anthropometric Measures eTable 3. Effect of the Duplication on Full-Scale IQ (FSIQ), Controlling for ASD and Seizures eTable 4. Effect of the Deletion on Full-Scale IQ (FSIQ), Controlling for ASD and Seizures eTable 5. Effect of the Duplication on Nonverbal IQ (NVIQ), Controlling for ASD and Seizures eTable 6. Effect of the Deletion on Nonverbal IQ (NVIQ), Controlling for ASD and Seizures eTable 7. Effect of the Duplication on Verbal IQ (VIQ), Controlling for ASD and Seizures eTable 8. Effect of the Deletion on Verbal IQ (VIQ), Controlling for ASD and Seizures eTable 9. Additional Deleterious CNVs in 16p11.2 Probands Carriers Excluded From the Main Analysis eTable 10. Duplication Inheritance Subanalysis eTable 11. Deletion Inheritance Subanalysis eTable 12. Neurologic Features in 16p11.2 Duplication Carriers According to Ascertainment eTable 13. Neurologic Features in 16p11.2 Deletion Carriers According to Ascertainment eTable 14. Behavioral and Psychiatric Features of 16p11.2 Duplication Carriers eTable 15. Behavioral and Psychiatric Features of 16p11.2 Deletion Carriers eTable 16. Effect of the Duplication on Body Mass Index (BMI) z Score, Controlling for ASD, Seizures, and NVIQ eTable 17. Effect of the Deletion on Body Mass Index (BMI) z Score, Controlling for ASD, Seizures, and NVIQ eTable 18. Effect of the Duplication on Head Circumference (HC) z Score, Controlling for ASD, Seizures, and NVIQ eTable 19. Effect of the Deletion on Head Circumference (HC) z Score, Controlling for ASD, Seizures, and NVIQ eTable 20. Major Malformations and Medical Problems in 16p11.2 Duplication Carriers According to Ascertainment eTable 21. Major Malformations and Medical Problems in 16p11.2 Deletion Carriers According to Ascertainment eTable 22. Duplication Carriers With Multiple Medical Conditions According to Ascertainment eTable 23. Deletion Carriers With Multiple Medical Conditions According to Ascertainment eFigure 1. Distribution of IQ Scores by Region eFigure 2. Full-Scale IQ (FSIQ) in Probands Stratified by Site, Sex, Seizure Status, and HC z Score Above vs Below 0 eFigure 3. Distribution of Additional Deleterious CNVs by Size and Their Numbers of Protein-Coding Genes Included in Duplication and Deletion Carriers eFigure 4. FSIQ of Inherited and De Novo Duplication and Deletion Probands vs Parent FSIQ eFigure 5. Age of Walking in Duplication Proband Carriers vs Deletion Proband Carriers This supplementary material has been provided by the authors to give readers additional information about their work. © 2015 American Medical Association. All rights reserved. 1 Downloaded From: https://jamanetwork.com/ on 10/01/2021 eMethods. Data Sources and Additional CNVs Data sources: Clinical information was collected for a total of 270 duplication carriers ascertained through different cohorts, and 102 of their familial non-carrier controls. Ascertainment of duplication carriers is summarized in Table S1. Most probands were ascertained on the basis of a neurodevelopmental disorder (ND) including developmental delay/intellectual disability (DD/ID) or autism spectrum disorder (ASD) and were identified through genetic testing performed for clinical diagnostic purposes. In a few cases, ascertainment was based on a specific psychiatric diagnosis (schizophrenia or bipolar affective disorder) as well as genotyping of a general population cohort (Estonian Genome Center, University of Tartu: EGCUT).1,2 Individuals were recruited from the 16p11.2 European consortium, the Cardiff University ECHO study in the UK and Simons VIP in the United States, as well as other genetic centers or previously published studies.3-10 All data (including literature) were grouped into EU and USA cohorts for statistical analysis. Deletion carrier comparison group: A sample of 390 16p11.2 deletion carriers (Table S1), some of which were previously published,11 was available for comparison. Data for full-scale intelligence quotient (FSIQ), non- verbal IQ (NVIQ) or verbal IQ (VIQ) were available for n=200, n=205 and n=184 deletion carriers, respectively. These data were compared to n=242, n=242 and n=230 of their intrafamilial controls, respectively. Additional CNVs: Data on additional deleterious CNVs were available for probands ascertained for NDs. Information on these additional variants was provided by different diagnostic platforms with varying resolution (eg. Agilent 44K, 105K, 180K, 244K, 250K; Affymetrix 250K, Illumina Human370CNV and Human OMNIExpress). The group of 142 duplication probands ascertained for NDs (Table S1) was obtained after exclusion of 16 duplication probands carrying an additional deleterious CNV (10.1% second hit rate). The group of 283 deletion probands ascertained for NDs (Table S1) was obtained after exclusion of 15 deletion probands carrying an additional deleterious CNV (5.0% second hit rate) (Supplementary Table S9). We used an independent replication dataset from Signature Genomics showing with 7/65 (10.7%) and 3/107 (2.8%) of additional deleterious CNV in duplication and deletion carriers ascertained for NDs, respectively. © 2015 American Medical Association. All rights reserved. 2 Downloaded From: https://jamanetwork.com/ on 10/01/2021 eResults. Malformations, Medical Problems, and Sex Differences Malformations and medical problems Major malformations are present in 16.7% (30/180) of duplication probands. Among these 30 probands, 17 had one and 13 had two or more malformations. In relatives, 9/90 (10.0%) have major malformations which are isolated in all cases except one. In probands and relatives ascertained for NDs major malformations are present in 21.6% (24/111) and 10.6% (9/85) of EU and the VIP duplication carriers respectively. Scoliosis, genital and cardiac malformations and are the most frequent medical conditions in duplications (Supplementary Tables S20 and S21). Magnetic resonance imaging (MRI) of the brain in a subset of 86 duplication carriers showed cerebellar hypoplasia and enlarged ventricles as the most frequent findings (15.1% and 11.6%, respectively, Supplementary Table S12). Characteristic facial dysmorphism is absent in duplication carriers. In comparison, major malformations are present in 67/317 (21.1%) deletion proband carriers. Among these 67 probands, 42 had one and 25 had two or more malformations. In relatives, 8/73 (11.0%) have major malformations, four had one and four had two malformations. Like, duplication carriers, scoliosis (secondary to vertebral anomalies in 42.1%), genital and cardiac malformations are the most frequent medical conditions in deletion carriers (Supplementary Table S22). Brain malformations/anomalies are observed in 49.0% (53/108) of a subset of 108 deletion carriers and mainly involve posterior fossa (36/108, 33.3%); among them 11 carriers had Chiari I malformation (11/36, 30.6%, Supplementary Table S13). © 2015 American Medical Association. All rights reserved. 3 Downloaded From: https://jamanetwork.com/ on 10/01/2021 Sex differences We used the Binomial test to assess the equality of gender proportions in each ascertainment group in supplementary Table S1. There are significantly more males among duplication probands (p=0.04), and this is driven by carriers ascertained for NDs (p=0.001). A similar pattern is observed for deletion proband carriers ascertained for NDs (p<0.001). There is no gender difference in other carrier groups. Among duplication families, gender had a significant effect on nonverbal IQ (p=0.04), with males having an average 4-point increase over females. There was no significant effect of gender on verbal IQ (p=0.78), full-scale IQ (p=0.42), BMI z score (p=0.69) or head circumference (HC) z score (p=0.25) (Table 3). In deletion families, there was a similar effect of gender on nonverbal IQ with males higher than females by an average of 3 points (p=0.02). Gender additionally had a significant effect on HC z score, with males having larger average z scores (p<0.001) (Table S2). There was a marginally significant effect of gender on full-scale IQ, again with males higher (p=0.06), but no significant effect on verbal IQ (p=0.71) or BMI z score (p=0.13). © 2015 American Medical Association. All rights reserved. 4 Downloaded From: https://jamanetwork.com/ on 10/01/2021 eReferences 1. Firmann M, Mayor V, Vidal PM, et al. The CoLaus study: a population-based study to investigate the epidemiology and genetic determinants of cardiovascular risk factors and metabolic syndrome. BMC cardiovascular disorders 2008; 8: 6. 2. Leitsalu L, Haller T, Esko T, et al. Cohort Profile: Estonian Biobank of the Estonian Genome Center, University of Tartu. International journal of epidemiology 2014. 3. Weiss LA, Shen Y, Korn JM, et al. Association between microdeletion and microduplication at 16p11.2 and autism. The New England journal of medicine 2008; 358(7): 667-75. 4. McCarthy SE, Makarov V, Kirov G, et al. Microduplications of 16p11.2 are associated with schizophrenia. Nature genetics 2009; 41(11): 1223-7. 5. Shinawi M, Liu P, Kang SH, et al. Recurrent reciprocal 16p11.2 rearrangements associated with global developmental delay, behavioural problems, dysmorphism, epilepsy, and abnormal head size. Journal of medical genetics 2010; 47(5): 332-41. 6. Fernandez BA, Roberts W, Chung B, et al. Phenotypic spectrum associated with de novo and inherited deletions and duplications at 16p11.2 in individuals ascertained for diagnosis of autism spectrum disorder. Journal of medical genetics 2010; 47(3): 195-203. 7. Bedoyan JK, Kumar RA, Sudi J, et al. Duplication 16p11.2 in a child with infantile seizure disorder.
Recommended publications
  • (COMT) Gene As a Candidate for Psychiatric Phenotypes
    Molecular Psychiatry (2006) 11, 446–458 & 2006 Nature Publishing Group All rights reserved 1359-4184/06 $30.00 www.nature.com/mp FEATURE REVIEW The catechol-O-methyl transferase (COMT) gene as a candidate for psychiatric phenotypes: evidence and lessons N Craddock, MJ Owen and MC O’Donovan Department of Psychological Medicine, The Henry Wellcome Building for Biomedical Research in Wales, Cardiff University, School of Medicine, Heath Park, Cardiff, UK The enzyme catechol-O-methyl transferase (COMT), identified in the 1950s, is involved in catabolism of monoamines that are influenced by psychotropic medications, including neuroleptics and antidepressants. The COMT gene lies in a chromosomal region of interest for psychosis and bipolar spectrum disorder and a common polymorphism within the gene alters the activity of the enzyme. As a consequence, COMT has been one of the most studied genes for psychosis. On the basis of prior probabilities it would seem surprising if functional variation at COMT did not have some influence either on susceptibility to psychiatric phenotypes, modification of the course of illness or moderation of response to treatment. There is now robust evidence that variation at COMT influences frontal lobe function. However, despite considerable research effort, it has not proved straightforward to demonstrate and characterise a clear relationship between genetic variation at COMT and psychiatric phenotypes. It is of course, possible that COMT will turn out to be an unusually intractable case but it seems more likely that the experiences with this gene will provide a foretaste of the complexity of genotype–phenotype relationships that will be found for psychiatric traits.
    [Show full text]
  • Responses of Bats to White-Nose Syndrome and Implications for Conservation
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2020 Responses of Bats to White-Nose Syndrome and Implications for Conservation Meghan Stark University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Stark, Meghan, "Responses of Bats to White-Nose Syndrome and Implications for Conservation" (2020). Doctoral Dissertations. 2518. https://scholars.unh.edu/dissertation/2518 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. RESPONSES OF BATS TO WHITE-NOSE SYNDROME AND IMPLICATIONS FOR CONSERVATION BY MEGHAN A. STARK B.S., University of Alabama at Birmingham, 2013 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In Genetics May 2020 i This dissertation was examined and approved in partial fulfillment of the requirements for the degree of Ph.D. in Genetics by: Dissertation Director, Matthew MacManes, Assoc. Prof. UNH MCBS Jeffrey T. Foster, Associate Professor, NAU PMI W. Kelley Thomas, Professor, UNH MCBS Rebecca Rowe, Associate Professor, UNH NREN Thomas Lee, Associate Professor Emeritus, UNH NREN On April 6, 2020 Approval signatures are on file with the University of New Hampshire Graduate School. ii DEDICATION I dedicate this work to all of the strong women in my life: Myra Michele Ange Heather Michelle Coons Kaitlyn Danielle Cagle Brindlee Michelle Coons Patricia Gail Miller Sarah Jean Lane “Here’s to strong women.
    [Show full text]
  • Human Identification by Amelogenin Test in Libyans
    American Journal of www.biomedgrid.com Biomedical Science & Research ISSN: 2642-1747 --------------------------------------------------------------------------------------------------------------------------------- Research Article Copyright@ Samir Elmrghni Human Identification by Amelogenin Test in Libyans Samir Elmrghni* and Mahmoud Kaddura Department of Forensic Medicine and Toxicology, University of Benghazi, Libya *Corresponding author: Samir Elmrghni, Faculty of Medicine, Department of Forensic Medicine and Toxicology, University of Benghazi-Libya, Benghazi, Libya. To Cite This Article: Samir Elmrghni. Human Identification by Amelogenin Test in Libyans. Am J Biomed Sci & Res. 2019 - 3(6). AJBSR. MS.ID.000737. DOI: 10.34297/AJBSR.2019.03.000737 Received: May 25, 2019 | Published: July 11, 2019 Abstract Sex typing is essential in medical diagnosis of sex-linked disease and forensic science. Gender for criminal evidence of offender is usually as reported the anomalous amelogenin results of 2 male samples (out of 238 males) represented as females (Y deletions) and another 2 samples the initial information for investigation. For individualization, identification of gender is performed in addition to the STR markers recently. We amelogenin results of the controversial samples, DNA was further used in SRY and Y-STR typing. All samples typed as males but two showed with with (X deletions) in Benghazi (Libya). The frequency in both was about 0.8%. Higher than those of the other populations reported. To confirm X chromosomes. From the results, it was highly suggested that for the controversial cases of human gender identification with amelogenin tests, amplificationKeywords: Amelogenin; of SRY gene Libyans or/and Y-STR markers will be adopted to confirm the gender [1]. Introduction gene (AMG) was precisely mapped in the p22 region on the X systems used to determine if the sample being tested is of male gene was first isolated and sequenced [2].
    [Show full text]
  • University of Leicester, Msc Medical Statistics, Thesis, Wilmar
    Thesis MSc in Medical Statistics Department of Health Sciences University of Leicester, United Kingdom Application of Bayesian hierarchical generalized linear models using weakly informative prior distributions to identify rare genetic variant effects on blood pressure Wilmar Igl March 2015 Summary Background Currently rare genetic variants are discussed as a source of \missing heritability" of complex traits. Bayesian hierarchical models were proposed as an efficient method for the estimation and aggregation of conditional effects of rare variants. Here, such models are applied to identify rare variant effects on blood pressure. Methods Empirical data provided by the Genetic Analysis Workshop 19 (2014) included 1,851 Mexican-American individuals with diastolic blood pressure (DBP), systolic blood pressure (SBP), hypertension (HTN) and 461,868 variants from whole- exome sequencing of odd-numbered chromosomes. Bayesian hierarchical generalized linear models using weakly informative prior distributions were applied. Results Associations of rare variants chr1:204214013 (estimate = 39.6, Credible In- terval (CrI) 95% = [25.3, 53.9], Bayesian p = 6:8 × 10−8) in the PLEKHA6 gene and chr11:118518698 (estimate = 32.2, CrI95% = [20.6, 43.9], Bayesian p = 7:0 × 10−8) in the PHLEDB1 gene were identified. Joint effects of grouped rare variants on DBP in 23 genes (Bayesian p = [8:8 × 10−14, 9:3 × 10−8]) and on SBP in 21 genes (Bayesian p = [8:6 × 10−12, 7:8 × 10−8]) in pathways related to hemostasis, sodi- um/calcium transport, ciliary activity, and others were found. No association with hypertension was detected. Conclusions Bayesian hierarchical generalized linear models with weakly informa- tive priors can successfully be applied in exome-wide genetic association analyses of rare variants.
    [Show full text]
  • Tooth Enamel and Its Dynamic Protein Matrix
    International Journal of Molecular Sciences Review Tooth Enamel and Its Dynamic Protein Matrix Ana Gil-Bona 1,2,* and Felicitas B. Bidlack 1,2,* 1 The Forsyth Institute, Cambridge, MA 02142, USA 2 Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA * Correspondence: [email protected] (A.G.-B.); [email protected] (F.B.B.) Received: 26 May 2020; Accepted: 20 June 2020; Published: 23 June 2020 Abstract: Tooth enamel is the outer covering of tooth crowns, the hardest material in the mammalian body, yet fracture resistant. The extremely high content of 95 wt% calcium phosphate in healthy adult teeth is achieved through mineralization of a proteinaceous matrix that changes in abundance and composition. Enamel-specific proteins and proteases are known to be critical for proper enamel formation. Recent proteomics analyses revealed many other proteins with their roles in enamel formation yet to be unraveled. Although the exact protein composition of healthy tooth enamel is still unknown, it is apparent that compromised enamel deviates in amount and composition of its organic material. Why these differences affect both the mineralization process before tooth eruption and the properties of erupted teeth will become apparent as proteomics protocols are adjusted to the variability between species, tooth size, sample size and ephemeral organic content of forming teeth. This review summarizes the current knowledge and published proteomics data of healthy and diseased tooth enamel, including advancements in forensic applications and disease models in animals. A summary and discussion of the status quo highlights how recent proteomics findings advance our understating of the complexity and temporal changes of extracellular matrix composition during tooth enamel formation.
    [Show full text]
  • Use of Genomic Tools to Discover the Cause of Champagne Dilution Coat Color in Horses and to Map the Genetic Cause of Extreme Lordosis in American Saddlebred Horses
    University of Kentucky UKnowledge Theses and Dissertations--Veterinary Science Veterinary Science 2014 USE OF GENOMIC TOOLS TO DISCOVER THE CAUSE OF CHAMPAGNE DILUTION COAT COLOR IN HORSES AND TO MAP THE GENETIC CAUSE OF EXTREME LORDOSIS IN AMERICAN SADDLEBRED HORSES Deborah G. Cook University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Cook, Deborah G., "USE OF GENOMIC TOOLS TO DISCOVER THE CAUSE OF CHAMPAGNE DILUTION COAT COLOR IN HORSES AND TO MAP THE GENETIC CAUSE OF EXTREME LORDOSIS IN AMERICAN SADDLEBRED HORSES" (2014). Theses and Dissertations--Veterinary Science. 15. https://uknowledge.uky.edu/gluck_etds/15 This Doctoral Dissertation is brought to you for free and open access by the Veterinary Science at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Veterinary Science by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Glycine Receptors Control the Generation of Projection Neurons in the Developing Cerebral Cortex
    Cell Death and Differentiation (2014) 21, 1696–1708 & 2014 Macmillan Publishers Limited All rights reserved 1350-9047/14 www.nature.com/cdd Glycine receptors control the generation of projection neurons in the developing cerebral cortex A Avila*,1,2,3, PM Vidal1, S Tielens2,3, G Morelli1,2,3, S Laguesse2,3, RJ Harvey5, J-M Rigo*,1,6 and L Nguyen*,2,3,4,6 The development of the cerebral cortex requires coordinated regulation of proliferation, specification, migration and differentiation of cortical progenitors into functionally integrated neurons. The completion of the neurogenic program requires a dynamic interplay between cell intrinsic regulators and extrinsic cues, such as growth factor and neurotransmitters. We previously demonstrated a role for extrasynaptic glycine receptors (GlyRs) containing the a2 subunit in cerebral cortical neurogenesis, revealing that endogenous GlyR activation promotes interneuron migration in the developing cortical wall. The proliferative compartment of the cortex comprises apical progenitors that give birth to neurons directly or indirectly through the generation of basal progenitors, which serve as amplification step to generate the bulk of cortical neurons. The present work shows that genetic inactivation of Glra2, the gene coding the a2 subunit of GlyRs, disrupts dorsal cortical progenitor homeostasis with an impaired capability of apical progenitors to generate basal progenitors. This defect results in an overall reduction of projection neurons that settle in upper or deep layers of the cerebral cortex. Overall, the depletion of cortical neurons observed in Glra2-knockout embryos leads to moderate microcephaly in newborn Glra2-knockout mice. Taken together, our findings support a contribution of GlyR a2 to early processes in cerebral cortical neurogenesis that are required later for the proper development of cortical circuits.
    [Show full text]
  • ARTICLE Doi:10.1038/Nature10523
    ARTICLE doi:10.1038/nature10523 Spatio-temporal transcriptome of the human brain Hyo Jung Kang1*, Yuka Imamura Kawasawa1*, Feng Cheng1*, Ying Zhu1*, Xuming Xu1*, Mingfeng Li1*, Andre´ M. M. Sousa1,2, Mihovil Pletikos1,3, Kyle A. Meyer1, Goran Sedmak1,3, Tobias Guennel4, Yurae Shin1, Matthew B. Johnson1,Zˇeljka Krsnik1, Simone Mayer1,5, Sofia Fertuzinhos1, Sheila Umlauf6, Steven N. Lisgo7, Alexander Vortmeyer8, Daniel R. Weinberger9, Shrikant Mane6, Thomas M. Hyde9,10, Anita Huttner8, Mark Reimers4, Joel E. Kleinman9 & Nenad Sˇestan1 Brain development and function depend on the precise regulation of gene expression. However, our understanding of the complexity and dynamics of the transcriptome of the human brain is incomplete. Here we report the generation and analysis of exon-level transcriptome and associated genotyping data, representing males and females of different ethnicities, from multiple brain regions and neocortical areas of developing and adult post-mortem human brains. We found that 86 per cent of the genes analysed were expressed, and that 90 per cent of these were differentially regulated at the whole-transcript or exon level across brain regions and/or time. The majority of these spatio-temporal differences were detected before birth, with subsequent increases in the similarity among regional transcriptomes. The transcriptome is organized into distinct co-expression networks, and shows sex-biased gene expression and exon usage. We also profiled trajectories of genes associated with neurobiological categories and diseases, and identified associations between single nucleotide polymorphisms and gene expression. This study provides a comprehensive data set on the human brain transcriptome and insights into the transcriptional foundations of human neurodevelopment.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • 22Q11 Deletion Syndrome: Current Perspective
    The Application of Clinical Genetics Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW 22q11 deletion syndrome: current perspective Bülent Hacıhamdioğlu1 Abstract: Chromosome 22q11 is characterized by the presence of chromosome-specific low- Duygu Hacıhamdioğlu2 copy repeats or segmental duplications. This region of the chromosome is very unstable and Kenan Delil3 susceptible to mutations. The misalignment of low-copy repeats during nonallelic homologous recombination leads to the deletion of the 22q11.2 region, which results in 22q11 deletion syn- 1Department of Pediatric Endocrinology, 2Department of drome (22q11DS). The 22q11.2 deletion is associated with a wide variety of phenotypes. The Pediatric Nephrology, GATA term 22q11DS is an umbrella term that is used to encompass all 22q11.2 deletion-associated Haydarpasa Training Hospital, phenotypes. The haploinsufficiency of genes located at 22q11.2 affects the early morphogen- 3Department of Medical Genetics, Marmara University, School of esis of the pharyngeal arches, heart, skeleton, and brain. TBX1 is the most important gene for Medicine, Istanbul, Turkey 22q11DS. This syndrome can ultimately affect many organs or systems; therefore, it has a For personal use only. very wide phenotypic spectrum. An increasing amount of information is available related to the pathogenesis, clinical phenotypes, and management of this syndrome in recent years. This review summarizes the current clinical and genetic status related to 22q11DS. Keywords: DiGeorge syndrome, velocardiofacial syndrome, TBX1 Introduction Congenital absence of a thymus and parathyroid gland was reported by Dr Angelo M DiGeorge in 1965. Later, cardiac anomalies were added to the phenotype, and the syndrome was named DiGeorge syndrome (DGS; Mendelian Inheritance in Man [MIM] number 188400).1 Most patients with DGS have monosomic deletions on the long arm of chromosome 22.
    [Show full text]
  • Growth and Molecular Profile of Lung Cancer Cells Expressing Ectopic LKB1: Down-Regulation of the Phosphatidylinositol 3؅-Phosphate Kinase/PTEN Pathway1
    [CANCER RESEARCH 63, 1382–1388, March 15, 2003] Growth and Molecular Profile of Lung Cancer Cells Expressing Ectopic LKB1: Down-Regulation of the Phosphatidylinositol 3؅-Phosphate Kinase/PTEN Pathway1 Ana I. Jimenez, Paloma Fernandez, Orlando Dominguez, Ana Dopazo, and Montserrat Sanchez-Cespedes2 Molecular Pathology Program [A. I. J., P. F., M. S-C.], Genomics Unit [O. D.], and Microarray Analysis Unit [A. D.], Spanish National Cancer Center, 28029 Madrid, Spain ABSTRACT the cell cycle in G1 (8, 9). However, the intrinsic mechanism by which LKB1 activity is regulated in cells and how it leads to the suppression Germ-line mutations in LKB1 gene cause the Peutz-Jeghers syndrome of cell growth is still unknown. It has been proposed that growth (PJS), a genetic disease with increased risk of malignancies. Recently, suppression by LKB1 is mediated through p21 in a p53-dependent LKB1-inactivating mutations have been identified in one-third of sporadic lung adenocarcinomas, indicating that LKB1 gene inactivation is critical in mechanism (7). In addition, it has been observed that LKB1 binds to tumors other than those of the PJS syndrome. However, the in vivo brahma-related gene 1 protein (BRG1) and this interaction is required substrates of LKB1 and its role in cancer development have not been for BRG1-induced growth arrest (10). Similar to what happens in the completely elucidated. Here we show that overexpression of wild-type PJS, Lkb1 heterozygous knockout mice show gastrointestinal hamar- LKB1 protein in A549 lung adenocarcinomas cells leads to cell-growth tomatous polyposis and frequent hepatocellular carcinomas (11, 12). suppression. To examine changes in gene expression profiles subsequent to Interestingly, the hamartomas, but not the malignant tumors, arising in exogenous wild-type LKB1 in A549 cells, we used cDNA microarrays.
    [Show full text]